mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-11-30 02:34:18 +01:00
384 lines
13 KiB
Python
384 lines
13 KiB
Python
|
"""
|
||
|
Module that contains many useful utilities
|
||
|
for validating data or function arguments
|
||
|
"""
|
||
|
from typing import Iterable, Union
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas.core.dtypes.common import is_bool
|
||
|
|
||
|
|
||
|
def _check_arg_length(fname, args, max_fname_arg_count, compat_args):
|
||
|
"""
|
||
|
Checks whether 'args' has length of at most 'compat_args'. Raises
|
||
|
a TypeError if that is not the case, similar to in Python when a
|
||
|
function is called with too many arguments.
|
||
|
"""
|
||
|
if max_fname_arg_count < 0:
|
||
|
raise ValueError("'max_fname_arg_count' must be non-negative")
|
||
|
|
||
|
if len(args) > len(compat_args):
|
||
|
max_arg_count = len(compat_args) + max_fname_arg_count
|
||
|
actual_arg_count = len(args) + max_fname_arg_count
|
||
|
argument = "argument" if max_arg_count == 1 else "arguments"
|
||
|
|
||
|
raise TypeError(
|
||
|
f"{fname}() takes at most {max_arg_count} {argument} "
|
||
|
f"({actual_arg_count} given)"
|
||
|
)
|
||
|
|
||
|
|
||
|
def _check_for_default_values(fname, arg_val_dict, compat_args):
|
||
|
"""
|
||
|
Check that the keys in `arg_val_dict` are mapped to their
|
||
|
default values as specified in `compat_args`.
|
||
|
|
||
|
Note that this function is to be called only when it has been
|
||
|
checked that arg_val_dict.keys() is a subset of compat_args
|
||
|
"""
|
||
|
for key in arg_val_dict:
|
||
|
# try checking equality directly with '=' operator,
|
||
|
# as comparison may have been overridden for the left
|
||
|
# hand object
|
||
|
try:
|
||
|
v1 = arg_val_dict[key]
|
||
|
v2 = compat_args[key]
|
||
|
|
||
|
# check for None-ness otherwise we could end up
|
||
|
# comparing a numpy array vs None
|
||
|
if (v1 is not None and v2 is None) or (v1 is None and v2 is not None):
|
||
|
match = False
|
||
|
else:
|
||
|
match = v1 == v2
|
||
|
|
||
|
if not is_bool(match):
|
||
|
raise ValueError("'match' is not a boolean")
|
||
|
|
||
|
# could not compare them directly, so try comparison
|
||
|
# using the 'is' operator
|
||
|
except ValueError:
|
||
|
match = arg_val_dict[key] is compat_args[key]
|
||
|
|
||
|
if not match:
|
||
|
raise ValueError(
|
||
|
f"the '{key}' parameter is not supported in "
|
||
|
f"the pandas implementation of {fname}()"
|
||
|
)
|
||
|
|
||
|
|
||
|
def validate_args(fname, args, max_fname_arg_count, compat_args):
|
||
|
"""
|
||
|
Checks whether the length of the `*args` argument passed into a function
|
||
|
has at most `len(compat_args)` arguments and whether or not all of these
|
||
|
elements in `args` are set to their default values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : str
|
||
|
The name of the function being passed the `*args` parameter
|
||
|
args : tuple
|
||
|
The `*args` parameter passed into a function
|
||
|
max_fname_arg_count : int
|
||
|
The maximum number of arguments that the function `fname`
|
||
|
can accept, excluding those in `args`. Used for displaying
|
||
|
appropriate error messages. Must be non-negative.
|
||
|
compat_args : dict
|
||
|
A dictionary of keys and their associated default values.
|
||
|
In order to accommodate buggy behaviour in some versions of `numpy`,
|
||
|
where a signature displayed keyword arguments but then passed those
|
||
|
arguments **positionally** internally when calling downstream
|
||
|
implementations, a dict ensures that the original
|
||
|
order of the keyword arguments is enforced.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError
|
||
|
If `args` contains more values than there are `compat_args`
|
||
|
ValueError
|
||
|
If `args` contains values that do not correspond to those
|
||
|
of the default values specified in `compat_args`
|
||
|
"""
|
||
|
_check_arg_length(fname, args, max_fname_arg_count, compat_args)
|
||
|
|
||
|
# We do this so that we can provide a more informative
|
||
|
# error message about the parameters that we are not
|
||
|
# supporting in the pandas implementation of 'fname'
|
||
|
kwargs = dict(zip(compat_args, args))
|
||
|
_check_for_default_values(fname, kwargs, compat_args)
|
||
|
|
||
|
|
||
|
def _check_for_invalid_keys(fname, kwargs, compat_args):
|
||
|
"""
|
||
|
Checks whether 'kwargs' contains any keys that are not
|
||
|
in 'compat_args' and raises a TypeError if there is one.
|
||
|
"""
|
||
|
# set(dict) --> set of the dictionary's keys
|
||
|
diff = set(kwargs) - set(compat_args)
|
||
|
|
||
|
if diff:
|
||
|
bad_arg = list(diff)[0]
|
||
|
raise TypeError(f"{fname}() got an unexpected keyword argument '{bad_arg}'")
|
||
|
|
||
|
|
||
|
def validate_kwargs(fname, kwargs, compat_args):
|
||
|
"""
|
||
|
Checks whether parameters passed to the **kwargs argument in a
|
||
|
function `fname` are valid parameters as specified in `*compat_args`
|
||
|
and whether or not they are set to their default values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname : str
|
||
|
The name of the function being passed the `**kwargs` parameter
|
||
|
kwargs : dict
|
||
|
The `**kwargs` parameter passed into `fname`
|
||
|
compat_args: dict
|
||
|
A dictionary of keys that `kwargs` is allowed to have and their
|
||
|
associated default values
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError if `kwargs` contains keys not in `compat_args`
|
||
|
ValueError if `kwargs` contains keys in `compat_args` that do not
|
||
|
map to the default values specified in `compat_args`
|
||
|
"""
|
||
|
kwds = kwargs.copy()
|
||
|
_check_for_invalid_keys(fname, kwargs, compat_args)
|
||
|
_check_for_default_values(fname, kwds, compat_args)
|
||
|
|
||
|
|
||
|
def validate_args_and_kwargs(fname, args, kwargs, max_fname_arg_count, compat_args):
|
||
|
"""
|
||
|
Checks whether parameters passed to the *args and **kwargs argument in a
|
||
|
function `fname` are valid parameters as specified in `*compat_args`
|
||
|
and whether or not they are set to their default values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fname: str
|
||
|
The name of the function being passed the `**kwargs` parameter
|
||
|
args: tuple
|
||
|
The `*args` parameter passed into a function
|
||
|
kwargs: dict
|
||
|
The `**kwargs` parameter passed into `fname`
|
||
|
max_fname_arg_count: int
|
||
|
The minimum number of arguments that the function `fname`
|
||
|
requires, excluding those in `args`. Used for displaying
|
||
|
appropriate error messages. Must be non-negative.
|
||
|
compat_args: dict
|
||
|
A dictionary of keys that `kwargs` is allowed to
|
||
|
have and their associated default values.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
TypeError if `args` contains more values than there are
|
||
|
`compat_args` OR `kwargs` contains keys not in `compat_args`
|
||
|
ValueError if `args` contains values not at the default value (`None`)
|
||
|
`kwargs` contains keys in `compat_args` that do not map to the default
|
||
|
value as specified in `compat_args`
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
validate_args : Purely args validation.
|
||
|
validate_kwargs : Purely kwargs validation.
|
||
|
|
||
|
"""
|
||
|
# Check that the total number of arguments passed in (i.e.
|
||
|
# args and kwargs) does not exceed the length of compat_args
|
||
|
_check_arg_length(
|
||
|
fname, args + tuple(kwargs.values()), max_fname_arg_count, compat_args
|
||
|
)
|
||
|
|
||
|
# Check there is no overlap with the positional and keyword
|
||
|
# arguments, similar to what is done in actual Python functions
|
||
|
args_dict = dict(zip(compat_args, args))
|
||
|
|
||
|
for key in args_dict:
|
||
|
if key in kwargs:
|
||
|
raise TypeError(
|
||
|
f"{fname}() got multiple values for keyword argument '{key}'"
|
||
|
)
|
||
|
|
||
|
kwargs.update(args_dict)
|
||
|
validate_kwargs(fname, kwargs, compat_args)
|
||
|
|
||
|
|
||
|
def validate_bool_kwarg(value, arg_name):
|
||
|
""" Ensures that argument passed in arg_name is of type bool. """
|
||
|
if not (is_bool(value) or value is None):
|
||
|
raise ValueError(
|
||
|
f'For argument "{arg_name}" expected type bool, received '
|
||
|
f"type {type(value).__name__}."
|
||
|
)
|
||
|
return value
|
||
|
|
||
|
|
||
|
def validate_axis_style_args(data, args, kwargs, arg_name, method_name):
|
||
|
"""
|
||
|
Argument handler for mixed index, columns / axis functions
|
||
|
|
||
|
In an attempt to handle both `.method(index, columns)`, and
|
||
|
`.method(arg, axis=.)`, we have to do some bad things to argument
|
||
|
parsing. This translates all arguments to `{index=., columns=.}` style.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : DataFrame
|
||
|
args : tuple
|
||
|
All positional arguments from the user
|
||
|
kwargs : dict
|
||
|
All keyword arguments from the user
|
||
|
arg_name, method_name : str
|
||
|
Used for better error messages
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
kwargs : dict
|
||
|
A dictionary of keyword arguments. Doesn't modify ``kwargs``
|
||
|
inplace, so update them with the return value here.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df._validate_axis_style_args((str.upper,), {'columns': id},
|
||
|
... 'mapper', 'rename')
|
||
|
{'columns': <function id>, 'index': <method 'upper' of 'str' objects>}
|
||
|
|
||
|
This emits a warning
|
||
|
>>> df._validate_axis_style_args((str.upper, id), {},
|
||
|
... 'mapper', 'rename')
|
||
|
{'columns': <function id>, 'index': <method 'upper' of 'str' objects>}
|
||
|
"""
|
||
|
# TODO: Change to keyword-only args and remove all this
|
||
|
|
||
|
out = {}
|
||
|
# Goal: fill 'out' with index/columns-style arguments
|
||
|
# like out = {'index': foo, 'columns': bar}
|
||
|
|
||
|
# Start by validating for consistency
|
||
|
if "axis" in kwargs and any(x in kwargs for x in data._AXIS_TO_AXIS_NUMBER):
|
||
|
msg = "Cannot specify both 'axis' and any of 'index' or 'columns'."
|
||
|
raise TypeError(msg)
|
||
|
|
||
|
# First fill with explicit values provided by the user...
|
||
|
if arg_name in kwargs:
|
||
|
if args:
|
||
|
msg = f"{method_name} got multiple values for argument '{arg_name}'"
|
||
|
raise TypeError(msg)
|
||
|
|
||
|
axis = data._get_axis_name(kwargs.get("axis", 0))
|
||
|
out[axis] = kwargs[arg_name]
|
||
|
|
||
|
# More user-provided arguments, now from kwargs
|
||
|
for k, v in kwargs.items():
|
||
|
try:
|
||
|
ax = data._get_axis_name(k)
|
||
|
except ValueError:
|
||
|
pass
|
||
|
else:
|
||
|
out[ax] = v
|
||
|
|
||
|
# All user-provided kwargs have been handled now.
|
||
|
# Now we supplement with positional arguments, emitting warnings
|
||
|
# when there's ambiguity and raising when there's conflicts
|
||
|
|
||
|
if len(args) == 0:
|
||
|
pass # It's up to the function to decide if this is valid
|
||
|
elif len(args) == 1:
|
||
|
axis = data._get_axis_name(kwargs.get("axis", 0))
|
||
|
out[axis] = args[0]
|
||
|
elif len(args) == 2:
|
||
|
if "axis" in kwargs:
|
||
|
# Unambiguously wrong
|
||
|
msg = "Cannot specify both 'axis' and any of 'index' or 'columns'"
|
||
|
raise TypeError(msg)
|
||
|
|
||
|
msg = (
|
||
|
f"Interpreting call\n\t'.{method_name}(a, b)' as "
|
||
|
f"\n\t'.{method_name}(index=a, columns=b)'.\nUse named "
|
||
|
"arguments to remove any ambiguity. In the future, using "
|
||
|
"positional arguments for 'index' or 'columns' will raise "
|
||
|
"a 'TypeError'."
|
||
|
)
|
||
|
warnings.warn(msg, FutureWarning, stacklevel=4)
|
||
|
out[data._get_axis_name(0)] = args[0]
|
||
|
out[data._get_axis_name(1)] = args[1]
|
||
|
else:
|
||
|
msg = f"Cannot specify all of '{arg_name}', 'index', 'columns'."
|
||
|
raise TypeError(msg)
|
||
|
return out
|
||
|
|
||
|
|
||
|
def validate_fillna_kwargs(value, method, validate_scalar_dict_value=True):
|
||
|
"""
|
||
|
Validate the keyword arguments to 'fillna'.
|
||
|
|
||
|
This checks that exactly one of 'value' and 'method' is specified.
|
||
|
If 'method' is specified, this validates that it's a valid method.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
value, method : object
|
||
|
The 'value' and 'method' keyword arguments for 'fillna'.
|
||
|
validate_scalar_dict_value : bool, default True
|
||
|
Whether to validate that 'value' is a scalar or dict. Specifically,
|
||
|
validate that it is not a list or tuple.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value, method : object
|
||
|
"""
|
||
|
from pandas.core.missing import clean_fill_method
|
||
|
|
||
|
if value is None and method is None:
|
||
|
raise ValueError("Must specify a fill 'value' or 'method'.")
|
||
|
elif value is None and method is not None:
|
||
|
method = clean_fill_method(method)
|
||
|
|
||
|
elif value is not None and method is None:
|
||
|
if validate_scalar_dict_value and isinstance(value, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
'"value" parameter must be a scalar or dict, but '
|
||
|
f'you passed a "{type(value).__name__}"'
|
||
|
)
|
||
|
|
||
|
elif value is not None and method is not None:
|
||
|
raise ValueError("Cannot specify both 'value' and 'method'.")
|
||
|
|
||
|
return value, method
|
||
|
|
||
|
|
||
|
def validate_percentile(q: Union[float, Iterable[float]]) -> np.ndarray:
|
||
|
"""
|
||
|
Validate percentiles (used by describe and quantile).
|
||
|
|
||
|
This function checks if the given float or iterable of floats is a valid percentile
|
||
|
otherwise raises a ValueError.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
q: float or iterable of floats
|
||
|
A single percentile or an iterable of percentiles.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ndarray
|
||
|
An ndarray of the percentiles if valid.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError if percentiles are not in given interval([0, 1]).
|
||
|
"""
|
||
|
q_arr = np.asarray(q)
|
||
|
# Don't change this to an f-string. The string formatting
|
||
|
# is too expensive for cases where we don't need it.
|
||
|
msg = "percentiles should all be in the interval [0, 1]. Try {} instead."
|
||
|
if q_arr.ndim == 0:
|
||
|
if not 0 <= q_arr <= 1:
|
||
|
raise ValueError(msg.format(q_arr / 100.0))
|
||
|
else:
|
||
|
if not all(0 <= qs <= 1 for qs in q_arr):
|
||
|
raise ValueError(msg.format(q_arr / 100.0))
|
||
|
return q_arr
|