mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-11-15 11:38:12 +01:00
78 lines
2.8 KiB
Python
78 lines
2.8 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import Index, date_range
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.reshape.util import cartesian_product
|
||
|
|
||
|
|
||
|
class TestCartesianProduct:
|
||
|
def test_simple(self):
|
||
|
x, y = list("ABC"), [1, 22]
|
||
|
result1, result2 = cartesian_product([x, y])
|
||
|
expected1 = np.array(["A", "A", "B", "B", "C", "C"])
|
||
|
expected2 = np.array([1, 22, 1, 22, 1, 22])
|
||
|
tm.assert_numpy_array_equal(result1, expected1)
|
||
|
tm.assert_numpy_array_equal(result2, expected2)
|
||
|
|
||
|
def test_datetimeindex(self):
|
||
|
# regression test for GitHub issue #6439
|
||
|
# make sure that the ordering on datetimeindex is consistent
|
||
|
x = date_range("2000-01-01", periods=2)
|
||
|
result1, result2 = [Index(y).day for y in cartesian_product([x, x])]
|
||
|
expected1 = Index([1, 1, 2, 2])
|
||
|
expected2 = Index([1, 2, 1, 2])
|
||
|
tm.assert_index_equal(result1, expected1)
|
||
|
tm.assert_index_equal(result2, expected2)
|
||
|
|
||
|
def test_tzaware_retained(self):
|
||
|
x = date_range("2000-01-01", periods=2, tz="US/Pacific")
|
||
|
y = np.array([3, 4])
|
||
|
result1, result2 = cartesian_product([x, y])
|
||
|
|
||
|
expected = x.repeat(2)
|
||
|
tm.assert_index_equal(result1, expected)
|
||
|
|
||
|
def test_tzaware_retained_categorical(self):
|
||
|
x = date_range("2000-01-01", periods=2, tz="US/Pacific").astype("category")
|
||
|
y = np.array([3, 4])
|
||
|
result1, result2 = cartesian_product([x, y])
|
||
|
|
||
|
expected = x.repeat(2)
|
||
|
tm.assert_index_equal(result1, expected)
|
||
|
|
||
|
def test_empty(self):
|
||
|
# product of empty factors
|
||
|
X = [[], [0, 1], []]
|
||
|
Y = [[], [], ["a", "b", "c"]]
|
||
|
for x, y in zip(X, Y):
|
||
|
expected1 = np.array([], dtype=np.asarray(x).dtype)
|
||
|
expected2 = np.array([], dtype=np.asarray(y).dtype)
|
||
|
result1, result2 = cartesian_product([x, y])
|
||
|
tm.assert_numpy_array_equal(result1, expected1)
|
||
|
tm.assert_numpy_array_equal(result2, expected2)
|
||
|
|
||
|
# empty product (empty input):
|
||
|
result = cartesian_product([])
|
||
|
expected = []
|
||
|
assert result == expected
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X", [1, [1], [1, 2], [[1], 2], "a", ["a"], ["a", "b"], [["a"], "b"]]
|
||
|
)
|
||
|
def test_invalid_input(self, X):
|
||
|
msg = "Input must be a list-like of list-likes"
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
cartesian_product(X=X)
|
||
|
|
||
|
def test_exceed_product_space(self):
|
||
|
# GH31355: raise useful error when produce space is too large
|
||
|
msg = "Product space too large to allocate arrays!"
|
||
|
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
dims = [np.arange(0, 22, dtype=np.int16) for i in range(12)] + [
|
||
|
(np.arange(15128, dtype=np.int16)),
|
||
|
]
|
||
|
cartesian_product(X=dims)
|