mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-11-30 18:54:18 +01:00
184 lines
5.1 KiB
Python
184 lines
5.1 KiB
Python
|
""" common utilities """
|
||
|
import itertools
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas import DataFrame, Float64Index, MultiIndex, Series, UInt64Index, date_range
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
def _mklbl(prefix, n):
|
||
|
return [f"{prefix}{i}" for i in range(n)]
|
||
|
|
||
|
|
||
|
def _axify(obj, key, axis):
|
||
|
# create a tuple accessor
|
||
|
axes = [slice(None)] * obj.ndim
|
||
|
axes[axis] = key
|
||
|
return tuple(axes)
|
||
|
|
||
|
|
||
|
class Base:
|
||
|
""" indexing comprehensive base class """
|
||
|
|
||
|
_kinds = {"series", "frame"}
|
||
|
_typs = {
|
||
|
"ints",
|
||
|
"uints",
|
||
|
"labels",
|
||
|
"mixed",
|
||
|
"ts",
|
||
|
"floats",
|
||
|
"empty",
|
||
|
"ts_rev",
|
||
|
"multi",
|
||
|
}
|
||
|
|
||
|
def setup_method(self, method):
|
||
|
|
||
|
self.series_ints = Series(np.random.rand(4), index=np.arange(0, 8, 2))
|
||
|
self.frame_ints = DataFrame(
|
||
|
np.random.randn(4, 4), index=np.arange(0, 8, 2), columns=np.arange(0, 12, 3)
|
||
|
)
|
||
|
|
||
|
self.series_uints = Series(
|
||
|
np.random.rand(4), index=UInt64Index(np.arange(0, 8, 2))
|
||
|
)
|
||
|
self.frame_uints = DataFrame(
|
||
|
np.random.randn(4, 4),
|
||
|
index=UInt64Index(range(0, 8, 2)),
|
||
|
columns=UInt64Index(range(0, 12, 3)),
|
||
|
)
|
||
|
|
||
|
self.series_floats = Series(
|
||
|
np.random.rand(4), index=Float64Index(range(0, 8, 2))
|
||
|
)
|
||
|
self.frame_floats = DataFrame(
|
||
|
np.random.randn(4, 4),
|
||
|
index=Float64Index(range(0, 8, 2)),
|
||
|
columns=Float64Index(range(0, 12, 3)),
|
||
|
)
|
||
|
|
||
|
m_idces = [
|
||
|
MultiIndex.from_product([[1, 2], [3, 4]]),
|
||
|
MultiIndex.from_product([[5, 6], [7, 8]]),
|
||
|
MultiIndex.from_product([[9, 10], [11, 12]]),
|
||
|
]
|
||
|
|
||
|
self.series_multi = Series(np.random.rand(4), index=m_idces[0])
|
||
|
self.frame_multi = DataFrame(
|
||
|
np.random.randn(4, 4), index=m_idces[0], columns=m_idces[1]
|
||
|
)
|
||
|
|
||
|
self.series_labels = Series(np.random.randn(4), index=list("abcd"))
|
||
|
self.frame_labels = DataFrame(
|
||
|
np.random.randn(4, 4), index=list("abcd"), columns=list("ABCD")
|
||
|
)
|
||
|
|
||
|
self.series_mixed = Series(np.random.randn(4), index=[2, 4, "null", 8])
|
||
|
self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, "null", 8])
|
||
|
|
||
|
self.series_ts = Series(
|
||
|
np.random.randn(4), index=date_range("20130101", periods=4)
|
||
|
)
|
||
|
self.frame_ts = DataFrame(
|
||
|
np.random.randn(4, 4), index=date_range("20130101", periods=4)
|
||
|
)
|
||
|
|
||
|
dates_rev = date_range("20130101", periods=4).sort_values(ascending=False)
|
||
|
self.series_ts_rev = Series(np.random.randn(4), index=dates_rev)
|
||
|
self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev)
|
||
|
|
||
|
self.frame_empty = DataFrame()
|
||
|
self.series_empty = Series(dtype=object)
|
||
|
|
||
|
# form agglomerates
|
||
|
for kind in self._kinds:
|
||
|
d = dict()
|
||
|
for typ in self._typs:
|
||
|
d[typ] = getattr(self, f"{kind}_{typ}")
|
||
|
|
||
|
setattr(self, kind, d)
|
||
|
|
||
|
def generate_indices(self, f, values=False):
|
||
|
"""
|
||
|
generate the indices
|
||
|
if values is True , use the axis values
|
||
|
is False, use the range
|
||
|
"""
|
||
|
axes = f.axes
|
||
|
if values:
|
||
|
axes = (list(range(len(ax))) for ax in axes)
|
||
|
|
||
|
return itertools.product(*axes)
|
||
|
|
||
|
def get_value(self, name, f, i, values=False):
|
||
|
""" return the value for the location i """
|
||
|
# check against values
|
||
|
if values:
|
||
|
return f.values[i]
|
||
|
|
||
|
elif name == "iat":
|
||
|
return f.iloc[i]
|
||
|
else:
|
||
|
assert name == "at"
|
||
|
return f.loc[i]
|
||
|
|
||
|
def check_values(self, f, func, values=False):
|
||
|
|
||
|
if f is None:
|
||
|
return
|
||
|
axes = f.axes
|
||
|
indicies = itertools.product(*axes)
|
||
|
|
||
|
for i in indicies:
|
||
|
result = getattr(f, func)[i]
|
||
|
|
||
|
# check against values
|
||
|
if values:
|
||
|
expected = f.values[i]
|
||
|
else:
|
||
|
expected = f
|
||
|
for a in reversed(i):
|
||
|
expected = expected.__getitem__(a)
|
||
|
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def check_result(
|
||
|
self, method, key, typs=None, axes=None, fails=None,
|
||
|
):
|
||
|
def _eq(axis, obj, key):
|
||
|
""" compare equal for these 2 keys """
|
||
|
axified = _axify(obj, key, axis)
|
||
|
try:
|
||
|
getattr(obj, method).__getitem__(axified)
|
||
|
|
||
|
except (IndexError, TypeError, KeyError) as detail:
|
||
|
|
||
|
# if we are in fails, the ok, otherwise raise it
|
||
|
if fails is not None:
|
||
|
if isinstance(detail, fails):
|
||
|
return
|
||
|
raise
|
||
|
|
||
|
if typs is None:
|
||
|
typs = self._typs
|
||
|
|
||
|
if axes is None:
|
||
|
axes = [0, 1]
|
||
|
else:
|
||
|
assert axes in [0, 1]
|
||
|
axes = [axes]
|
||
|
|
||
|
# check
|
||
|
for kind in self._kinds:
|
||
|
|
||
|
d = getattr(self, kind)
|
||
|
for ax in axes:
|
||
|
for typ in typs:
|
||
|
assert typ in self._typs
|
||
|
|
||
|
obj = d[typ]
|
||
|
if ax < obj.ndim:
|
||
|
_eq(axis=ax, obj=obj, key=key)
|