mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-09 14:22:00 +01:00
355 lines
12 KiB
Python
355 lines
12 KiB
Python
|
"""Tests of interaction of matrix with other parts of numpy.
|
||
|
|
||
|
Note that tests with MaskedArray and linalg are done in separate files.
|
||
|
"""
|
||
|
import pytest
|
||
|
|
||
|
import textwrap
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.testing import (assert_, assert_equal, assert_raises,
|
||
|
assert_raises_regex, assert_array_equal,
|
||
|
assert_almost_equal, assert_array_almost_equal)
|
||
|
|
||
|
|
||
|
def test_fancy_indexing():
|
||
|
# The matrix class messes with the shape. While this is always
|
||
|
# weird (getitem is not used, it does not have setitem nor knows
|
||
|
# about fancy indexing), this tests gh-3110
|
||
|
# 2018-04-29: moved here from core.tests.test_index.
|
||
|
m = np.matrix([[1, 2], [3, 4]])
|
||
|
|
||
|
assert_(isinstance(m[[0, 1, 0], :], np.matrix))
|
||
|
|
||
|
# gh-3110. Note the transpose currently because matrices do *not*
|
||
|
# support dimension fixing for fancy indexing correctly.
|
||
|
x = np.asmatrix(np.arange(50).reshape(5, 10))
|
||
|
assert_equal(x[:2, np.array(-1)], x[:2, -1].T)
|
||
|
|
||
|
|
||
|
def test_polynomial_mapdomain():
|
||
|
# test that polynomial preserved matrix subtype.
|
||
|
# 2018-04-29: moved here from polynomial.tests.polyutils.
|
||
|
dom1 = [0, 4]
|
||
|
dom2 = [1, 3]
|
||
|
x = np.matrix([dom1, dom1])
|
||
|
res = np.polynomial.polyutils.mapdomain(x, dom1, dom2)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
|
||
|
|
||
|
def test_sort_matrix_none():
|
||
|
# 2018-04-29: moved here from core.tests.test_multiarray
|
||
|
a = np.matrix([[2, 1, 0]])
|
||
|
actual = np.sort(a, axis=None)
|
||
|
expected = np.matrix([[0, 1, 2]])
|
||
|
assert_equal(actual, expected)
|
||
|
assert_(type(expected) is np.matrix)
|
||
|
|
||
|
|
||
|
def test_partition_matrix_none():
|
||
|
# gh-4301
|
||
|
# 2018-04-29: moved here from core.tests.test_multiarray
|
||
|
a = np.matrix([[2, 1, 0]])
|
||
|
actual = np.partition(a, 1, axis=None)
|
||
|
expected = np.matrix([[0, 1, 2]])
|
||
|
assert_equal(actual, expected)
|
||
|
assert_(type(expected) is np.matrix)
|
||
|
|
||
|
|
||
|
def test_dot_scalar_and_matrix_of_objects():
|
||
|
# Ticket #2469
|
||
|
# 2018-04-29: moved here from core.tests.test_multiarray
|
||
|
arr = np.matrix([1, 2], dtype=object)
|
||
|
desired = np.matrix([[3, 6]], dtype=object)
|
||
|
assert_equal(np.dot(arr, 3), desired)
|
||
|
assert_equal(np.dot(3, arr), desired)
|
||
|
|
||
|
|
||
|
def test_inner_scalar_and_matrix():
|
||
|
# 2018-04-29: moved here from core.tests.test_multiarray
|
||
|
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?':
|
||
|
sca = np.array(3, dtype=dt)[()]
|
||
|
arr = np.matrix([[1, 2], [3, 4]], dtype=dt)
|
||
|
desired = np.matrix([[3, 6], [9, 12]], dtype=dt)
|
||
|
assert_equal(np.inner(arr, sca), desired)
|
||
|
assert_equal(np.inner(sca, arr), desired)
|
||
|
|
||
|
|
||
|
def test_inner_scalar_and_matrix_of_objects():
|
||
|
# Ticket #4482
|
||
|
# 2018-04-29: moved here from core.tests.test_multiarray
|
||
|
arr = np.matrix([1, 2], dtype=object)
|
||
|
desired = np.matrix([[3, 6]], dtype=object)
|
||
|
assert_equal(np.inner(arr, 3), desired)
|
||
|
assert_equal(np.inner(3, arr), desired)
|
||
|
|
||
|
|
||
|
def test_iter_allocate_output_subtype():
|
||
|
# Make sure that the subtype with priority wins
|
||
|
# 2018-04-29: moved here from core.tests.test_nditer, given the
|
||
|
# matrix specific shape test.
|
||
|
|
||
|
# matrix vs ndarray
|
||
|
a = np.matrix([[1, 2], [3, 4]])
|
||
|
b = np.arange(4).reshape(2, 2).T
|
||
|
i = np.nditer([a, b, None], [],
|
||
|
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
|
||
|
assert_(type(i.operands[2]) is np.matrix)
|
||
|
assert_(type(i.operands[2]) is not np.ndarray)
|
||
|
assert_equal(i.operands[2].shape, (2, 2))
|
||
|
|
||
|
# matrix always wants things to be 2D
|
||
|
b = np.arange(4).reshape(1, 2, 2)
|
||
|
assert_raises(RuntimeError, np.nditer, [a, b, None], [],
|
||
|
[['readonly'], ['readonly'], ['writeonly', 'allocate']])
|
||
|
# but if subtypes are disabled, the result can still work
|
||
|
i = np.nditer([a, b, None], [],
|
||
|
[['readonly'], ['readonly'],
|
||
|
['writeonly', 'allocate', 'no_subtype']])
|
||
|
assert_(type(i.operands[2]) is np.ndarray)
|
||
|
assert_(type(i.operands[2]) is not np.matrix)
|
||
|
assert_equal(i.operands[2].shape, (1, 2, 2))
|
||
|
|
||
|
|
||
|
def like_function():
|
||
|
# 2018-04-29: moved here from core.tests.test_numeric
|
||
|
a = np.matrix([[1, 2], [3, 4]])
|
||
|
for like_function in np.zeros_like, np.ones_like, np.empty_like:
|
||
|
b = like_function(a)
|
||
|
assert_(type(b) is np.matrix)
|
||
|
|
||
|
c = like_function(a, subok=False)
|
||
|
assert_(type(c) is not np.matrix)
|
||
|
|
||
|
|
||
|
def test_array_astype():
|
||
|
# 2018-04-29: copied here from core.tests.test_api
|
||
|
# subok=True passes through a matrix
|
||
|
a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4')
|
||
|
b = a.astype('f4', subok=True, copy=False)
|
||
|
assert_(a is b)
|
||
|
|
||
|
# subok=True is default, and creates a subtype on a cast
|
||
|
b = a.astype('i4', copy=False)
|
||
|
assert_equal(a, b)
|
||
|
assert_equal(type(b), np.matrix)
|
||
|
|
||
|
# subok=False never returns a matrix
|
||
|
b = a.astype('f4', subok=False, copy=False)
|
||
|
assert_equal(a, b)
|
||
|
assert_(not (a is b))
|
||
|
assert_(type(b) is not np.matrix)
|
||
|
|
||
|
|
||
|
def test_stack():
|
||
|
# 2018-04-29: copied here from core.tests.test_shape_base
|
||
|
# check np.matrix cannot be stacked
|
||
|
m = np.matrix([[1, 2], [3, 4]])
|
||
|
assert_raises_regex(ValueError, 'shape too large to be a matrix',
|
||
|
np.stack, [m, m])
|
||
|
|
||
|
|
||
|
def test_object_scalar_multiply():
|
||
|
# Tickets #2469 and #4482
|
||
|
# 2018-04-29: moved here from core.tests.test_ufunc
|
||
|
arr = np.matrix([1, 2], dtype=object)
|
||
|
desired = np.matrix([[3, 6]], dtype=object)
|
||
|
assert_equal(np.multiply(arr, 3), desired)
|
||
|
assert_equal(np.multiply(3, arr), desired)
|
||
|
|
||
|
|
||
|
def test_nanfunctions_matrices():
|
||
|
# Check that it works and that type and
|
||
|
# shape are preserved
|
||
|
# 2018-04-29: moved here from core.tests.test_nanfunctions
|
||
|
mat = np.matrix(np.eye(3))
|
||
|
for f in [np.nanmin, np.nanmax]:
|
||
|
res = f(mat, axis=0)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(res.shape == (1, 3))
|
||
|
res = f(mat, axis=1)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(res.shape == (3, 1))
|
||
|
res = f(mat)
|
||
|
assert_(np.isscalar(res))
|
||
|
# check that rows of nan are dealt with for subclasses (#4628)
|
||
|
mat[1] = np.nan
|
||
|
for f in [np.nanmin, np.nanmax]:
|
||
|
with warnings.catch_warnings(record=True) as w:
|
||
|
warnings.simplefilter('always')
|
||
|
res = f(mat, axis=0)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(not np.any(np.isnan(res)))
|
||
|
assert_(len(w) == 0)
|
||
|
|
||
|
with warnings.catch_warnings(record=True) as w:
|
||
|
warnings.simplefilter('always')
|
||
|
res = f(mat, axis=1)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0])
|
||
|
and not np.isnan(res[2, 0]))
|
||
|
assert_(len(w) == 1, 'no warning raised')
|
||
|
assert_(issubclass(w[0].category, RuntimeWarning))
|
||
|
|
||
|
with warnings.catch_warnings(record=True) as w:
|
||
|
warnings.simplefilter('always')
|
||
|
res = f(mat)
|
||
|
assert_(np.isscalar(res))
|
||
|
assert_(res != np.nan)
|
||
|
assert_(len(w) == 0)
|
||
|
|
||
|
|
||
|
def test_nanfunctions_matrices_general():
|
||
|
# Check that it works and that type and
|
||
|
# shape are preserved
|
||
|
# 2018-04-29: moved here from core.tests.test_nanfunctions
|
||
|
mat = np.matrix(np.eye(3))
|
||
|
for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod,
|
||
|
np.nanmean, np.nanvar, np.nanstd):
|
||
|
res = f(mat, axis=0)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(res.shape == (1, 3))
|
||
|
res = f(mat, axis=1)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(res.shape == (3, 1))
|
||
|
res = f(mat)
|
||
|
assert_(np.isscalar(res))
|
||
|
|
||
|
for f in np.nancumsum, np.nancumprod:
|
||
|
res = f(mat, axis=0)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(res.shape == (3, 3))
|
||
|
res = f(mat, axis=1)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(res.shape == (3, 3))
|
||
|
res = f(mat)
|
||
|
assert_(isinstance(res, np.matrix))
|
||
|
assert_(res.shape == (1, 3*3))
|
||
|
|
||
|
|
||
|
def test_average_matrix():
|
||
|
# 2018-04-29: moved here from core.tests.test_function_base.
|
||
|
y = np.matrix(np.random.rand(5, 5))
|
||
|
assert_array_equal(y.mean(0), np.average(y, 0))
|
||
|
|
||
|
a = np.matrix([[1, 2], [3, 4]])
|
||
|
w = np.matrix([[1, 2], [3, 4]])
|
||
|
|
||
|
r = np.average(a, axis=0, weights=w)
|
||
|
assert_equal(type(r), np.matrix)
|
||
|
assert_equal(r, [[2.5, 10.0/3]])
|
||
|
|
||
|
|
||
|
def test_trapz_matrix():
|
||
|
# Test to make sure matrices give the same answer as ndarrays
|
||
|
# 2018-04-29: moved here from core.tests.test_function_base.
|
||
|
x = np.linspace(0, 5)
|
||
|
y = x * x
|
||
|
r = np.trapz(y, x)
|
||
|
mx = np.matrix(x)
|
||
|
my = np.matrix(y)
|
||
|
mr = np.trapz(my, mx)
|
||
|
assert_almost_equal(mr, r)
|
||
|
|
||
|
|
||
|
def test_ediff1d_matrix():
|
||
|
# 2018-04-29: moved here from core.tests.test_arraysetops.
|
||
|
assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix))
|
||
|
assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix))
|
||
|
|
||
|
|
||
|
def test_apply_along_axis_matrix():
|
||
|
# this test is particularly malicious because matrix
|
||
|
# refuses to become 1d
|
||
|
# 2018-04-29: moved here from core.tests.test_shape_base.
|
||
|
def double(row):
|
||
|
return row * 2
|
||
|
|
||
|
m = np.matrix([[0, 1], [2, 3]])
|
||
|
expected = np.matrix([[0, 2], [4, 6]])
|
||
|
|
||
|
result = np.apply_along_axis(double, 0, m)
|
||
|
assert_(isinstance(result, np.matrix))
|
||
|
assert_array_equal(result, expected)
|
||
|
|
||
|
result = np.apply_along_axis(double, 1, m)
|
||
|
assert_(isinstance(result, np.matrix))
|
||
|
assert_array_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_kron_matrix():
|
||
|
# 2018-04-29: moved here from core.tests.test_shape_base.
|
||
|
a = np.ones([2, 2])
|
||
|
m = np.asmatrix(a)
|
||
|
assert_equal(type(np.kron(a, a)), np.ndarray)
|
||
|
assert_equal(type(np.kron(m, m)), np.matrix)
|
||
|
assert_equal(type(np.kron(a, m)), np.matrix)
|
||
|
assert_equal(type(np.kron(m, a)), np.matrix)
|
||
|
|
||
|
|
||
|
class TestConcatenatorMatrix:
|
||
|
# 2018-04-29: moved here from core.tests.test_index_tricks.
|
||
|
def test_matrix(self):
|
||
|
a = [1, 2]
|
||
|
b = [3, 4]
|
||
|
|
||
|
ab_r = np.r_['r', a, b]
|
||
|
ab_c = np.r_['c', a, b]
|
||
|
|
||
|
assert_equal(type(ab_r), np.matrix)
|
||
|
assert_equal(type(ab_c), np.matrix)
|
||
|
|
||
|
assert_equal(np.array(ab_r), [[1, 2, 3, 4]])
|
||
|
assert_equal(np.array(ab_c), [[1], [2], [3], [4]])
|
||
|
|
||
|
assert_raises(ValueError, lambda: np.r_['rc', a, b])
|
||
|
|
||
|
def test_matrix_scalar(self):
|
||
|
r = np.r_['r', [1, 2], 3]
|
||
|
assert_equal(type(r), np.matrix)
|
||
|
assert_equal(np.array(r), [[1, 2, 3]])
|
||
|
|
||
|
def test_matrix_builder(self):
|
||
|
a = np.array([1])
|
||
|
b = np.array([2])
|
||
|
c = np.array([3])
|
||
|
d = np.array([4])
|
||
|
actual = np.r_['a, b; c, d']
|
||
|
expected = np.bmat([[a, b], [c, d]])
|
||
|
|
||
|
assert_equal(actual, expected)
|
||
|
assert_equal(type(actual), type(expected))
|
||
|
|
||
|
|
||
|
def test_array_equal_error_message_matrix():
|
||
|
# 2018-04-29: moved here from testing.tests.test_utils.
|
||
|
with pytest.raises(AssertionError) as exc_info:
|
||
|
assert_equal(np.array([1, 2]), np.matrix([1, 2]))
|
||
|
msg = str(exc_info.value)
|
||
|
msg_reference = textwrap.dedent("""\
|
||
|
|
||
|
Arrays are not equal
|
||
|
|
||
|
(shapes (2,), (1, 2) mismatch)
|
||
|
x: array([1, 2])
|
||
|
y: matrix([[1, 2]])""")
|
||
|
assert_equal(msg, msg_reference)
|
||
|
|
||
|
|
||
|
def test_array_almost_equal_matrix():
|
||
|
# Matrix slicing keeps things 2-D, while array does not necessarily.
|
||
|
# See gh-8452.
|
||
|
# 2018-04-29: moved here from testing.tests.test_utils.
|
||
|
m1 = np.matrix([[1., 2.]])
|
||
|
m2 = np.matrix([[1., np.nan]])
|
||
|
m3 = np.matrix([[1., -np.inf]])
|
||
|
m4 = np.matrix([[np.nan, np.inf]])
|
||
|
m5 = np.matrix([[1., 2.], [np.nan, np.inf]])
|
||
|
for assert_func in assert_array_almost_equal, assert_almost_equal:
|
||
|
for m in m1, m2, m3, m4, m5:
|
||
|
assert_func(m, m)
|
||
|
a = np.array(m)
|
||
|
assert_func(a, m)
|
||
|
assert_func(m, a)
|