mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-04 11:51:44 +01:00
200 lines
6.4 KiB
Python
200 lines
6.4 KiB
Python
|
""" pickle compat """
|
||
|
import pickle
|
||
|
from typing import Any, Optional
|
||
|
import warnings
|
||
|
|
||
|
from pandas._typing import FilePathOrBuffer
|
||
|
from pandas.compat import pickle_compat as pc
|
||
|
|
||
|
from pandas.io.common import get_filepath_or_buffer, get_handle
|
||
|
|
||
|
|
||
|
def to_pickle(
|
||
|
obj: Any,
|
||
|
filepath_or_buffer: FilePathOrBuffer,
|
||
|
compression: Optional[str] = "infer",
|
||
|
protocol: int = pickle.HIGHEST_PROTOCOL,
|
||
|
):
|
||
|
"""
|
||
|
Pickle (serialize) object to file.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obj : any object
|
||
|
Any python object.
|
||
|
filepath_or_buffer : str, path object or file-like object
|
||
|
File path, URL, or buffer where the pickled object will be stored.
|
||
|
|
||
|
.. versionchanged:: 1.0.0
|
||
|
Accept URL. URL has to be of S3 or GCS.
|
||
|
|
||
|
compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
|
||
|
If 'infer' and 'path_or_url' is path-like, then detect compression from
|
||
|
the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
|
||
|
compression) If 'infer' and 'path_or_url' is not path-like, then use
|
||
|
None (= no decompression).
|
||
|
protocol : int
|
||
|
Int which indicates which protocol should be used by the pickler,
|
||
|
default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
|
||
|
values for this parameter depend on the version of Python. For Python
|
||
|
2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
|
||
|
For Python >= 3.4, 4 is a valid value. A negative value for the
|
||
|
protocol parameter is equivalent to setting its value to
|
||
|
HIGHEST_PROTOCOL.
|
||
|
|
||
|
.. [1] https://docs.python.org/3/library/pickle.html
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
read_pickle : Load pickled pandas object (or any object) from file.
|
||
|
DataFrame.to_hdf : Write DataFrame to an HDF5 file.
|
||
|
DataFrame.to_sql : Write DataFrame to a SQL database.
|
||
|
DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
|
||
|
>>> original_df
|
||
|
foo bar
|
||
|
0 0 5
|
||
|
1 1 6
|
||
|
2 2 7
|
||
|
3 3 8
|
||
|
4 4 9
|
||
|
>>> pd.to_pickle(original_df, "./dummy.pkl")
|
||
|
|
||
|
>>> unpickled_df = pd.read_pickle("./dummy.pkl")
|
||
|
>>> unpickled_df
|
||
|
foo bar
|
||
|
0 0 5
|
||
|
1 1 6
|
||
|
2 2 7
|
||
|
3 3 8
|
||
|
4 4 9
|
||
|
|
||
|
>>> import os
|
||
|
>>> os.remove("./dummy.pkl")
|
||
|
"""
|
||
|
fp_or_buf, _, compression, should_close = get_filepath_or_buffer(
|
||
|
filepath_or_buffer, compression=compression, mode="wb"
|
||
|
)
|
||
|
if not isinstance(fp_or_buf, str) and compression == "infer":
|
||
|
compression = None
|
||
|
f, fh = get_handle(fp_or_buf, "wb", compression=compression, is_text=False)
|
||
|
if protocol < 0:
|
||
|
protocol = pickle.HIGHEST_PROTOCOL
|
||
|
try:
|
||
|
f.write(pickle.dumps(obj, protocol=protocol))
|
||
|
finally:
|
||
|
f.close()
|
||
|
for _f in fh:
|
||
|
_f.close()
|
||
|
if should_close:
|
||
|
try:
|
||
|
fp_or_buf.close()
|
||
|
except ValueError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
def read_pickle(
|
||
|
filepath_or_buffer: FilePathOrBuffer, compression: Optional[str] = "infer"
|
||
|
):
|
||
|
"""
|
||
|
Load pickled pandas object (or any object) from file.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
Loading pickled data received from untrusted sources can be
|
||
|
unsafe. See `here <https://docs.python.org/3/library/pickle.html>`__.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
filepath_or_buffer : str, path object or file-like object
|
||
|
File path, URL, or buffer where the pickled object will be loaded from.
|
||
|
|
||
|
.. versionchanged:: 1.0.0
|
||
|
Accept URL. URL is not limited to S3 and GCS.
|
||
|
|
||
|
compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'
|
||
|
If 'infer' and 'path_or_url' is path-like, then detect compression from
|
||
|
the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no
|
||
|
compression) If 'infer' and 'path_or_url' is not path-like, then use
|
||
|
None (= no decompression).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
unpickled : same type as object stored in file
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.to_pickle : Pickle (serialize) DataFrame object to file.
|
||
|
Series.to_pickle : Pickle (serialize) Series object to file.
|
||
|
read_hdf : Read HDF5 file into a DataFrame.
|
||
|
read_sql : Read SQL query or database table into a DataFrame.
|
||
|
read_parquet : Load a parquet object, returning a DataFrame.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
read_pickle is only guaranteed to be backwards compatible to pandas 0.20.3.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)})
|
||
|
>>> original_df
|
||
|
foo bar
|
||
|
0 0 5
|
||
|
1 1 6
|
||
|
2 2 7
|
||
|
3 3 8
|
||
|
4 4 9
|
||
|
>>> pd.to_pickle(original_df, "./dummy.pkl")
|
||
|
|
||
|
>>> unpickled_df = pd.read_pickle("./dummy.pkl")
|
||
|
>>> unpickled_df
|
||
|
foo bar
|
||
|
0 0 5
|
||
|
1 1 6
|
||
|
2 2 7
|
||
|
3 3 8
|
||
|
4 4 9
|
||
|
|
||
|
>>> import os
|
||
|
>>> os.remove("./dummy.pkl")
|
||
|
"""
|
||
|
fp_or_buf, _, compression, should_close = get_filepath_or_buffer(
|
||
|
filepath_or_buffer, compression=compression
|
||
|
)
|
||
|
if not isinstance(fp_or_buf, str) and compression == "infer":
|
||
|
compression = None
|
||
|
f, fh = get_handle(fp_or_buf, "rb", compression=compression, is_text=False)
|
||
|
|
||
|
# 1) try standard library Pickle
|
||
|
# 2) try pickle_compat (older pandas version) to handle subclass changes
|
||
|
# 3) try pickle_compat with latin-1 encoding upon a UnicodeDecodeError
|
||
|
|
||
|
try:
|
||
|
excs_to_catch = (AttributeError, ImportError, ModuleNotFoundError, TypeError)
|
||
|
# TypeError for Cython complaints about object.__new__ vs Tick.__new__
|
||
|
try:
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
# We want to silence any warnings about, e.g. moved modules.
|
||
|
warnings.simplefilter("ignore", Warning)
|
||
|
return pickle.load(f)
|
||
|
except excs_to_catch:
|
||
|
# e.g.
|
||
|
# "No module named 'pandas.core.sparse.series'"
|
||
|
# "Can't get attribute '__nat_unpickle' on <module 'pandas._libs.tslib"
|
||
|
return pc.load(f, encoding=None)
|
||
|
except UnicodeDecodeError:
|
||
|
# e.g. can occur for files written in py27; see GH#28645 and GH#31988
|
||
|
return pc.load(f, encoding="latin-1")
|
||
|
finally:
|
||
|
f.close()
|
||
|
for _f in fh:
|
||
|
_f.close()
|
||
|
if should_close:
|
||
|
try:
|
||
|
fp_or_buf.close()
|
||
|
except ValueError:
|
||
|
pass
|