craftbeerpi4-pione/venv3/lib/python3.7/site-packages/pandas/tests/series/test_period.py

116 lines
3.8 KiB
Python
Raw Normal View History

2021-03-03 23:49:41 +01:00
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Period, Series, period_range
import pandas._testing as tm
from pandas.core.arrays import PeriodArray
class TestSeriesPeriod:
def setup_method(self, method):
self.series = Series(period_range("2000-01-01", periods=10, freq="D"))
def test_auto_conversion(self):
series = Series(list(period_range("2000-01-01", periods=10, freq="D")))
assert series.dtype == "Period[D]"
series = pd.Series(
[pd.Period("2011-01-01", freq="D"), pd.Period("2011-02-01", freq="D")]
)
assert series.dtype == "Period[D]"
def test_isna(self):
# GH 13737
s = Series([pd.Period("2011-01", freq="M"), pd.Period("NaT", freq="M")])
tm.assert_series_equal(s.isna(), Series([False, True]))
tm.assert_series_equal(s.notna(), Series([True, False]))
def test_dropna(self):
# GH 13737
s = Series([pd.Period("2011-01", freq="M"), pd.Period("NaT", freq="M")])
tm.assert_series_equal(s.dropna(), Series([pd.Period("2011-01", freq="M")]))
# ---------------------------------------------------------------------
# NaT support
@pytest.mark.xfail(reason="PeriodDtype Series not supported yet")
def test_NaT_scalar(self):
series = Series([0, 1000, 2000, pd._libs.iNaT], dtype="period[D]")
val = series[3]
assert pd.isna(val)
series[2] = val
assert pd.isna(series[2])
def test_NaT_cast(self):
result = Series([np.nan]).astype("period[D]")
expected = Series([pd.NaT], dtype="period[D]")
tm.assert_series_equal(result, expected)
def test_set_none(self):
self.series[3] = None
assert self.series[3] is pd.NaT
self.series[3:5] = None
assert self.series[4] is pd.NaT
def test_set_nan(self):
# Do we want to allow this?
self.series[5] = np.nan
assert self.series[5] is pd.NaT
self.series[5:7] = np.nan
assert self.series[6] is pd.NaT
def test_intercept_astype_object(self):
expected = self.series.astype("object")
df = DataFrame({"a": self.series, "b": np.random.randn(len(self.series))})
result = df.values.squeeze()
assert (result[:, 0] == expected.values).all()
df = DataFrame({"a": self.series, "b": ["foo"] * len(self.series)})
result = df.values.squeeze()
assert (result[:, 0] == expected.values).all()
@pytest.mark.parametrize(
"input_vals",
[
[Period("2016-01", freq="M"), Period("2016-02", freq="M")],
[Period("2016-01-01", freq="D"), Period("2016-01-02", freq="D")],
[
Period("2016-01-01 00:00:00", freq="H"),
Period("2016-01-01 01:00:00", freq="H"),
],
[
Period("2016-01-01 00:00:00", freq="M"),
Period("2016-01-01 00:01:00", freq="M"),
],
[
Period("2016-01-01 00:00:00", freq="S"),
Period("2016-01-01 00:00:01", freq="S"),
],
],
)
def test_end_time_timevalues(self, input_vals):
# GH 17157
# Check that the time part of the Period is adjusted by end_time
# when using the dt accessor on a Series
input_vals = PeriodArray._from_sequence(np.asarray(input_vals))
s = Series(input_vals)
result = s.dt.end_time
expected = s.apply(lambda x: x.end_time)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("input_vals", [("2001"), ("NaT")])
def test_to_period(self, input_vals):
# GH 21205
expected = Series([input_vals], dtype="Period[D]")
result = Series([input_vals], dtype="datetime64[ns]").dt.to_period("D")
tm.assert_series_equal(result, expected)