craftbeerpi4-pione/venv/lib/python3.8/site-packages/cryptography/hazmat/backends/openssl/rsa.py

517 lines
19 KiB
Python
Raw Permalink Normal View History

# This file is dual licensed under the terms of the Apache License, Version
# 2.0, and the BSD License. See the LICENSE file in the root of this repository
# for complete details.
from __future__ import absolute_import, division, print_function
from cryptography import utils
from cryptography.exceptions import (
InvalidSignature,
UnsupportedAlgorithm,
_Reasons,
)
from cryptography.hazmat.backends.openssl.utils import (
_calculate_digest_and_algorithm,
_check_not_prehashed,
_warn_sign_verify_deprecated,
)
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import (
AsymmetricSignatureContext,
AsymmetricVerificationContext,
rsa,
)
from cryptography.hazmat.primitives.asymmetric.padding import (
AsymmetricPadding,
MGF1,
OAEP,
PKCS1v15,
PSS,
calculate_max_pss_salt_length,
)
from cryptography.hazmat.primitives.asymmetric.rsa import (
RSAPrivateKeyWithSerialization,
RSAPublicKeyWithSerialization,
)
def _get_rsa_pss_salt_length(pss, key, hash_algorithm):
salt = pss._salt_length
if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
return calculate_max_pss_salt_length(key, hash_algorithm)
else:
return salt
def _enc_dec_rsa(backend, key, data, padding):
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Padding must be an instance of AsymmetricPadding.")
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, OAEP):
padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF,
)
if not backend.rsa_padding_supported(padding):
raise UnsupportedAlgorithm(
"This combination of padding and hash algorithm is not "
"supported by this backend.",
_Reasons.UNSUPPORTED_PADDING,
)
else:
raise UnsupportedAlgorithm(
"{} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING,
)
return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding)
def _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum, padding):
if isinstance(key, _RSAPublicKey):
init = backend._lib.EVP_PKEY_encrypt_init
crypt = backend._lib.EVP_PKEY_encrypt
else:
init = backend._lib.EVP_PKEY_decrypt_init
crypt = backend._lib.EVP_PKEY_decrypt
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(key._evp_pkey, backend._ffi.NULL)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init(pkey_ctx)
backend.openssl_assert(res == 1)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, padding_enum)
backend.openssl_assert(res > 0)
buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(buf_size > 0)
if isinstance(padding, OAEP) and backend._lib.Cryptography_HAS_RSA_OAEP_MD:
mgf1_md = backend._evp_md_non_null_from_algorithm(
padding._mgf._algorithm
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1_md)
backend.openssl_assert(res > 0)
oaep_md = backend._evp_md_non_null_from_algorithm(padding._algorithm)
res = backend._lib.EVP_PKEY_CTX_set_rsa_oaep_md(pkey_ctx, oaep_md)
backend.openssl_assert(res > 0)
if (
isinstance(padding, OAEP)
and padding._label is not None
and len(padding._label) > 0
):
# set0_rsa_oaep_label takes ownership of the char * so we need to
# copy it into some new memory
labelptr = backend._lib.OPENSSL_malloc(len(padding._label))
backend.openssl_assert(labelptr != backend._ffi.NULL)
backend._ffi.memmove(labelptr, padding._label, len(padding._label))
res = backend._lib.EVP_PKEY_CTX_set0_rsa_oaep_label(
pkey_ctx, labelptr, len(padding._label)
)
backend.openssl_assert(res == 1)
outlen = backend._ffi.new("size_t *", buf_size)
buf = backend._ffi.new("unsigned char[]", buf_size)
# Everything from this line onwards is written with the goal of being as
# constant-time as is practical given the constraints of Python and our
# API. See Bleichenbacher's '98 attack on RSA, and its many many variants.
# As such, you should not attempt to change this (particularly to "clean it
# up") without understanding why it was written this way (see
# Chesterton's Fence), and without measuring to verify you have not
# introduced observable time differences.
res = crypt(pkey_ctx, buf, outlen, data, len(data))
resbuf = backend._ffi.buffer(buf)[: outlen[0]]
backend._lib.ERR_clear_error()
if res <= 0:
raise ValueError("Encryption/decryption failed.")
return resbuf
def _rsa_sig_determine_padding(backend, key, padding, algorithm):
if not isinstance(padding, AsymmetricPadding):
raise TypeError("Expected provider of AsymmetricPadding.")
pkey_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
backend.openssl_assert(pkey_size > 0)
if isinstance(padding, PKCS1v15):
# Hash algorithm is ignored for PKCS1v15-padding, may be None.
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF,
)
# PSS padding requires a hash algorithm
if not isinstance(algorithm, hashes.HashAlgorithm):
raise TypeError("Expected instance of hashes.HashAlgorithm.")
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
if pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError(
"Digest too large for key size. Use a larger "
"key or different digest."
)
padding_enum = backend._lib.RSA_PKCS1_PSS_PADDING
else:
raise UnsupportedAlgorithm(
"{} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING,
)
return padding_enum
# Hash algorithm can be absent (None) to initialize the context without setting
# any message digest algorithm. This is currently only valid for the PKCS1v15
# padding type, where it means that the signature data is encoded/decoded
# as provided, without being wrapped in a DigestInfo structure.
def _rsa_sig_setup(backend, padding, algorithm, key, init_func):
padding_enum = _rsa_sig_determine_padding(backend, key, padding, algorithm)
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(key._evp_pkey, backend._ffi.NULL)
backend.openssl_assert(pkey_ctx != backend._ffi.NULL)
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init_func(pkey_ctx)
backend.openssl_assert(res == 1)
if algorithm is not None:
evp_md = backend._evp_md_non_null_from_algorithm(algorithm)
res = backend._lib.EVP_PKEY_CTX_set_signature_md(pkey_ctx, evp_md)
if res == 0:
backend._consume_errors()
raise UnsupportedAlgorithm(
"{} is not supported by this backend for RSA signing.".format(
algorithm.name
),
_Reasons.UNSUPPORTED_HASH,
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, padding_enum)
if res <= 0:
backend._consume_errors()
raise UnsupportedAlgorithm(
"{} is not supported for the RSA signature operation.".format(
padding.name
),
_Reasons.UNSUPPORTED_PADDING,
)
if isinstance(padding, PSS):
res = backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx, _get_rsa_pss_salt_length(padding, key, algorithm)
)
backend.openssl_assert(res > 0)
mgf1_md = backend._evp_md_non_null_from_algorithm(
padding._mgf._algorithm
)
res = backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, mgf1_md)
backend.openssl_assert(res > 0)
return pkey_ctx
def _rsa_sig_sign(backend, padding, algorithm, private_key, data):
pkey_ctx = _rsa_sig_setup(
backend,
padding,
algorithm,
private_key,
backend._lib.EVP_PKEY_sign_init,
)
buflen = backend._ffi.new("size_t *")
res = backend._lib.EVP_PKEY_sign(
pkey_ctx, backend._ffi.NULL, buflen, data, len(data)
)
backend.openssl_assert(res == 1)
buf = backend._ffi.new("unsigned char[]", buflen[0])
res = backend._lib.EVP_PKEY_sign(pkey_ctx, buf, buflen, data, len(data))
if res != 1:
errors = backend._consume_errors_with_text()
raise ValueError(
"Digest or salt length too long for key size. Use a larger key "
"or shorter salt length if you are specifying a PSS salt",
errors,
)
return backend._ffi.buffer(buf)[:]
def _rsa_sig_verify(backend, padding, algorithm, public_key, signature, data):
pkey_ctx = _rsa_sig_setup(
backend,
padding,
algorithm,
public_key,
backend._lib.EVP_PKEY_verify_init,
)
res = backend._lib.EVP_PKEY_verify(
pkey_ctx, signature, len(signature), data, len(data)
)
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
backend.openssl_assert(res >= 0)
if res == 0:
backend._consume_errors()
raise InvalidSignature
def _rsa_sig_recover(backend, padding, algorithm, public_key, signature):
pkey_ctx = _rsa_sig_setup(
backend,
padding,
algorithm,
public_key,
backend._lib.EVP_PKEY_verify_recover_init,
)
# Attempt to keep the rest of the code in this function as constant/time
# as possible. See the comment in _enc_dec_rsa_pkey_ctx. Note that the
# outlen parameter is used even though its value may be undefined in the
# error case. Due to the tolerant nature of Python slicing this does not
# trigger any exceptions.
maxlen = backend._lib.EVP_PKEY_size(public_key._evp_pkey)
backend.openssl_assert(maxlen > 0)
buf = backend._ffi.new("unsigned char[]", maxlen)
buflen = backend._ffi.new("size_t *", maxlen)
res = backend._lib.EVP_PKEY_verify_recover(
pkey_ctx, buf, buflen, signature, len(signature)
)
resbuf = backend._ffi.buffer(buf)[: buflen[0]]
backend._lib.ERR_clear_error()
# Assume that all parameter errors are handled during the setup phase and
# any error here is due to invalid signature.
if res != 1:
raise InvalidSignature
return resbuf
@utils.register_interface(AsymmetricSignatureContext)
class _RSASignatureContext(object):
def __init__(self, backend, private_key, padding, algorithm):
self._backend = backend
self._private_key = private_key
# We now call _rsa_sig_determine_padding in _rsa_sig_setup. However
# we need to make a pointless call to it here so we maintain the
# API of erroring on init with this context if the values are invalid.
_rsa_sig_determine_padding(backend, private_key, padding, algorithm)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
return _rsa_sig_sign(
self._backend,
self._padding,
self._algorithm,
self._private_key,
self._hash_ctx.finalize(),
)
@utils.register_interface(AsymmetricVerificationContext)
class _RSAVerificationContext(object):
def __init__(self, backend, public_key, signature, padding, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
self._padding = padding
# We now call _rsa_sig_determine_padding in _rsa_sig_setup. However
# we need to make a pointless call to it here so we maintain the
# API of erroring on init with this context if the values are invalid.
_rsa_sig_determine_padding(backend, public_key, padding, algorithm)
padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
return _rsa_sig_verify(
self._backend,
self._padding,
self._algorithm,
self._public_key,
self._signature,
self._hash_ctx.finalize(),
)
@utils.register_interface(RSAPrivateKeyWithSerialization)
class _RSAPrivateKey(object):
def __init__(self, backend, rsa_cdata, evp_pkey):
res = backend._lib.RSA_check_key(rsa_cdata)
if res != 1:
errors = backend._consume_errors_with_text()
raise ValueError("Invalid private key", errors)
# Blinding is on by default in many versions of OpenSSL, but let's
# just be conservative here.
res = backend._lib.RSA_blinding_on(rsa_cdata, backend._ffi.NULL)
backend.openssl_assert(res == 1)
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata,
n,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
key_size = utils.read_only_property("_key_size")
def signer(self, padding, algorithm):
_warn_sign_verify_deprecated()
_check_not_prehashed(algorithm)
return _RSASignatureContext(self._backend, self, padding, algorithm)
def decrypt(self, ciphertext, padding):
key_size_bytes = (self.key_size + 7) // 8
if key_size_bytes != len(ciphertext):
raise ValueError("Ciphertext length must be equal to key size.")
return _enc_dec_rsa(self._backend, self, ciphertext, padding)
def public_key(self):
ctx = self._backend._lib.RSAPublicKey_dup(self._rsa_cdata)
self._backend.openssl_assert(ctx != self._backend._ffi.NULL)
ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
evp_pkey = self._backend._rsa_cdata_to_evp_pkey(ctx)
return _RSAPublicKey(self._backend, ctx, evp_pkey)
def private_numbers(self):
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
d = self._backend._ffi.new("BIGNUM **")
p = self._backend._ffi.new("BIGNUM **")
q = self._backend._ffi.new("BIGNUM **")
dmp1 = self._backend._ffi.new("BIGNUM **")
dmq1 = self._backend._ffi.new("BIGNUM **")
iqmp = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(self._rsa_cdata, n, e, d)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(d[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_factors(self._rsa_cdata, p, q)
self._backend.openssl_assert(p[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(q[0] != self._backend._ffi.NULL)
self._backend._lib.RSA_get0_crt_params(
self._rsa_cdata, dmp1, dmq1, iqmp
)
self._backend.openssl_assert(dmp1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(dmq1[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(iqmp[0] != self._backend._ffi.NULL)
return rsa.RSAPrivateNumbers(
p=self._backend._bn_to_int(p[0]),
q=self._backend._bn_to_int(q[0]),
d=self._backend._bn_to_int(d[0]),
dmp1=self._backend._bn_to_int(dmp1[0]),
dmq1=self._backend._bn_to_int(dmq1[0]),
iqmp=self._backend._bn_to_int(iqmp[0]),
public_numbers=rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
),
)
def private_bytes(self, encoding, format, encryption_algorithm):
return self._backend._private_key_bytes(
encoding,
format,
encryption_algorithm,
self,
self._evp_pkey,
self._rsa_cdata,
)
def sign(self, data, padding, algorithm):
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, algorithm
)
return _rsa_sig_sign(self._backend, padding, algorithm, self, data)
@utils.register_interface(RSAPublicKeyWithSerialization)
class _RSAPublicKey(object):
def __init__(self, backend, rsa_cdata, evp_pkey):
self._backend = backend
self._rsa_cdata = rsa_cdata
self._evp_pkey = evp_pkey
n = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata,
n,
self._backend._ffi.NULL,
self._backend._ffi.NULL,
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._key_size = self._backend._lib.BN_num_bits(n[0])
key_size = utils.read_only_property("_key_size")
def verifier(self, signature, padding, algorithm):
_warn_sign_verify_deprecated()
utils._check_bytes("signature", signature)
_check_not_prehashed(algorithm)
return _RSAVerificationContext(
self._backend, self, signature, padding, algorithm
)
def encrypt(self, plaintext, padding):
return _enc_dec_rsa(self._backend, self, plaintext, padding)
def public_numbers(self):
n = self._backend._ffi.new("BIGNUM **")
e = self._backend._ffi.new("BIGNUM **")
self._backend._lib.RSA_get0_key(
self._rsa_cdata, n, e, self._backend._ffi.NULL
)
self._backend.openssl_assert(n[0] != self._backend._ffi.NULL)
self._backend.openssl_assert(e[0] != self._backend._ffi.NULL)
return rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(e[0]),
n=self._backend._bn_to_int(n[0]),
)
def public_bytes(self, encoding, format):
return self._backend._public_key_bytes(
encoding, format, self, self._evp_pkey, self._rsa_cdata
)
def verify(self, signature, data, padding, algorithm):
data, algorithm = _calculate_digest_and_algorithm(
self._backend, data, algorithm
)
return _rsa_sig_verify(
self._backend, padding, algorithm, self, signature, data
)
def recover_data_from_signature(self, signature, padding, algorithm):
_check_not_prehashed(algorithm)
return _rsa_sig_recover(
self._backend, padding, algorithm, self, signature
)