mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-11-15 11:38:12 +01:00
220 lines
8.5 KiB
Python
220 lines
8.5 KiB
Python
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import DataFrame, MultiIndex, Series, date_range
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.algorithms import safe_sort
|
||
|
|
||
|
|
||
|
class TestPairwise:
|
||
|
|
||
|
# GH 7738
|
||
|
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
|
||
|
def test_no_flex(self, pairwise_frames, pairwise_target_frame, f):
|
||
|
|
||
|
# DataFrame methods (which do not call flex_binary_moment())
|
||
|
|
||
|
result = f(pairwise_frames)
|
||
|
tm.assert_index_equal(result.index, pairwise_frames.columns)
|
||
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
||
|
expected = f(pairwise_target_frame)
|
||
|
# since we have sorted the results
|
||
|
# we can only compare non-nans
|
||
|
result = result.dropna().values
|
||
|
expected = expected.dropna().values
|
||
|
|
||
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"f",
|
||
|
[
|
||
|
lambda x: x.expanding().cov(pairwise=True),
|
||
|
lambda x: x.expanding().corr(pairwise=True),
|
||
|
lambda x: x.rolling(window=3).cov(pairwise=True),
|
||
|
lambda x: x.rolling(window=3).corr(pairwise=True),
|
||
|
lambda x: x.ewm(com=3).cov(pairwise=True),
|
||
|
lambda x: x.ewm(com=3).corr(pairwise=True),
|
||
|
],
|
||
|
)
|
||
|
def test_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
|
||
|
|
||
|
# DataFrame with itself, pairwise=True
|
||
|
# note that we may construct the 1st level of the MI
|
||
|
# in a non-monotonic way, so compare accordingly
|
||
|
result = f(pairwise_frames)
|
||
|
tm.assert_index_equal(
|
||
|
result.index.levels[0], pairwise_frames.index, check_names=False
|
||
|
)
|
||
|
tm.assert_numpy_array_equal(
|
||
|
safe_sort(result.index.levels[1]),
|
||
|
safe_sort(pairwise_frames.columns.unique()),
|
||
|
)
|
||
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
||
|
expected = f(pairwise_target_frame)
|
||
|
# since we have sorted the results
|
||
|
# we can only compare non-nans
|
||
|
result = result.dropna().values
|
||
|
expected = expected.dropna().values
|
||
|
|
||
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"f",
|
||
|
[
|
||
|
lambda x: x.expanding().cov(pairwise=False),
|
||
|
lambda x: x.expanding().corr(pairwise=False),
|
||
|
lambda x: x.rolling(window=3).cov(pairwise=False),
|
||
|
lambda x: x.rolling(window=3).corr(pairwise=False),
|
||
|
lambda x: x.ewm(com=3).cov(pairwise=False),
|
||
|
lambda x: x.ewm(com=3).corr(pairwise=False),
|
||
|
],
|
||
|
)
|
||
|
def test_no_pairwise_with_self(self, pairwise_frames, pairwise_target_frame, f):
|
||
|
|
||
|
# DataFrame with itself, pairwise=False
|
||
|
result = f(pairwise_frames)
|
||
|
tm.assert_index_equal(result.index, pairwise_frames.index)
|
||
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
||
|
expected = f(pairwise_target_frame)
|
||
|
# since we have sorted the results
|
||
|
# we can only compare non-nans
|
||
|
result = result.dropna().values
|
||
|
expected = expected.dropna().values
|
||
|
|
||
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"f",
|
||
|
[
|
||
|
lambda x, y: x.expanding().cov(y, pairwise=True),
|
||
|
lambda x, y: x.expanding().corr(y, pairwise=True),
|
||
|
lambda x, y: x.rolling(window=3).cov(y, pairwise=True),
|
||
|
lambda x, y: x.rolling(window=3).corr(y, pairwise=True),
|
||
|
lambda x, y: x.ewm(com=3).cov(y, pairwise=True),
|
||
|
lambda x, y: x.ewm(com=3).corr(y, pairwise=True),
|
||
|
],
|
||
|
)
|
||
|
def test_pairwise_with_other(
|
||
|
self, pairwise_frames, pairwise_target_frame, pairwise_other_frame, f
|
||
|
):
|
||
|
|
||
|
# DataFrame with another DataFrame, pairwise=True
|
||
|
result = f(pairwise_frames, pairwise_other_frame)
|
||
|
tm.assert_index_equal(
|
||
|
result.index.levels[0], pairwise_frames.index, check_names=False
|
||
|
)
|
||
|
tm.assert_numpy_array_equal(
|
||
|
safe_sort(result.index.levels[1]),
|
||
|
safe_sort(pairwise_other_frame.columns.unique()),
|
||
|
)
|
||
|
expected = f(pairwise_target_frame, pairwise_other_frame)
|
||
|
# since we have sorted the results
|
||
|
# we can only compare non-nans
|
||
|
result = result.dropna().values
|
||
|
expected = expected.dropna().values
|
||
|
|
||
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"f",
|
||
|
[
|
||
|
lambda x, y: x.expanding().cov(y, pairwise=False),
|
||
|
lambda x, y: x.expanding().corr(y, pairwise=False),
|
||
|
lambda x, y: x.rolling(window=3).cov(y, pairwise=False),
|
||
|
lambda x, y: x.rolling(window=3).corr(y, pairwise=False),
|
||
|
lambda x, y: x.ewm(com=3).cov(y, pairwise=False),
|
||
|
lambda x, y: x.ewm(com=3).corr(y, pairwise=False),
|
||
|
],
|
||
|
)
|
||
|
def test_no_pairwise_with_other(self, pairwise_frames, pairwise_other_frame, f):
|
||
|
|
||
|
# DataFrame with another DataFrame, pairwise=False
|
||
|
result = (
|
||
|
f(pairwise_frames, pairwise_other_frame)
|
||
|
if pairwise_frames.columns.is_unique
|
||
|
else None
|
||
|
)
|
||
|
if result is not None:
|
||
|
with warnings.catch_warnings(record=True):
|
||
|
warnings.simplefilter("ignore", RuntimeWarning)
|
||
|
# we can have int and str columns
|
||
|
expected_index = pairwise_frames.index.union(pairwise_other_frame.index)
|
||
|
expected_columns = pairwise_frames.columns.union(
|
||
|
pairwise_other_frame.columns
|
||
|
)
|
||
|
tm.assert_index_equal(result.index, expected_index)
|
||
|
tm.assert_index_equal(result.columns, expected_columns)
|
||
|
else:
|
||
|
with pytest.raises(ValueError, match="'arg1' columns are not unique"):
|
||
|
f(pairwise_frames, pairwise_other_frame)
|
||
|
with pytest.raises(ValueError, match="'arg2' columns are not unique"):
|
||
|
f(pairwise_other_frame, pairwise_frames)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"f",
|
||
|
[
|
||
|
lambda x, y: x.expanding().cov(y),
|
||
|
lambda x, y: x.expanding().corr(y),
|
||
|
lambda x, y: x.rolling(window=3).cov(y),
|
||
|
lambda x, y: x.rolling(window=3).corr(y),
|
||
|
lambda x, y: x.ewm(com=3).cov(y),
|
||
|
lambda x, y: x.ewm(com=3).corr(y),
|
||
|
],
|
||
|
)
|
||
|
def test_pairwise_with_series(self, pairwise_frames, pairwise_target_frame, f):
|
||
|
|
||
|
# DataFrame with a Series
|
||
|
result = f(pairwise_frames, Series([1, 1, 3, 8]))
|
||
|
tm.assert_index_equal(result.index, pairwise_frames.index)
|
||
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
||
|
expected = f(pairwise_target_frame, Series([1, 1, 3, 8]))
|
||
|
# since we have sorted the results
|
||
|
# we can only compare non-nans
|
||
|
result = result.dropna().values
|
||
|
expected = expected.dropna().values
|
||
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
||
|
|
||
|
result = f(Series([1, 1, 3, 8]), pairwise_frames)
|
||
|
tm.assert_index_equal(result.index, pairwise_frames.index)
|
||
|
tm.assert_index_equal(result.columns, pairwise_frames.columns)
|
||
|
expected = f(Series([1, 1, 3, 8]), pairwise_target_frame)
|
||
|
# since we have sorted the results
|
||
|
# we can only compare non-nans
|
||
|
result = result.dropna().values
|
||
|
expected = expected.dropna().values
|
||
|
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
|
||
|
|
||
|
def test_corr_freq_memory_error(self):
|
||
|
# GH 31789
|
||
|
s = Series(range(5), index=date_range("2020", periods=5))
|
||
|
result = s.rolling("12H").corr(s)
|
||
|
expected = Series([np.nan] * 5, index=date_range("2020", periods=5))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_cov_mulittindex(self):
|
||
|
# GH 34440
|
||
|
|
||
|
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
|
||
|
index = range(3)
|
||
|
df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns)
|
||
|
|
||
|
result = df.ewm(alpha=0.1).cov()
|
||
|
|
||
|
index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")])
|
||
|
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
|
||
|
expected = DataFrame(
|
||
|
np.vstack(
|
||
|
(
|
||
|
np.full((8, 8), np.NaN),
|
||
|
np.full((8, 8), 32.000000),
|
||
|
np.full((8, 8), 63.881919),
|
||
|
)
|
||
|
),
|
||
|
index=index,
|
||
|
columns=columns,
|
||
|
)
|
||
|
|
||
|
tm.assert_frame_equal(result, expected)
|