2021-01-09 15:20:56 +01:00
|
|
|
import numpy as np
|
|
|
|
import pytest
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
from pandas import (
|
|
|
|
Categorical,
|
|
|
|
DataFrame,
|
|
|
|
DatetimeIndex,
|
|
|
|
Index,
|
|
|
|
Interval,
|
|
|
|
IntervalIndex,
|
|
|
|
Series,
|
|
|
|
TimedeltaIndex,
|
|
|
|
Timestamp,
|
|
|
|
cut,
|
|
|
|
date_range,
|
|
|
|
isna,
|
|
|
|
qcut,
|
|
|
|
timedelta_range,
|
|
|
|
to_datetime,
|
|
|
|
)
|
|
|
|
import pandas._testing as tm
|
|
|
|
from pandas.api.types import CategoricalDtype as CDT
|
|
|
|
import pandas.core.reshape.tile as tmod
|
|
|
|
|
|
|
|
|
|
|
|
def test_simple():
|
|
|
|
data = np.ones(5, dtype="int64")
|
|
|
|
result = cut(data, 4, labels=False)
|
|
|
|
|
|
|
|
expected = np.array([1, 1, 1, 1, 1])
|
|
|
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bins():
|
|
|
|
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1])
|
|
|
|
result, bins = cut(data, 3, retbins=True)
|
|
|
|
|
|
|
|
intervals = IntervalIndex.from_breaks(bins.round(3))
|
|
|
|
intervals = intervals.take([0, 0, 0, 1, 2, 0])
|
|
|
|
expected = Categorical(intervals, ordered=True)
|
|
|
|
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7]))
|
|
|
|
|
|
|
|
|
|
|
|
def test_right():
|
|
|
|
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575])
|
|
|
|
result, bins = cut(data, 4, right=True, retbins=True)
|
|
|
|
|
|
|
|
intervals = IntervalIndex.from_breaks(bins.round(3))
|
|
|
|
expected = Categorical(intervals, ordered=True)
|
|
|
|
expected = expected.take([0, 0, 0, 2, 3, 0, 0])
|
|
|
|
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
tm.assert_almost_equal(bins, np.array([0.1905, 2.575, 4.95, 7.325, 9.7]))
|
|
|
|
|
|
|
|
|
|
|
|
def test_no_right():
|
|
|
|
data = np.array([0.2, 1.4, 2.5, 6.2, 9.7, 2.1, 2.575])
|
|
|
|
result, bins = cut(data, 4, right=False, retbins=True)
|
|
|
|
|
|
|
|
intervals = IntervalIndex.from_breaks(bins.round(3), closed="left")
|
|
|
|
intervals = intervals.take([0, 0, 0, 2, 3, 0, 1])
|
|
|
|
expected = Categorical(intervals, ordered=True)
|
|
|
|
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
tm.assert_almost_equal(bins, np.array([0.2, 2.575, 4.95, 7.325, 9.7095]))
|
|
|
|
|
|
|
|
|
|
|
|
def test_array_like():
|
|
|
|
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
|
|
|
|
result, bins = cut(data, 3, retbins=True)
|
|
|
|
|
|
|
|
intervals = IntervalIndex.from_breaks(bins.round(3))
|
|
|
|
intervals = intervals.take([0, 0, 0, 1, 2, 0])
|
|
|
|
expected = Categorical(intervals, ordered=True)
|
|
|
|
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
tm.assert_almost_equal(bins, np.array([0.1905, 3.36666667, 6.53333333, 9.7]))
|
|
|
|
|
|
|
|
|
|
|
|
def test_bins_from_interval_index():
|
|
|
|
c = cut(range(5), 3)
|
|
|
|
expected = c
|
|
|
|
result = cut(range(5), bins=expected.categories)
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
|
|
|
|
expected = Categorical.from_codes(
|
|
|
|
np.append(c.codes, -1), categories=c.categories, ordered=True
|
|
|
|
)
|
|
|
|
result = cut(range(6), bins=expected.categories)
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bins_from_interval_index_doc_example():
|
|
|
|
# Make sure we preserve the bins.
|
|
|
|
ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
|
|
|
|
c = cut(ages, bins=[0, 18, 35, 70])
|
|
|
|
expected = IntervalIndex.from_tuples([(0, 18), (18, 35), (35, 70)])
|
|
|
|
tm.assert_index_equal(c.categories, expected)
|
|
|
|
|
|
|
|
result = cut([25, 20, 50], bins=c.categories)
|
|
|
|
tm.assert_index_equal(result.categories, expected)
|
|
|
|
tm.assert_numpy_array_equal(result.codes, np.array([1, 1, 2], dtype="int8"))
|
|
|
|
|
|
|
|
|
|
|
|
def test_bins_not_overlapping_from_interval_index():
|
|
|
|
# see gh-23980
|
|
|
|
msg = "Overlapping IntervalIndex is not accepted"
|
|
|
|
ii = IntervalIndex.from_tuples([(0, 10), (2, 12), (4, 14)])
|
|
|
|
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut([5, 6], bins=ii)
|
|
|
|
|
|
|
|
|
|
|
|
def test_bins_not_monotonic():
|
|
|
|
msg = "bins must increase monotonically"
|
|
|
|
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
|
|
|
|
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut(data, [0.1, 1.5, 1, 10])
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"x, bins, expected",
|
|
|
|
[
|
|
|
|
(
|
|
|
|
date_range("2017-12-31", periods=3),
|
|
|
|
[Timestamp.min, Timestamp("2018-01-01"), Timestamp.max],
|
|
|
|
IntervalIndex.from_tuples(
|
|
|
|
[
|
|
|
|
(Timestamp.min, Timestamp("2018-01-01")),
|
|
|
|
(Timestamp("2018-01-01"), Timestamp.max),
|
|
|
|
]
|
|
|
|
),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
[-1, 0, 1],
|
|
|
|
np.array(
|
|
|
|
[np.iinfo(np.int64).min, 0, np.iinfo(np.int64).max], dtype="int64"
|
|
|
|
),
|
|
|
|
IntervalIndex.from_tuples(
|
|
|
|
[(np.iinfo(np.int64).min, 0), (0, np.iinfo(np.int64).max)]
|
|
|
|
),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
[np.timedelta64(-1), np.timedelta64(0), np.timedelta64(1)],
|
|
|
|
np.array(
|
|
|
|
[
|
|
|
|
np.timedelta64(-np.iinfo(np.int64).max),
|
|
|
|
np.timedelta64(0),
|
|
|
|
np.timedelta64(np.iinfo(np.int64).max),
|
|
|
|
]
|
|
|
|
),
|
|
|
|
IntervalIndex.from_tuples(
|
|
|
|
[
|
|
|
|
(np.timedelta64(-np.iinfo(np.int64).max), np.timedelta64(0)),
|
|
|
|
(np.timedelta64(0), np.timedelta64(np.iinfo(np.int64).max)),
|
|
|
|
]
|
|
|
|
),
|
|
|
|
),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_bins_monotonic_not_overflowing(x, bins, expected):
|
|
|
|
# GH 26045
|
|
|
|
result = cut(x, bins)
|
|
|
|
tm.assert_index_equal(result.categories, expected)
|
|
|
|
|
|
|
|
|
|
|
|
def test_wrong_num_labels():
|
|
|
|
msg = "Bin labels must be one fewer than the number of bin edges"
|
|
|
|
data = [0.2, 1.4, 2.5, 6.2, 9.7, 2.1]
|
|
|
|
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut(data, [0, 1, 10], labels=["foo", "bar", "baz"])
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"x,bins,msg",
|
|
|
|
[
|
|
|
|
([], 2, "Cannot cut empty array"),
|
|
|
|
([1, 2, 3], 0.5, "`bins` should be a positive integer"),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_cut_corner(x, bins, msg):
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut(x, bins)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("arg", [2, np.eye(2), DataFrame(np.eye(2))])
|
|
|
|
@pytest.mark.parametrize("cut_func", [cut, qcut])
|
|
|
|
def test_cut_not_1d_arg(arg, cut_func):
|
|
|
|
msg = "Input array must be 1 dimensional"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut_func(arg, 2)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"data",
|
|
|
|
[
|
|
|
|
[0, 1, 2, 3, 4, np.inf],
|
|
|
|
[-np.inf, 0, 1, 2, 3, 4],
|
|
|
|
[-np.inf, 0, 1, 2, 3, 4, np.inf],
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_int_bins_with_inf(data):
|
|
|
|
# GH 24314
|
|
|
|
msg = "cannot specify integer `bins` when input data contains infinity"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut(data, bins=3)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cut_out_of_range_more():
|
|
|
|
# see gh-1511
|
|
|
|
name = "x"
|
|
|
|
|
|
|
|
ser = Series([0, -1, 0, 1, -3], name=name)
|
|
|
|
ind = cut(ser, [0, 1], labels=False)
|
|
|
|
|
|
|
|
exp = Series([np.nan, np.nan, np.nan, 0, np.nan], name=name)
|
|
|
|
tm.assert_series_equal(ind, exp)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"right,breaks,closed",
|
|
|
|
[
|
|
|
|
(True, [-1e-3, 0.25, 0.5, 0.75, 1], "right"),
|
|
|
|
(False, [0, 0.25, 0.5, 0.75, 1 + 1e-3], "left"),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_labels(right, breaks, closed):
|
|
|
|
arr = np.tile(np.arange(0, 1.01, 0.1), 4)
|
|
|
|
|
|
|
|
result, bins = cut(arr, 4, retbins=True, right=right)
|
|
|
|
ex_levels = IntervalIndex.from_breaks(breaks, closed=closed)
|
|
|
|
tm.assert_index_equal(result.categories, ex_levels)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cut_pass_series_name_to_factor():
|
|
|
|
name = "foo"
|
|
|
|
ser = Series(np.random.randn(100), name=name)
|
|
|
|
|
|
|
|
factor = cut(ser, 4)
|
|
|
|
assert factor.name == name
|
|
|
|
|
|
|
|
|
|
|
|
def test_label_precision():
|
|
|
|
arr = np.arange(0, 0.73, 0.01)
|
|
|
|
result = cut(arr, 4, precision=2)
|
|
|
|
|
|
|
|
ex_levels = IntervalIndex.from_breaks([-0.00072, 0.18, 0.36, 0.54, 0.72])
|
|
|
|
tm.assert_index_equal(result.categories, ex_levels)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("labels", [None, False])
|
|
|
|
def test_na_handling(labels):
|
|
|
|
arr = np.arange(0, 0.75, 0.01)
|
|
|
|
arr[::3] = np.nan
|
|
|
|
|
|
|
|
result = cut(arr, 4, labels=labels)
|
|
|
|
result = np.asarray(result)
|
|
|
|
|
|
|
|
expected = np.where(isna(arr), np.nan, result)
|
|
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
def test_inf_handling():
|
|
|
|
data = np.arange(6)
|
|
|
|
data_ser = Series(data, dtype="int64")
|
|
|
|
|
|
|
|
bins = [-np.inf, 2, 4, np.inf]
|
|
|
|
result = cut(data, bins)
|
|
|
|
result_ser = cut(data_ser, bins)
|
|
|
|
|
|
|
|
ex_uniques = IntervalIndex.from_breaks(bins)
|
|
|
|
tm.assert_index_equal(result.categories, ex_uniques)
|
|
|
|
|
|
|
|
assert result[5] == Interval(4, np.inf)
|
|
|
|
assert result[0] == Interval(-np.inf, 2)
|
|
|
|
assert result_ser[5] == Interval(4, np.inf)
|
|
|
|
assert result_ser[0] == Interval(-np.inf, 2)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cut_out_of_bounds():
|
|
|
|
arr = np.random.randn(100)
|
|
|
|
result = cut(arr, [-1, 0, 1])
|
|
|
|
|
|
|
|
mask = isna(result)
|
|
|
|
ex_mask = (arr < -1) | (arr > 1)
|
|
|
|
tm.assert_numpy_array_equal(mask, ex_mask)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"get_labels,get_expected",
|
|
|
|
[
|
|
|
|
(
|
|
|
|
lambda labels: labels,
|
|
|
|
lambda labels: Categorical(
|
|
|
|
["Medium"] + 4 * ["Small"] + ["Medium", "Large"],
|
|
|
|
categories=labels,
|
|
|
|
ordered=True,
|
|
|
|
),
|
|
|
|
),
|
|
|
|
(
|
|
|
|
lambda labels: Categorical.from_codes([0, 1, 2], labels),
|
|
|
|
lambda labels: Categorical.from_codes([1] + 4 * [0] + [1, 2], labels),
|
|
|
|
),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_cut_pass_labels(get_labels, get_expected):
|
|
|
|
bins = [0, 25, 50, 100]
|
|
|
|
arr = [50, 5, 10, 15, 20, 30, 70]
|
|
|
|
labels = ["Small", "Medium", "Large"]
|
|
|
|
|
|
|
|
result = cut(arr, bins, labels=get_labels(labels))
|
|
|
|
tm.assert_categorical_equal(result, get_expected(labels))
|
|
|
|
|
|
|
|
|
|
|
|
def test_cut_pass_labels_compat():
|
|
|
|
# see gh-16459
|
|
|
|
arr = [50, 5, 10, 15, 20, 30, 70]
|
|
|
|
labels = ["Good", "Medium", "Bad"]
|
|
|
|
|
|
|
|
result = cut(arr, 3, labels=labels)
|
|
|
|
exp = cut(arr, 3, labels=Categorical(labels, categories=labels, ordered=True))
|
|
|
|
tm.assert_categorical_equal(result, exp)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("x", [np.arange(11.0), np.arange(11.0) / 1e10])
|
|
|
|
def test_round_frac_just_works(x):
|
|
|
|
# It works.
|
|
|
|
cut(x, 2)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"val,precision,expected",
|
|
|
|
[
|
|
|
|
(-117.9998, 3, -118),
|
|
|
|
(117.9998, 3, 118),
|
|
|
|
(117.9998, 2, 118),
|
|
|
|
(0.000123456, 2, 0.00012),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_round_frac(val, precision, expected):
|
|
|
|
# see gh-1979
|
|
|
|
result = tmod._round_frac(val, precision=precision)
|
|
|
|
assert result == expected
|
|
|
|
|
|
|
|
|
|
|
|
def test_cut_return_intervals():
|
|
|
|
ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8])
|
|
|
|
result = cut(ser, 3)
|
|
|
|
|
|
|
|
exp_bins = np.linspace(0, 8, num=4).round(3)
|
|
|
|
exp_bins[0] -= 0.008
|
|
|
|
|
|
|
|
expected = Series(
|
|
|
|
IntervalIndex.from_breaks(exp_bins, closed="right").take(
|
|
|
|
[0, 0, 0, 1, 1, 1, 2, 2, 2]
|
|
|
|
)
|
|
|
|
).astype(CDT(ordered=True))
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
def test_series_ret_bins():
|
|
|
|
# see gh-8589
|
|
|
|
ser = Series(np.arange(4))
|
|
|
|
result, bins = cut(ser, 2, retbins=True)
|
|
|
|
|
|
|
|
expected = Series(
|
|
|
|
IntervalIndex.from_breaks([-0.003, 1.5, 3], closed="right").repeat(2)
|
|
|
|
).astype(CDT(ordered=True))
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"kwargs,msg",
|
|
|
|
[
|
2021-01-30 22:29:33 +01:00
|
|
|
(dict(duplicates="drop"), None),
|
|
|
|
(dict(), "Bin edges must be unique"),
|
|
|
|
(dict(duplicates="raise"), "Bin edges must be unique"),
|
|
|
|
(dict(duplicates="foo"), "invalid value for 'duplicates' parameter"),
|
2021-01-09 15:20:56 +01:00
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_cut_duplicates_bin(kwargs, msg):
|
|
|
|
# see gh-20947
|
|
|
|
bins = [0, 2, 4, 6, 10, 10]
|
|
|
|
values = Series(np.array([1, 3, 5, 7, 9]), index=["a", "b", "c", "d", "e"])
|
|
|
|
|
|
|
|
if msg is not None:
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut(values, bins, **kwargs)
|
|
|
|
else:
|
|
|
|
result = cut(values, bins, **kwargs)
|
|
|
|
expected = cut(values, pd.unique(bins))
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("data", [9.0, -9.0, 0.0])
|
|
|
|
@pytest.mark.parametrize("length", [1, 2])
|
|
|
|
def test_single_bin(data, length):
|
|
|
|
# see gh-14652, gh-15428
|
|
|
|
ser = Series([data] * length)
|
|
|
|
result = cut(ser, 1, labels=False)
|
|
|
|
|
|
|
|
expected = Series([0] * length)
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"array_1_writeable,array_2_writeable", [(True, True), (True, False), (False, False)]
|
|
|
|
)
|
|
|
|
def test_cut_read_only(array_1_writeable, array_2_writeable):
|
|
|
|
# issue 18773
|
|
|
|
array_1 = np.arange(0, 100, 10)
|
|
|
|
array_1.flags.writeable = array_1_writeable
|
|
|
|
|
|
|
|
array_2 = np.arange(0, 100, 10)
|
|
|
|
array_2.flags.writeable = array_2_writeable
|
|
|
|
|
|
|
|
hundred_elements = np.arange(100)
|
|
|
|
tm.assert_categorical_equal(
|
|
|
|
cut(hundred_elements, array_1), cut(hundred_elements, array_2)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"conv",
|
|
|
|
[
|
|
|
|
lambda v: Timestamp(v),
|
|
|
|
lambda v: to_datetime(v),
|
|
|
|
lambda v: np.datetime64(v),
|
|
|
|
lambda v: Timestamp(v).to_pydatetime(),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_datetime_bin(conv):
|
|
|
|
data = [np.datetime64("2012-12-13"), np.datetime64("2012-12-15")]
|
|
|
|
bin_data = ["2012-12-12", "2012-12-14", "2012-12-16"]
|
|
|
|
|
|
|
|
expected = Series(
|
|
|
|
IntervalIndex(
|
|
|
|
[
|
|
|
|
Interval(Timestamp(bin_data[0]), Timestamp(bin_data[1])),
|
|
|
|
Interval(Timestamp(bin_data[1]), Timestamp(bin_data[2])),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
).astype(CDT(ordered=True))
|
|
|
|
|
|
|
|
bins = [conv(v) for v in bin_data]
|
|
|
|
result = Series(cut(data, bins=bins))
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"data",
|
|
|
|
[
|
|
|
|
to_datetime(Series(["2013-01-01", "2013-01-02", "2013-01-03"])),
|
|
|
|
[
|
|
|
|
np.datetime64("2013-01-01"),
|
|
|
|
np.datetime64("2013-01-02"),
|
|
|
|
np.datetime64("2013-01-03"),
|
|
|
|
],
|
|
|
|
np.array(
|
|
|
|
[
|
|
|
|
np.datetime64("2013-01-01"),
|
|
|
|
np.datetime64("2013-01-02"),
|
|
|
|
np.datetime64("2013-01-03"),
|
|
|
|
]
|
|
|
|
),
|
|
|
|
DatetimeIndex(["2013-01-01", "2013-01-02", "2013-01-03"]),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_datetime_cut(data):
|
|
|
|
# see gh-14714
|
|
|
|
#
|
|
|
|
# Testing time data when it comes in various collection types.
|
|
|
|
result, _ = cut(data, 3, retbins=True)
|
|
|
|
expected = Series(
|
|
|
|
IntervalIndex(
|
|
|
|
[
|
|
|
|
Interval(
|
|
|
|
Timestamp("2012-12-31 23:57:07.200000"),
|
|
|
|
Timestamp("2013-01-01 16:00:00"),
|
|
|
|
),
|
|
|
|
Interval(
|
|
|
|
Timestamp("2013-01-01 16:00:00"), Timestamp("2013-01-02 08:00:00")
|
|
|
|
),
|
|
|
|
Interval(
|
|
|
|
Timestamp("2013-01-02 08:00:00"), Timestamp("2013-01-03 00:00:00")
|
|
|
|
),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
).astype(CDT(ordered=True))
|
|
|
|
tm.assert_series_equal(Series(result), expected)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"bins",
|
|
|
|
[
|
|
|
|
3,
|
|
|
|
[
|
|
|
|
Timestamp("2013-01-01 04:57:07.200000"),
|
|
|
|
Timestamp("2013-01-01 21:00:00"),
|
|
|
|
Timestamp("2013-01-02 13:00:00"),
|
|
|
|
Timestamp("2013-01-03 05:00:00"),
|
|
|
|
],
|
|
|
|
],
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("box", [list, np.array, Index, Series])
|
|
|
|
def test_datetime_tz_cut(bins, box):
|
|
|
|
# see gh-19872
|
|
|
|
tz = "US/Eastern"
|
|
|
|
s = Series(date_range("20130101", periods=3, tz=tz))
|
|
|
|
|
|
|
|
if not isinstance(bins, int):
|
|
|
|
bins = box(bins)
|
|
|
|
|
|
|
|
result = cut(s, bins)
|
|
|
|
expected = Series(
|
|
|
|
IntervalIndex(
|
|
|
|
[
|
|
|
|
Interval(
|
|
|
|
Timestamp("2012-12-31 23:57:07.200000", tz=tz),
|
|
|
|
Timestamp("2013-01-01 16:00:00", tz=tz),
|
|
|
|
),
|
|
|
|
Interval(
|
|
|
|
Timestamp("2013-01-01 16:00:00", tz=tz),
|
|
|
|
Timestamp("2013-01-02 08:00:00", tz=tz),
|
|
|
|
),
|
|
|
|
Interval(
|
|
|
|
Timestamp("2013-01-02 08:00:00", tz=tz),
|
|
|
|
Timestamp("2013-01-03 00:00:00", tz=tz),
|
|
|
|
),
|
|
|
|
]
|
|
|
|
)
|
|
|
|
).astype(CDT(ordered=True))
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
def test_datetime_nan_error():
|
|
|
|
msg = "bins must be of datetime64 dtype"
|
|
|
|
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut(date_range("20130101", periods=3), bins=[0, 2, 4])
|
|
|
|
|
|
|
|
|
|
|
|
def test_datetime_nan_mask():
|
|
|
|
result = cut(
|
|
|
|
date_range("20130102", periods=5), bins=date_range("20130101", periods=2)
|
|
|
|
)
|
|
|
|
|
|
|
|
mask = result.categories.isna()
|
|
|
|
tm.assert_numpy_array_equal(mask, np.array([False]))
|
|
|
|
|
|
|
|
mask = result.isna()
|
|
|
|
tm.assert_numpy_array_equal(mask, np.array([False, True, True, True, True]))
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("tz", [None, "UTC", "US/Pacific"])
|
|
|
|
def test_datetime_cut_roundtrip(tz):
|
|
|
|
# see gh-19891
|
|
|
|
ser = Series(date_range("20180101", periods=3, tz=tz))
|
|
|
|
result, result_bins = cut(ser, 2, retbins=True)
|
|
|
|
|
|
|
|
expected = cut(ser, result_bins)
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
|
|
expected_bins = DatetimeIndex(
|
|
|
|
["2017-12-31 23:57:07.200000", "2018-01-02 00:00:00", "2018-01-03 00:00:00"]
|
|
|
|
)
|
|
|
|
expected_bins = expected_bins.tz_localize(tz)
|
|
|
|
tm.assert_index_equal(result_bins, expected_bins)
|
|
|
|
|
|
|
|
|
|
|
|
def test_timedelta_cut_roundtrip():
|
|
|
|
# see gh-19891
|
|
|
|
ser = Series(timedelta_range("1day", periods=3))
|
|
|
|
result, result_bins = cut(ser, 2, retbins=True)
|
|
|
|
|
|
|
|
expected = cut(ser, result_bins)
|
|
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
|
|
expected_bins = TimedeltaIndex(
|
|
|
|
["0 days 23:57:07.200000", "2 days 00:00:00", "3 days 00:00:00"]
|
|
|
|
)
|
|
|
|
tm.assert_index_equal(result_bins, expected_bins)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("bins", [6, 7])
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"box, compare",
|
|
|
|
[
|
|
|
|
(Series, tm.assert_series_equal),
|
|
|
|
(np.array, tm.assert_categorical_equal),
|
|
|
|
(list, tm.assert_equal),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_cut_bool_coercion_to_int(bins, box, compare):
|
|
|
|
# issue 20303
|
|
|
|
data_expected = box([0, 1, 1, 0, 1] * 10)
|
|
|
|
data_result = box([False, True, True, False, True] * 10)
|
|
|
|
expected = cut(data_expected, bins, duplicates="drop")
|
|
|
|
result = cut(data_result, bins, duplicates="drop")
|
|
|
|
compare(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("labels", ["foo", 1, True])
|
|
|
|
def test_cut_incorrect_labels(labels):
|
|
|
|
# GH 13318
|
|
|
|
values = range(5)
|
|
|
|
msg = "Bin labels must either be False, None or passed in as a list-like argument"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut(values, 4, labels=labels)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("bins", [3, [0, 5, 15]])
|
|
|
|
@pytest.mark.parametrize("right", [True, False])
|
|
|
|
@pytest.mark.parametrize("include_lowest", [True, False])
|
|
|
|
def test_cut_nullable_integer(bins, right, include_lowest):
|
|
|
|
a = np.random.randint(0, 10, size=50).astype(float)
|
|
|
|
a[::2] = np.nan
|
|
|
|
result = cut(
|
|
|
|
pd.array(a, dtype="Int64"), bins, right=right, include_lowest=include_lowest
|
|
|
|
)
|
|
|
|
expected = cut(a, bins, right=right, include_lowest=include_lowest)
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"data, bins, labels, expected_codes, expected_labels",
|
|
|
|
[
|
|
|
|
([15, 17, 19], [14, 16, 18, 20], ["A", "B", "A"], [0, 1, 0], ["A", "B"]),
|
|
|
|
([1, 3, 5], [0, 2, 4, 6, 8], [2, 0, 1, 2], [2, 0, 1], [0, 1, 2]),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_cut_non_unique_labels(data, bins, labels, expected_codes, expected_labels):
|
|
|
|
# GH 33141
|
|
|
|
result = cut(data, bins=bins, labels=labels, ordered=False)
|
|
|
|
expected = Categorical.from_codes(
|
|
|
|
expected_codes, categories=expected_labels, ordered=False
|
|
|
|
)
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"data, bins, labels, expected_codes, expected_labels",
|
|
|
|
[
|
|
|
|
([15, 17, 19], [14, 16, 18, 20], ["C", "B", "A"], [0, 1, 2], ["C", "B", "A"]),
|
|
|
|
([1, 3, 5], [0, 2, 4, 6, 8], [3, 0, 1, 2], [0, 1, 2], [3, 0, 1, 2]),
|
|
|
|
],
|
|
|
|
)
|
|
|
|
def test_cut_unordered_labels(data, bins, labels, expected_codes, expected_labels):
|
|
|
|
# GH 33141
|
|
|
|
result = cut(data, bins=bins, labels=labels, ordered=False)
|
|
|
|
expected = Categorical.from_codes(
|
|
|
|
expected_codes, categories=expected_labels, ordered=False
|
|
|
|
)
|
|
|
|
tm.assert_categorical_equal(result, expected)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cut_unordered_with_missing_labels_raises_error():
|
|
|
|
# GH 33141
|
|
|
|
msg = "'labels' must be provided if 'ordered = False'"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
|
|
cut([0.5, 3], bins=[0, 1, 2], ordered=False)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cut_unordered_with_series_labels():
|
|
|
|
# https://github.com/pandas-dev/pandas/issues/36603
|
2021-01-30 22:29:33 +01:00
|
|
|
s = pd.Series([1, 2, 3, 4, 5])
|
|
|
|
bins = pd.Series([0, 2, 4, 6])
|
|
|
|
labels = pd.Series(["a", "b", "c"])
|
2021-01-09 15:20:56 +01:00
|
|
|
result = pd.cut(s, bins=bins, labels=labels, ordered=False)
|
2021-01-30 22:29:33 +01:00
|
|
|
expected = pd.Series(["a", "a", "b", "b", "c"], dtype="category")
|
2021-01-09 15:20:56 +01:00
|
|
|
tm.assert_series_equal(result, expected)
|