mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-21 03:46:04 +01:00
455 lines
14 KiB
Python
455 lines
14 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.core.dtypes.common import is_datetime64_dtype, is_timedelta64_dtype
|
||
|
from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import CategoricalIndex, Series, Timedelta, Timestamp
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.arrays import (
|
||
|
DatetimeArray,
|
||
|
IntervalArray,
|
||
|
PandasArray,
|
||
|
PeriodArray,
|
||
|
SparseArray,
|
||
|
TimedeltaArray,
|
||
|
)
|
||
|
|
||
|
|
||
|
class TestToIterable:
|
||
|
# test that we convert an iterable to python types
|
||
|
|
||
|
dtypes = [
|
||
|
("int8", int),
|
||
|
("int16", int),
|
||
|
("int32", int),
|
||
|
("int64", int),
|
||
|
("uint8", int),
|
||
|
("uint16", int),
|
||
|
("uint32", int),
|
||
|
("uint64", int),
|
||
|
("float16", float),
|
||
|
("float32", float),
|
||
|
("float64", float),
|
||
|
("datetime64[ns]", Timestamp),
|
||
|
("datetime64[ns, US/Eastern]", Timestamp),
|
||
|
("timedelta64[ns]", Timedelta),
|
||
|
]
|
||
|
|
||
|
@pytest.mark.parametrize("dtype, rdtype", dtypes)
|
||
|
@pytest.mark.parametrize(
|
||
|
"method",
|
||
|
[
|
||
|
lambda x: x.tolist(),
|
||
|
lambda x: x.to_list(),
|
||
|
lambda x: list(x),
|
||
|
lambda x: list(x.__iter__()),
|
||
|
],
|
||
|
ids=["tolist", "to_list", "list", "iter"],
|
||
|
)
|
||
|
def test_iterable(self, index_or_series, method, dtype, rdtype):
|
||
|
# gh-10904
|
||
|
# gh-13258
|
||
|
# coerce iteration to underlying python / pandas types
|
||
|
typ = index_or_series
|
||
|
s = typ([1], dtype=dtype)
|
||
|
result = method(s)[0]
|
||
|
assert isinstance(result, rdtype)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"dtype, rdtype, obj",
|
||
|
[
|
||
|
("object", object, "a"),
|
||
|
("object", int, 1),
|
||
|
("category", object, "a"),
|
||
|
("category", int, 1),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"method",
|
||
|
[
|
||
|
lambda x: x.tolist(),
|
||
|
lambda x: x.to_list(),
|
||
|
lambda x: list(x),
|
||
|
lambda x: list(x.__iter__()),
|
||
|
],
|
||
|
ids=["tolist", "to_list", "list", "iter"],
|
||
|
)
|
||
|
def test_iterable_object_and_category(
|
||
|
self, index_or_series, method, dtype, rdtype, obj
|
||
|
):
|
||
|
# gh-10904
|
||
|
# gh-13258
|
||
|
# coerce iteration to underlying python / pandas types
|
||
|
typ = index_or_series
|
||
|
s = typ([obj], dtype=dtype)
|
||
|
result = method(s)[0]
|
||
|
assert isinstance(result, rdtype)
|
||
|
|
||
|
@pytest.mark.parametrize("dtype, rdtype", dtypes)
|
||
|
def test_iterable_items(self, dtype, rdtype):
|
||
|
# gh-13258
|
||
|
# test if items yields the correct boxed scalars
|
||
|
# this only applies to series
|
||
|
s = Series([1], dtype=dtype)
|
||
|
_, result = list(s.items())[0]
|
||
|
assert isinstance(result, rdtype)
|
||
|
|
||
|
_, result = list(s.items())[0]
|
||
|
assert isinstance(result, rdtype)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"dtype, rdtype", dtypes + [("object", int), ("category", int)]
|
||
|
)
|
||
|
def test_iterable_map(self, index_or_series, dtype, rdtype):
|
||
|
# gh-13236
|
||
|
# coerce iteration to underlying python / pandas types
|
||
|
typ = index_or_series
|
||
|
s = typ([1], dtype=dtype)
|
||
|
result = s.map(type)[0]
|
||
|
if not isinstance(rdtype, tuple):
|
||
|
rdtype = tuple([rdtype])
|
||
|
assert result in rdtype
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"method",
|
||
|
[
|
||
|
lambda x: x.tolist(),
|
||
|
lambda x: x.to_list(),
|
||
|
lambda x: list(x),
|
||
|
lambda x: list(x.__iter__()),
|
||
|
],
|
||
|
ids=["tolist", "to_list", "list", "iter"],
|
||
|
)
|
||
|
def test_categorial_datetimelike(self, method):
|
||
|
i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")])
|
||
|
|
||
|
result = method(i)[0]
|
||
|
assert isinstance(result, Timestamp)
|
||
|
|
||
|
def test_iter_box(self):
|
||
|
vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")]
|
||
|
s = Series(vals)
|
||
|
assert s.dtype == "datetime64[ns]"
|
||
|
for res, exp in zip(s, vals):
|
||
|
assert isinstance(res, Timestamp)
|
||
|
assert res.tz is None
|
||
|
assert res == exp
|
||
|
|
||
|
vals = [
|
||
|
Timestamp("2011-01-01", tz="US/Eastern"),
|
||
|
Timestamp("2011-01-02", tz="US/Eastern"),
|
||
|
]
|
||
|
s = Series(vals)
|
||
|
|
||
|
assert s.dtype == "datetime64[ns, US/Eastern]"
|
||
|
for res, exp in zip(s, vals):
|
||
|
assert isinstance(res, Timestamp)
|
||
|
assert res.tz == exp.tz
|
||
|
assert res == exp
|
||
|
|
||
|
# timedelta
|
||
|
vals = [Timedelta("1 days"), Timedelta("2 days")]
|
||
|
s = Series(vals)
|
||
|
assert s.dtype == "timedelta64[ns]"
|
||
|
for res, exp in zip(s, vals):
|
||
|
assert isinstance(res, Timedelta)
|
||
|
assert res == exp
|
||
|
|
||
|
# period
|
||
|
vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")]
|
||
|
s = Series(vals)
|
||
|
assert s.dtype == "Period[M]"
|
||
|
for res, exp in zip(s, vals):
|
||
|
assert isinstance(res, pd.Period)
|
||
|
assert res.freq == "M"
|
||
|
assert res == exp
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"array, expected_type, dtype",
|
||
|
[
|
||
|
(np.array([0, 1], dtype=np.int64), np.ndarray, "int64"),
|
||
|
(np.array(["a", "b"]), np.ndarray, "object"),
|
||
|
(pd.Categorical(["a", "b"]), pd.Categorical, "category"),
|
||
|
(
|
||
|
pd.DatetimeIndex(["2017", "2018"], tz="US/Central"),
|
||
|
DatetimeArray,
|
||
|
"datetime64[ns, US/Central]",
|
||
|
),
|
||
|
(
|
||
|
pd.PeriodIndex([2018, 2019], freq="A"),
|
||
|
PeriodArray,
|
||
|
pd.core.dtypes.dtypes.PeriodDtype("A-DEC"),
|
||
|
),
|
||
|
(pd.IntervalIndex.from_breaks([0, 1, 2]), IntervalArray, "interval",),
|
||
|
# This test is currently failing for datetime64[ns] and timedelta64[ns].
|
||
|
# The NumPy type system is sufficient for representing these types, so
|
||
|
# we just use NumPy for Series / DataFrame columns of these types (so
|
||
|
# we get consolidation and so on).
|
||
|
# However, DatetimeIndex and TimedeltaIndex use the DateLikeArray
|
||
|
# abstraction to for code reuse.
|
||
|
# At the moment, we've judged that allowing this test to fail is more
|
||
|
# practical that overriding Series._values to special case
|
||
|
# Series[M8[ns]] and Series[m8[ns]] to return a DateLikeArray.
|
||
|
pytest.param(
|
||
|
pd.DatetimeIndex(["2017", "2018"]),
|
||
|
np.ndarray,
|
||
|
"datetime64[ns]",
|
||
|
marks=[pytest.mark.xfail(reason="datetime _values", strict=True)],
|
||
|
),
|
||
|
pytest.param(
|
||
|
pd.TimedeltaIndex([10 ** 10]),
|
||
|
np.ndarray,
|
||
|
"m8[ns]",
|
||
|
marks=[pytest.mark.xfail(reason="timedelta _values", strict=True)],
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_values_consistent(array, expected_type, dtype):
|
||
|
l_values = pd.Series(array)._values
|
||
|
r_values = pd.Index(array)._values
|
||
|
assert type(l_values) is expected_type
|
||
|
assert type(l_values) is type(r_values)
|
||
|
|
||
|
tm.assert_equal(l_values, r_values)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("arr", [np.array([1, 2, 3])])
|
||
|
def test_numpy_array(arr):
|
||
|
ser = pd.Series(arr)
|
||
|
result = ser.array
|
||
|
expected = PandasArray(arr)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_numpy_array_all_dtypes(any_numpy_dtype):
|
||
|
ser = pd.Series(dtype=any_numpy_dtype)
|
||
|
result = ser.array
|
||
|
if is_datetime64_dtype(any_numpy_dtype):
|
||
|
assert isinstance(result, DatetimeArray)
|
||
|
elif is_timedelta64_dtype(any_numpy_dtype):
|
||
|
assert isinstance(result, TimedeltaArray)
|
||
|
else:
|
||
|
assert isinstance(result, PandasArray)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"array, attr",
|
||
|
[
|
||
|
(pd.Categorical(["a", "b"]), "_codes"),
|
||
|
(pd.core.arrays.period_array(["2000", "2001"], freq="D"), "_data"),
|
||
|
(pd.core.arrays.integer_array([0, np.nan]), "_data"),
|
||
|
(IntervalArray.from_breaks([0, 1]), "_left"),
|
||
|
(SparseArray([0, 1]), "_sparse_values"),
|
||
|
(DatetimeArray(np.array([1, 2], dtype="datetime64[ns]")), "_data"),
|
||
|
# tz-aware Datetime
|
||
|
(
|
||
|
DatetimeArray(
|
||
|
np.array(
|
||
|
["2000-01-01T12:00:00", "2000-01-02T12:00:00"], dtype="M8[ns]"
|
||
|
),
|
||
|
dtype=DatetimeTZDtype(tz="US/Central"),
|
||
|
),
|
||
|
"_data",
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_array(array, attr, index_or_series):
|
||
|
box = index_or_series
|
||
|
if array.dtype.name in ("Int64", "Sparse[int64, 0]") and box is pd.Index:
|
||
|
pytest.skip(f"No index type for {array.dtype}")
|
||
|
result = box(array, copy=False).array
|
||
|
|
||
|
if attr:
|
||
|
array = getattr(array, attr)
|
||
|
result = getattr(result, attr)
|
||
|
|
||
|
assert result is array
|
||
|
|
||
|
|
||
|
def test_array_multiindex_raises():
|
||
|
idx = pd.MultiIndex.from_product([["A"], ["a", "b"]])
|
||
|
msg = "MultiIndex has no single backing array"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
idx.array
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"array, expected",
|
||
|
[
|
||
|
(np.array([1, 2], dtype=np.int64), np.array([1, 2], dtype=np.int64)),
|
||
|
(pd.Categorical(["a", "b"]), np.array(["a", "b"], dtype=object)),
|
||
|
(
|
||
|
pd.core.arrays.period_array(["2000", "2001"], freq="D"),
|
||
|
np.array([pd.Period("2000", freq="D"), pd.Period("2001", freq="D")]),
|
||
|
),
|
||
|
(
|
||
|
pd.core.arrays.integer_array([0, np.nan]),
|
||
|
np.array([0, pd.NA], dtype=object),
|
||
|
),
|
||
|
(
|
||
|
IntervalArray.from_breaks([0, 1, 2]),
|
||
|
np.array([pd.Interval(0, 1), pd.Interval(1, 2)], dtype=object),
|
||
|
),
|
||
|
(SparseArray([0, 1]), np.array([0, 1], dtype=np.int64)),
|
||
|
# tz-naive datetime
|
||
|
(
|
||
|
DatetimeArray(np.array(["2000", "2001"], dtype="M8[ns]")),
|
||
|
np.array(["2000", "2001"], dtype="M8[ns]"),
|
||
|
),
|
||
|
# tz-aware stays tz`-aware
|
||
|
(
|
||
|
DatetimeArray(
|
||
|
np.array(
|
||
|
["2000-01-01T06:00:00", "2000-01-02T06:00:00"], dtype="M8[ns]"
|
||
|
),
|
||
|
dtype=DatetimeTZDtype(tz="US/Central"),
|
||
|
),
|
||
|
np.array(
|
||
|
[
|
||
|
pd.Timestamp("2000-01-01", tz="US/Central"),
|
||
|
pd.Timestamp("2000-01-02", tz="US/Central"),
|
||
|
]
|
||
|
),
|
||
|
),
|
||
|
# Timedelta
|
||
|
(
|
||
|
TimedeltaArray(np.array([0, 3600000000000], dtype="i8"), freq="H"),
|
||
|
np.array([0, 3600000000000], dtype="m8[ns]"),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_to_numpy(array, expected, index_or_series):
|
||
|
box = index_or_series
|
||
|
thing = box(array)
|
||
|
|
||
|
if array.dtype.name in ("Int64", "Sparse[int64, 0]") and box is pd.Index:
|
||
|
pytest.skip(f"No index type for {array.dtype}")
|
||
|
|
||
|
result = thing.to_numpy()
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("as_series", [True, False])
|
||
|
@pytest.mark.parametrize(
|
||
|
"arr", [np.array([1, 2, 3], dtype="int64"), np.array(["a", "b", "c"], dtype=object)]
|
||
|
)
|
||
|
def test_to_numpy_copy(arr, as_series):
|
||
|
obj = pd.Index(arr, copy=False)
|
||
|
if as_series:
|
||
|
obj = pd.Series(obj.values, copy=False)
|
||
|
|
||
|
# no copy by default
|
||
|
result = obj.to_numpy()
|
||
|
assert np.shares_memory(arr, result) is True
|
||
|
|
||
|
result = obj.to_numpy(copy=False)
|
||
|
assert np.shares_memory(arr, result) is True
|
||
|
|
||
|
# copy=True
|
||
|
result = obj.to_numpy(copy=True)
|
||
|
assert np.shares_memory(arr, result) is False
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("as_series", [True, False])
|
||
|
def test_to_numpy_dtype(as_series):
|
||
|
tz = "US/Eastern"
|
||
|
obj = pd.DatetimeIndex(["2000", "2001"], tz=tz)
|
||
|
if as_series:
|
||
|
obj = pd.Series(obj)
|
||
|
|
||
|
# preserve tz by default
|
||
|
result = obj.to_numpy()
|
||
|
expected = np.array(
|
||
|
[pd.Timestamp("2000", tz=tz), pd.Timestamp("2001", tz=tz)], dtype=object
|
||
|
)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = obj.to_numpy(dtype="object")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = obj.to_numpy(dtype="M8[ns]")
|
||
|
expected = np.array(["2000-01-01T05", "2001-01-01T05"], dtype="M8[ns]")
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"values, dtype, na_value, expected",
|
||
|
[
|
||
|
([1, 2, None], "float64", 0, [1.0, 2.0, 0.0]),
|
||
|
(
|
||
|
[pd.Timestamp("2000"), pd.Timestamp("2000"), pd.NaT],
|
||
|
None,
|
||
|
pd.Timestamp("2000"),
|
||
|
[np.datetime64("2000-01-01T00:00:00.000000000")] * 3,
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_to_numpy_na_value_numpy_dtype(
|
||
|
index_or_series, values, dtype, na_value, expected
|
||
|
):
|
||
|
obj = index_or_series(values)
|
||
|
result = obj.to_numpy(dtype=dtype, na_value=na_value)
|
||
|
expected = np.array(expected)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_to_numpy_kwargs_raises():
|
||
|
# numpy
|
||
|
s = pd.Series([1, 2, 3])
|
||
|
msg = r"to_numpy\(\) got an unexpected keyword argument 'foo'"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s.to_numpy(foo=True)
|
||
|
|
||
|
# extension
|
||
|
s = pd.Series([1, 2, 3], dtype="Int64")
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s.to_numpy(foo=True)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"data",
|
||
|
[
|
||
|
{"a": [1, 2, 3], "b": [1, 2, None]},
|
||
|
{"a": np.array([1, 2, 3]), "b": np.array([1, 2, np.nan])},
|
||
|
{"a": pd.array([1, 2, 3]), "b": pd.array([1, 2, None])},
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("dtype, na_value", [(float, np.nan), (object, None)])
|
||
|
def test_to_numpy_dataframe_na_value(data, dtype, na_value):
|
||
|
# https://github.com/pandas-dev/pandas/issues/33820
|
||
|
df = pd.DataFrame(data)
|
||
|
result = df.to_numpy(dtype=dtype, na_value=na_value)
|
||
|
expected = np.array([[1, 1], [2, 2], [3, na_value]], dtype=dtype)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"data, expected",
|
||
|
[
|
||
|
(
|
||
|
{"a": pd.array([1, 2, None])},
|
||
|
np.array([[1.0], [2.0], [np.nan]], dtype=float),
|
||
|
),
|
||
|
(
|
||
|
{"a": [1, 2, 3], "b": [1, 2, 3]},
|
||
|
np.array([[1, 1], [2, 2], [3, 3]], dtype=float),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_to_numpy_dataframe_single_block(data, expected):
|
||
|
# https://github.com/pandas-dev/pandas/issues/33820
|
||
|
df = pd.DataFrame(data)
|
||
|
result = df.to_numpy(dtype=float, na_value=np.nan)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_to_numpy_dataframe_single_block_no_mutate():
|
||
|
# https://github.com/pandas-dev/pandas/issues/33820
|
||
|
result = pd.DataFrame(np.array([1.0, 2.0, np.nan]))
|
||
|
expected = pd.DataFrame(np.array([1.0, 2.0, np.nan]))
|
||
|
result.to_numpy(na_value=0.0)
|
||
|
tm.assert_frame_equal(result, expected)
|