craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/window/test_numba.py

124 lines
4.3 KiB
Python
Raw Normal View History

import numpy as np
import pytest
from pandas.errors import NumbaUtilError
import pandas.util._test_decorators as td
from pandas import DataFrame, Series, option_context
import pandas._testing as tm
from pandas.core.util.numba_ import NUMBA_FUNC_CACHE
@td.skip_if_no("numba", "0.46.0")
@pytest.mark.filterwarnings("ignore:\\nThe keyword argument")
# Filter warnings when parallel=True and the function can't be parallelized by Numba
class TestRollingApply:
@pytest.mark.parametrize("jit", [True, False])
def test_numba_vs_cython(self, jit, nogil, parallel, nopython, center):
def f(x, *args):
arg_sum = 0
for arg in args:
arg_sum += arg
return np.mean(x) + arg_sum
if jit:
import numba
f = numba.jit(f)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
args = (2,)
s = Series(range(10))
result = s.rolling(2, center=center).apply(
f, args=args, engine="numba", engine_kwargs=engine_kwargs, raw=True
)
expected = s.rolling(2, center=center).apply(
f, engine="cython", args=args, raw=True
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("jit", [True, False])
def test_cache(self, jit, nogil, parallel, nopython):
# Test that the functions are cached correctly if we switch functions
def func_1(x):
return np.mean(x) + 4
def func_2(x):
return np.std(x) * 5
if jit:
import numba
func_1 = numba.jit(func_1)
func_2 = numba.jit(func_2)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
roll = Series(range(10)).rolling(2)
result = roll.apply(
func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True
)
expected = roll.apply(func_1, engine="cython", raw=True)
tm.assert_series_equal(result, expected)
# func_1 should be in the cache now
assert (func_1, "rolling_apply") in NUMBA_FUNC_CACHE
result = roll.apply(
func_2, engine="numba", engine_kwargs=engine_kwargs, raw=True
)
expected = roll.apply(func_2, engine="cython", raw=True)
tm.assert_series_equal(result, expected)
# This run should use the cached func_1
result = roll.apply(
func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True
)
expected = roll.apply(func_1, engine="cython", raw=True)
tm.assert_series_equal(result, expected)
@td.skip_if_no("numba", "0.46.0")
class TestGroupbyEWMMean:
def test_invalid_engine(self):
df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)})
with pytest.raises(ValueError, match="engine must be either"):
df.groupby("A").ewm(com=1.0).mean(engine="foo")
def test_invalid_engine_kwargs(self):
df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)})
with pytest.raises(ValueError, match="cython engine does not"):
df.groupby("A").ewm(com=1.0).mean(
engine="cython", engine_kwargs={"nopython": True}
)
def test_cython_vs_numba(self, nogil, parallel, nopython, ignore_na, adjust):
df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)})
gb_ewm = df.groupby("A").ewm(com=1.0, adjust=adjust, ignore_na=ignore_na)
engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
result = gb_ewm.mean(engine="numba", engine_kwargs=engine_kwargs)
expected = gb_ewm.mean(engine="cython")
tm.assert_frame_equal(result, expected)
@td.skip_if_no("numba", "0.46.0")
def test_use_global_config():
def f(x):
return np.mean(x) + 2
s = Series(range(10))
with option_context("compute.use_numba", True):
result = s.rolling(2).apply(f, engine=None, raw=True)
expected = s.rolling(2).apply(f, engine="numba", raw=True)
tm.assert_series_equal(expected, result)
@td.skip_if_no("numba", "0.46.0")
def test_invalid_kwargs_nopython():
with pytest.raises(NumbaUtilError, match="numba does not support kwargs with"):
Series(range(1)).rolling(1).apply(
lambda x: x, kwargs={"a": 1}, engine="numba", raw=True
)