craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/indexing/test_datetime.py

234 lines
7.5 KiB
Python
Raw Normal View History

import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, Series, Timestamp, date_range
import pandas._testing as tm
class TestDatetimeIndex:
def test_indexing_with_datetime_tz(self):
# GH#8260
# support datetime64 with tz
idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo")
dr = date_range("20130110", periods=3)
df = DataFrame({"A": idx, "B": dr})
df["C"] = idx
df.iloc[1, 1] = pd.NaT
df.iloc[1, 2] = pd.NaT
# indexing
result = df.iloc[1]
expected = Series(
[Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT],
index=list("ABC"),
dtype="object",
name=1,
)
tm.assert_series_equal(result, expected)
result = df.loc[1]
expected = Series(
[Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT],
index=list("ABC"),
dtype="object",
name=1,
)
tm.assert_series_equal(result, expected)
# indexing - fast_xs
df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")})
result = df.iloc[5]
expected = Series(
[Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5
)
tm.assert_series_equal(result, expected)
result = df.loc[5]
tm.assert_series_equal(result, expected)
# indexing - boolean
result = df[df.a > df.a[3]]
expected = df.iloc[4:]
tm.assert_frame_equal(result, expected)
# indexing - setting an element
df = DataFrame(
data=pd.to_datetime(["2015-03-30 20:12:32", "2015-03-12 00:11:11"]),
columns=["time"],
)
df["new_col"] = ["new", "old"]
df.time = df.set_index("time").index.tz_localize("UTC")
v = df[df.new_col == "new"].set_index("time").index.tz_convert("US/Pacific")
# trying to set a single element on a part of a different timezone
# this converts to object
df2 = df.copy()
df2.loc[df2.new_col == "new", "time"] = v
expected = Series([v[0], df.loc[1, "time"]], name="time")
tm.assert_series_equal(df2.time, expected)
v = df.loc[df.new_col == "new", "time"] + pd.Timedelta("1s")
df.loc[df.new_col == "new", "time"] = v
tm.assert_series_equal(df.loc[df.new_col == "new", "time"], v)
def test_consistency_with_tz_aware_scalar(self):
# xef gh-12938
# various ways of indexing the same tz-aware scalar
df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame()
df = pd.concat([df, df]).reset_index(drop=True)
expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels")
result = df[0][0]
assert result == expected
result = df.iloc[0, 0]
assert result == expected
result = df.loc[0, 0]
assert result == expected
result = df.iat[0, 0]
assert result == expected
result = df.at[0, 0]
assert result == expected
result = df[0].loc[0]
assert result == expected
result = df[0].at[0]
assert result == expected
def test_indexing_with_datetimeindex_tz(self):
# GH 12050
# indexing on a series with a datetimeindex with tz
index = date_range("2015-01-01", periods=2, tz="utc")
ser = Series(range(2), index=index, dtype="int64")
# list-like indexing
for sel in (index, list(index)):
# getitem
result = ser[sel]
expected = ser.copy()
if sel is not index:
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
# setitem
result = ser.copy()
result[sel] = 1
expected = Series(1, index=index)
tm.assert_series_equal(result, expected)
# .loc getitem
result = ser.loc[sel]
expected = ser.copy()
if sel is not index:
expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
# .loc setitem
result = ser.copy()
result.loc[sel] = 1
expected = Series(1, index=index)
tm.assert_series_equal(result, expected)
# single element indexing
# getitem
assert ser[index[1]] == 1
# setitem
result = ser.copy()
result[index[1]] = 5
expected = Series([0, 5], index=index)
tm.assert_series_equal(result, expected)
# .loc getitem
assert ser.loc[index[1]] == 1
# .loc setitem
result = ser.copy()
result.loc[index[1]] = 5
expected = Series([0, 5], index=index)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("to_period", [True, False])
def test_loc_getitem_listlike_of_datetimelike_keys(self, to_period):
# GH 11497
idx = date_range("2011-01-01", "2011-01-02", freq="D", name="idx")
if to_period:
idx = idx.to_period("D")
ser = Series([0.1, 0.2], index=idx, name="s")
keys = [Timestamp("2011-01-01"), Timestamp("2011-01-02")]
if to_period:
keys = [x.to_period("D") for x in keys]
result = ser.loc[keys]
exp = Series([0.1, 0.2], index=idx, name="s")
if not to_period:
exp.index = exp.index._with_freq(None)
tm.assert_series_equal(result, exp, check_index_type=True)
keys = [
Timestamp("2011-01-02"),
Timestamp("2011-01-02"),
Timestamp("2011-01-01"),
]
if to_period:
keys = [x.to_period("D") for x in keys]
exp = Series(
[0.2, 0.2, 0.1], index=Index(keys, name="idx", dtype=idx.dtype), name="s"
)
result = ser.loc[keys]
tm.assert_series_equal(result, exp, check_index_type=True)
keys = [
Timestamp("2011-01-03"),
Timestamp("2011-01-02"),
Timestamp("2011-01-03"),
]
if to_period:
keys = [x.to_period("D") for x in keys]
with pytest.raises(KeyError, match="with any missing labels"):
ser.loc[keys]
def test_nanosecond_getitem_setitem_with_tz(self):
# GH 11679
data = ["2016-06-28 08:30:00.123456789"]
index = pd.DatetimeIndex(data, dtype="datetime64[ns, America/Chicago]")
df = DataFrame({"a": [10]}, index=index)
result = df.loc[df.index[0]]
expected = Series(10, index=["a"], name=df.index[0])
tm.assert_series_equal(result, expected)
result = df.copy()
result.loc[df.index[0], "a"] = -1
expected = DataFrame(-1, index=index, columns=["a"])
tm.assert_frame_equal(result, expected)
def test_loc_setitem_with_existing_dst(self):
# GH 18308
start = Timestamp("2017-10-29 00:00:00+0200", tz="Europe/Madrid")
end = Timestamp("2017-10-29 03:00:00+0100", tz="Europe/Madrid")
ts = Timestamp("2016-10-10 03:00:00", tz="Europe/Madrid")
idx = pd.date_range(start, end, closed="left", freq="H")
result = DataFrame(index=idx, columns=["value"])
result.loc[ts, "value"] = 12
expected = DataFrame(
[np.nan] * len(idx) + [12],
index=idx.append(pd.DatetimeIndex([ts])),
columns=["value"],
dtype=object,
)
tm.assert_frame_equal(result, expected)