mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-04 11:51:44 +01:00
379 lines
12 KiB
Python
379 lines
12 KiB
Python
|
# being a bit too dynamic
|
||
|
from math import ceil
|
||
|
import warnings
|
||
|
|
||
|
import matplotlib.table
|
||
|
import matplotlib.ticker as ticker
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas.core.dtypes.common import is_list_like
|
||
|
from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries
|
||
|
|
||
|
from pandas.plotting._matplotlib import compat
|
||
|
|
||
|
|
||
|
def format_date_labels(ax, rot):
|
||
|
# mini version of autofmt_xdate
|
||
|
for label in ax.get_xticklabels():
|
||
|
label.set_ha("right")
|
||
|
label.set_rotation(rot)
|
||
|
fig = ax.get_figure()
|
||
|
fig.subplots_adjust(bottom=0.2)
|
||
|
|
||
|
|
||
|
def table(ax, data, rowLabels=None, colLabels=None, **kwargs):
|
||
|
if isinstance(data, ABCSeries):
|
||
|
data = data.to_frame()
|
||
|
elif isinstance(data, ABCDataFrame):
|
||
|
pass
|
||
|
else:
|
||
|
raise ValueError("Input data must be DataFrame or Series")
|
||
|
|
||
|
if rowLabels is None:
|
||
|
rowLabels = data.index
|
||
|
|
||
|
if colLabels is None:
|
||
|
colLabels = data.columns
|
||
|
|
||
|
cellText = data.values
|
||
|
|
||
|
table = matplotlib.table.table(
|
||
|
ax, cellText=cellText, rowLabels=rowLabels, colLabels=colLabels, **kwargs
|
||
|
)
|
||
|
return table
|
||
|
|
||
|
|
||
|
def _get_layout(nplots, layout=None, layout_type="box"):
|
||
|
if layout is not None:
|
||
|
if not isinstance(layout, (tuple, list)) or len(layout) != 2:
|
||
|
raise ValueError("Layout must be a tuple of (rows, columns)")
|
||
|
|
||
|
nrows, ncols = layout
|
||
|
|
||
|
# Python 2 compat
|
||
|
ceil_ = lambda x: int(ceil(x))
|
||
|
if nrows == -1 and ncols > 0:
|
||
|
layout = nrows, ncols = (ceil_(float(nplots) / ncols), ncols)
|
||
|
elif ncols == -1 and nrows > 0:
|
||
|
layout = nrows, ncols = (nrows, ceil_(float(nplots) / nrows))
|
||
|
elif ncols <= 0 and nrows <= 0:
|
||
|
msg = "At least one dimension of layout must be positive"
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
if nrows * ncols < nplots:
|
||
|
raise ValueError(
|
||
|
f"Layout of {nrows}x{ncols} must be larger than required size {nplots}"
|
||
|
)
|
||
|
|
||
|
return layout
|
||
|
|
||
|
if layout_type == "single":
|
||
|
return (1, 1)
|
||
|
elif layout_type == "horizontal":
|
||
|
return (1, nplots)
|
||
|
elif layout_type == "vertical":
|
||
|
return (nplots, 1)
|
||
|
|
||
|
layouts = {1: (1, 1), 2: (1, 2), 3: (2, 2), 4: (2, 2)}
|
||
|
try:
|
||
|
return layouts[nplots]
|
||
|
except KeyError:
|
||
|
k = 1
|
||
|
while k ** 2 < nplots:
|
||
|
k += 1
|
||
|
|
||
|
if (k - 1) * k >= nplots:
|
||
|
return k, (k - 1)
|
||
|
else:
|
||
|
return k, k
|
||
|
|
||
|
|
||
|
# copied from matplotlib/pyplot.py and modified for pandas.plotting
|
||
|
|
||
|
|
||
|
def _subplots(
|
||
|
naxes=None,
|
||
|
sharex=False,
|
||
|
sharey=False,
|
||
|
squeeze=True,
|
||
|
subplot_kw=None,
|
||
|
ax=None,
|
||
|
layout=None,
|
||
|
layout_type="box",
|
||
|
**fig_kw,
|
||
|
):
|
||
|
"""
|
||
|
Create a figure with a set of subplots already made.
|
||
|
|
||
|
This utility wrapper makes it convenient to create common layouts of
|
||
|
subplots, including the enclosing figure object, in a single call.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
naxes : int
|
||
|
Number of required axes. Exceeded axes are set invisible. Default is
|
||
|
nrows * ncols.
|
||
|
|
||
|
sharex : bool
|
||
|
If True, the X axis will be shared amongst all subplots.
|
||
|
|
||
|
sharey : bool
|
||
|
If True, the Y axis will be shared amongst all subplots.
|
||
|
|
||
|
squeeze : bool
|
||
|
|
||
|
If True, extra dimensions are squeezed out from the returned axis object:
|
||
|
- if only one subplot is constructed (nrows=ncols=1), the resulting
|
||
|
single Axis object is returned as a scalar.
|
||
|
- for Nx1 or 1xN subplots, the returned object is a 1-d numpy object
|
||
|
array of Axis objects are returned as numpy 1-d arrays.
|
||
|
- for NxM subplots with N>1 and M>1 are returned as a 2d array.
|
||
|
|
||
|
If False, no squeezing is done: the returned axis object is always
|
||
|
a 2-d array containing Axis instances, even if it ends up being 1x1.
|
||
|
|
||
|
subplot_kw : dict
|
||
|
Dict with keywords passed to the add_subplot() call used to create each
|
||
|
subplots.
|
||
|
|
||
|
ax : Matplotlib axis object, optional
|
||
|
|
||
|
layout : tuple
|
||
|
Number of rows and columns of the subplot grid.
|
||
|
If not specified, calculated from naxes and layout_type
|
||
|
|
||
|
layout_type : {'box', 'horizontal', 'vertical'}, default 'box'
|
||
|
Specify how to layout the subplot grid.
|
||
|
|
||
|
fig_kw : Other keyword arguments to be passed to the figure() call.
|
||
|
Note that all keywords not recognized above will be
|
||
|
automatically included here.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
fig, ax : tuple
|
||
|
- fig is the Matplotlib Figure object
|
||
|
- ax can be either a single axis object or an array of axis objects if
|
||
|
more than one subplot was created. The dimensions of the resulting array
|
||
|
can be controlled with the squeeze keyword, see above.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
x = np.linspace(0, 2*np.pi, 400)
|
||
|
y = np.sin(x**2)
|
||
|
|
||
|
# Just a figure and one subplot
|
||
|
f, ax = plt.subplots()
|
||
|
ax.plot(x, y)
|
||
|
ax.set_title('Simple plot')
|
||
|
|
||
|
# Two subplots, unpack the output array immediately
|
||
|
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
|
||
|
ax1.plot(x, y)
|
||
|
ax1.set_title('Sharing Y axis')
|
||
|
ax2.scatter(x, y)
|
||
|
|
||
|
# Four polar axes
|
||
|
plt.subplots(2, 2, subplot_kw=dict(polar=True))
|
||
|
"""
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
if subplot_kw is None:
|
||
|
subplot_kw = {}
|
||
|
|
||
|
if ax is None:
|
||
|
fig = plt.figure(**fig_kw)
|
||
|
else:
|
||
|
if is_list_like(ax):
|
||
|
ax = _flatten(ax)
|
||
|
if layout is not None:
|
||
|
warnings.warn(
|
||
|
"When passing multiple axes, layout keyword is ignored", UserWarning
|
||
|
)
|
||
|
if sharex or sharey:
|
||
|
warnings.warn(
|
||
|
"When passing multiple axes, sharex and sharey "
|
||
|
"are ignored. These settings must be specified when creating axes",
|
||
|
UserWarning,
|
||
|
stacklevel=4,
|
||
|
)
|
||
|
if len(ax) == naxes:
|
||
|
fig = ax[0].get_figure()
|
||
|
return fig, ax
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"The number of passed axes must be {naxes}, the "
|
||
|
"same as the output plot"
|
||
|
)
|
||
|
|
||
|
fig = ax.get_figure()
|
||
|
# if ax is passed and a number of subplots is 1, return ax as it is
|
||
|
if naxes == 1:
|
||
|
if squeeze:
|
||
|
return fig, ax
|
||
|
else:
|
||
|
return fig, _flatten(ax)
|
||
|
else:
|
||
|
warnings.warn(
|
||
|
"To output multiple subplots, the figure containing "
|
||
|
"the passed axes is being cleared",
|
||
|
UserWarning,
|
||
|
stacklevel=4,
|
||
|
)
|
||
|
fig.clear()
|
||
|
|
||
|
nrows, ncols = _get_layout(naxes, layout=layout, layout_type=layout_type)
|
||
|
nplots = nrows * ncols
|
||
|
|
||
|
# Create empty object array to hold all axes. It's easiest to make it 1-d
|
||
|
# so we can just append subplots upon creation, and then
|
||
|
axarr = np.empty(nplots, dtype=object)
|
||
|
|
||
|
# Create first subplot separately, so we can share it if requested
|
||
|
ax0 = fig.add_subplot(nrows, ncols, 1, **subplot_kw)
|
||
|
|
||
|
if sharex:
|
||
|
subplot_kw["sharex"] = ax0
|
||
|
if sharey:
|
||
|
subplot_kw["sharey"] = ax0
|
||
|
axarr[0] = ax0
|
||
|
|
||
|
# Note off-by-one counting because add_subplot uses the MATLAB 1-based
|
||
|
# convention.
|
||
|
for i in range(1, nplots):
|
||
|
kwds = subplot_kw.copy()
|
||
|
# Set sharex and sharey to None for blank/dummy axes, these can
|
||
|
# interfere with proper axis limits on the visible axes if
|
||
|
# they share axes e.g. issue #7528
|
||
|
if i >= naxes:
|
||
|
kwds["sharex"] = None
|
||
|
kwds["sharey"] = None
|
||
|
ax = fig.add_subplot(nrows, ncols, i + 1, **kwds)
|
||
|
axarr[i] = ax
|
||
|
|
||
|
if naxes != nplots:
|
||
|
for ax in axarr[naxes:]:
|
||
|
ax.set_visible(False)
|
||
|
|
||
|
_handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey)
|
||
|
|
||
|
if squeeze:
|
||
|
# Reshape the array to have the final desired dimension (nrow,ncol),
|
||
|
# though discarding unneeded dimensions that equal 1. If we only have
|
||
|
# one subplot, just return it instead of a 1-element array.
|
||
|
if nplots == 1:
|
||
|
axes = axarr[0]
|
||
|
else:
|
||
|
axes = axarr.reshape(nrows, ncols).squeeze()
|
||
|
else:
|
||
|
# returned axis array will be always 2-d, even if nrows=ncols=1
|
||
|
axes = axarr.reshape(nrows, ncols)
|
||
|
|
||
|
return fig, axes
|
||
|
|
||
|
|
||
|
def _remove_labels_from_axis(axis):
|
||
|
for t in axis.get_majorticklabels():
|
||
|
t.set_visible(False)
|
||
|
|
||
|
# set_visible will not be effective if
|
||
|
# minor axis has NullLocator and NullFormatter (default)
|
||
|
if isinstance(axis.get_minor_locator(), ticker.NullLocator):
|
||
|
axis.set_minor_locator(ticker.AutoLocator())
|
||
|
if isinstance(axis.get_minor_formatter(), ticker.NullFormatter):
|
||
|
axis.set_minor_formatter(ticker.FormatStrFormatter(""))
|
||
|
for t in axis.get_minorticklabels():
|
||
|
t.set_visible(False)
|
||
|
|
||
|
axis.get_label().set_visible(False)
|
||
|
|
||
|
|
||
|
def _handle_shared_axes(axarr, nplots, naxes, nrows, ncols, sharex, sharey):
|
||
|
if nplots > 1:
|
||
|
if compat._mpl_ge_3_2_0():
|
||
|
row_num = lambda x: x.get_subplotspec().rowspan.start
|
||
|
col_num = lambda x: x.get_subplotspec().colspan.start
|
||
|
else:
|
||
|
row_num = lambda x: x.rowNum
|
||
|
col_num = lambda x: x.colNum
|
||
|
|
||
|
if nrows > 1:
|
||
|
try:
|
||
|
# first find out the ax layout,
|
||
|
# so that we can correctly handle 'gaps"
|
||
|
layout = np.zeros((nrows + 1, ncols + 1), dtype=np.bool_)
|
||
|
for ax in axarr:
|
||
|
layout[row_num(ax), col_num(ax)] = ax.get_visible()
|
||
|
|
||
|
for ax in axarr:
|
||
|
# only the last row of subplots should get x labels -> all
|
||
|
# other off layout handles the case that the subplot is
|
||
|
# the last in the column, because below is no subplot/gap.
|
||
|
if not layout[row_num(ax) + 1, col_num(ax)]:
|
||
|
continue
|
||
|
if sharex or len(ax.get_shared_x_axes().get_siblings(ax)) > 1:
|
||
|
_remove_labels_from_axis(ax.xaxis)
|
||
|
|
||
|
except IndexError:
|
||
|
# if gridspec is used, ax.rowNum and ax.colNum may different
|
||
|
# from layout shape. in this case, use last_row logic
|
||
|
for ax in axarr:
|
||
|
if ax.is_last_row():
|
||
|
continue
|
||
|
if sharex or len(ax.get_shared_x_axes().get_siblings(ax)) > 1:
|
||
|
_remove_labels_from_axis(ax.xaxis)
|
||
|
|
||
|
if ncols > 1:
|
||
|
for ax in axarr:
|
||
|
# only the first column should get y labels -> set all other to
|
||
|
# off as we only have labels in the first column and we always
|
||
|
# have a subplot there, we can skip the layout test
|
||
|
if ax.is_first_col():
|
||
|
continue
|
||
|
if sharey or len(ax.get_shared_y_axes().get_siblings(ax)) > 1:
|
||
|
_remove_labels_from_axis(ax.yaxis)
|
||
|
|
||
|
|
||
|
def _flatten(axes):
|
||
|
if not is_list_like(axes):
|
||
|
return np.array([axes])
|
||
|
elif isinstance(axes, (np.ndarray, ABCIndexClass)):
|
||
|
return axes.ravel()
|
||
|
return np.array(axes)
|
||
|
|
||
|
|
||
|
def _set_ticks_props(axes, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None):
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
for ax in _flatten(axes):
|
||
|
if xlabelsize is not None:
|
||
|
plt.setp(ax.get_xticklabels(), fontsize=xlabelsize)
|
||
|
if xrot is not None:
|
||
|
plt.setp(ax.get_xticklabels(), rotation=xrot)
|
||
|
if ylabelsize is not None:
|
||
|
plt.setp(ax.get_yticklabels(), fontsize=ylabelsize)
|
||
|
if yrot is not None:
|
||
|
plt.setp(ax.get_yticklabels(), rotation=yrot)
|
||
|
return axes
|
||
|
|
||
|
|
||
|
def _get_all_lines(ax):
|
||
|
lines = ax.get_lines()
|
||
|
|
||
|
if hasattr(ax, "right_ax"):
|
||
|
lines += ax.right_ax.get_lines()
|
||
|
|
||
|
if hasattr(ax, "left_ax"):
|
||
|
lines += ax.left_ax.get_lines()
|
||
|
|
||
|
return lines
|
||
|
|
||
|
|
||
|
def _get_xlim(lines):
|
||
|
left, right = np.inf, -np.inf
|
||
|
for l in lines:
|
||
|
x = l.get_xdata(orig=False)
|
||
|
left = min(np.nanmin(x), left)
|
||
|
right = max(np.nanmax(x), right)
|
||
|
return left, right
|