mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-04 20:01:44 +01:00
180 lines
5.8 KiB
Python
180 lines
5.8 KiB
Python
|
import pydoc
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import DataFrame, Index, Series, date_range
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestSeriesMisc:
|
||
|
def test_getitem_preserve_name(self, datetime_series):
|
||
|
result = datetime_series[datetime_series > 0]
|
||
|
assert result.name == datetime_series.name
|
||
|
|
||
|
result = datetime_series[[0, 2, 4]]
|
||
|
assert result.name == datetime_series.name
|
||
|
|
||
|
result = datetime_series[5:10]
|
||
|
assert result.name == datetime_series.name
|
||
|
|
||
|
def test_tab_completion(self):
|
||
|
# GH 9910
|
||
|
s = Series(list("abcd"))
|
||
|
# Series of str values should have .str but not .dt/.cat in __dir__
|
||
|
assert "str" in dir(s)
|
||
|
assert "dt" not in dir(s)
|
||
|
assert "cat" not in dir(s)
|
||
|
|
||
|
# similarly for .dt
|
||
|
s = Series(date_range("1/1/2015", periods=5))
|
||
|
assert "dt" in dir(s)
|
||
|
assert "str" not in dir(s)
|
||
|
assert "cat" not in dir(s)
|
||
|
|
||
|
# Similarly for .cat, but with the twist that str and dt should be
|
||
|
# there if the categories are of that type first cat and str.
|
||
|
s = Series(list("abbcd"), dtype="category")
|
||
|
assert "cat" in dir(s)
|
||
|
assert "str" in dir(s) # as it is a string categorical
|
||
|
assert "dt" not in dir(s)
|
||
|
|
||
|
# similar to cat and str
|
||
|
s = Series(date_range("1/1/2015", periods=5)).astype("category")
|
||
|
assert "cat" in dir(s)
|
||
|
assert "str" not in dir(s)
|
||
|
assert "dt" in dir(s) # as it is a datetime categorical
|
||
|
|
||
|
def test_tab_completion_with_categorical(self):
|
||
|
# test the tab completion display
|
||
|
ok_for_cat = [
|
||
|
"categories",
|
||
|
"codes",
|
||
|
"ordered",
|
||
|
"set_categories",
|
||
|
"add_categories",
|
||
|
"remove_categories",
|
||
|
"rename_categories",
|
||
|
"reorder_categories",
|
||
|
"remove_unused_categories",
|
||
|
"as_ordered",
|
||
|
"as_unordered",
|
||
|
]
|
||
|
|
||
|
def get_dir(s):
|
||
|
results = [r for r in s.cat.__dir__() if not r.startswith("_")]
|
||
|
return sorted(set(results))
|
||
|
|
||
|
s = Series(list("aabbcde")).astype("category")
|
||
|
results = get_dir(s)
|
||
|
tm.assert_almost_equal(results, sorted(set(ok_for_cat)))
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"index",
|
||
|
[
|
||
|
tm.makeUnicodeIndex(10),
|
||
|
tm.makeStringIndex(10),
|
||
|
tm.makeCategoricalIndex(10),
|
||
|
Index(["foo", "bar", "baz"] * 2),
|
||
|
tm.makeDateIndex(10),
|
||
|
tm.makePeriodIndex(10),
|
||
|
tm.makeTimedeltaIndex(10),
|
||
|
tm.makeIntIndex(10),
|
||
|
tm.makeUIntIndex(10),
|
||
|
tm.makeIntIndex(10),
|
||
|
tm.makeFloatIndex(10),
|
||
|
Index([True, False]),
|
||
|
Index([f"a{i}" for i in range(101)]),
|
||
|
pd.MultiIndex.from_tuples(zip("ABCD", "EFGH")),
|
||
|
pd.MultiIndex.from_tuples(zip([0, 1, 2, 3], "EFGH")),
|
||
|
],
|
||
|
)
|
||
|
def test_index_tab_completion(self, index):
|
||
|
# dir contains string-like values of the Index.
|
||
|
s = Series(index=index, dtype=object)
|
||
|
dir_s = dir(s)
|
||
|
for i, x in enumerate(s.index.unique(level=0)):
|
||
|
if i < 100:
|
||
|
assert not isinstance(x, str) or not x.isidentifier() or x in dir_s
|
||
|
else:
|
||
|
assert x not in dir_s
|
||
|
|
||
|
def test_not_hashable(self):
|
||
|
s_empty = Series(dtype=object)
|
||
|
s = Series([1])
|
||
|
msg = "'Series' objects are mutable, thus they cannot be hashed"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
hash(s_empty)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
hash(s)
|
||
|
|
||
|
def test_contains(self, datetime_series):
|
||
|
tm.assert_contains_all(datetime_series.index, datetime_series)
|
||
|
|
||
|
def test_raise_on_info(self):
|
||
|
s = Series(np.random.randn(10))
|
||
|
msg = "'Series' object has no attribute 'info'"
|
||
|
with pytest.raises(AttributeError, match=msg):
|
||
|
s.info()
|
||
|
|
||
|
def test_axis_alias(self):
|
||
|
s = Series([1, 2, np.nan])
|
||
|
tm.assert_series_equal(s.dropna(axis="rows"), s.dropna(axis="index"))
|
||
|
assert s.dropna().sum("rows") == 3
|
||
|
assert s._get_axis_number("rows") == 0
|
||
|
assert s._get_axis_name("rows") == "index"
|
||
|
|
||
|
def test_class_axis(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/18147
|
||
|
# no exception and no empty docstring
|
||
|
assert pydoc.getdoc(Series.index)
|
||
|
|
||
|
def test_ndarray_compat(self):
|
||
|
|
||
|
# test numpy compat with Series as sub-class of NDFrame
|
||
|
tsdf = DataFrame(
|
||
|
np.random.randn(1000, 3),
|
||
|
columns=["A", "B", "C"],
|
||
|
index=date_range("1/1/2000", periods=1000),
|
||
|
)
|
||
|
|
||
|
def f(x):
|
||
|
return x[x.idxmax()]
|
||
|
|
||
|
result = tsdf.apply(f)
|
||
|
expected = tsdf.max()
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# using an ndarray like function
|
||
|
s = Series(np.random.randn(10))
|
||
|
result = Series(np.ones_like(s))
|
||
|
expected = Series(1, index=range(10), dtype="float64")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# ravel
|
||
|
s = Series(np.random.randn(10))
|
||
|
tm.assert_almost_equal(s.ravel(order="F"), s.values.ravel(order="F"))
|
||
|
|
||
|
def test_empty_method(self):
|
||
|
s_empty = Series(dtype=object)
|
||
|
assert s_empty.empty
|
||
|
|
||
|
s2 = Series(index=[1], dtype=object)
|
||
|
for full_series in [Series([1]), s2]:
|
||
|
assert not full_series.empty
|
||
|
|
||
|
def test_integer_series_size(self):
|
||
|
# GH 25580
|
||
|
s = Series(range(9))
|
||
|
assert s.size == 9
|
||
|
s = Series(range(9), dtype="Int64")
|
||
|
assert s.size == 9
|
||
|
|
||
|
def test_attrs(self):
|
||
|
s = Series([0, 1], name="abc")
|
||
|
assert s.attrs == {}
|
||
|
s.attrs["version"] = 1
|
||
|
result = s + 1
|
||
|
assert result.attrs == {"version": 1}
|