craftbeerpi4-pione/venv3/lib/python3.7/site-packages/pandas/tests/groupby/test_function.py

1052 lines
32 KiB
Python
Raw Normal View History

2021-03-03 23:49:41 +01:00
import builtins
from io import StringIO
import numpy as np
import pytest
from pandas.errors import UnsupportedFunctionCall
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna
import pandas._testing as tm
import pandas.core.nanops as nanops
from pandas.util import _test_decorators as td
@pytest.fixture(
params=[np.int32, np.int64, np.float32, np.float64],
ids=["np.int32", "np.int64", "np.float32", "np.float64"],
)
def numpy_dtypes_for_minmax(request):
"""
Fixture of numpy dtypes with min and max values used for testing
cummin and cummax
"""
dtype = request.param
min_val = (
np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min
)
max_val = (
np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max
)
return (dtype, min_val, max_val)
@pytest.mark.parametrize("agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize(
"vals",
[
["foo", "bar", "baz"],
["foo", "", ""],
["", "", ""],
[1, 2, 3],
[1, 0, 0],
[0, 0, 0],
[1.0, 2.0, 3.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[True, True, True],
[True, False, False],
[False, False, False],
[np.nan, np.nan, np.nan],
],
)
def test_groupby_bool_aggs(agg_func, skipna, vals):
df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2})
# Figure out expectation using Python builtin
exp = getattr(builtins, agg_func)(vals)
# edge case for missing data with skipna and 'any'
if skipna and all(isna(vals)) and agg_func == "any":
exp = False
exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key"))
result = getattr(df.groupby("key"), agg_func)(skipna=skipna)
tm.assert_frame_equal(result, exp_df)
def test_max_min_non_numeric():
# #2700
aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]})
result = aa.groupby("nn").max()
assert "ss" in result
result = aa.groupby("nn").max(numeric_only=False)
assert "ss" in result
result = aa.groupby("nn").min()
assert "ss" in result
result = aa.groupby("nn").min(numeric_only=False)
assert "ss" in result
def test_min_date_with_nans():
# GH26321
dates = pd.to_datetime(
pd.Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d"
).dt.date
df = pd.DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates})
result = df.groupby("b", as_index=False)["c"].min()["c"]
expected = pd.to_datetime(
pd.Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d"
).dt.date
tm.assert_series_equal(result, expected)
result = df.groupby("b")["c"].min()
expected.index.name = "b"
tm.assert_series_equal(result, expected)
def test_intercept_builtin_sum():
s = Series([1.0, 2.0, np.nan, 3.0])
grouped = s.groupby([0, 1, 2, 2])
result = grouped.agg(builtins.sum)
result2 = grouped.apply(builtins.sum)
expected = grouped.sum()
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
# @pytest.mark.parametrize("f", [max, min, sum])
# def test_builtins_apply(f):
@pytest.mark.parametrize("f", [max, min, sum])
@pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key
def test_builtins_apply(keys, f):
# see gh-8155
df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"])
df["jolie"] = np.random.randn(1000)
fname = f.__name__
result = df.groupby(keys).apply(f)
ngroups = len(df.drop_duplicates(subset=keys))
assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))"
assert result.shape == (ngroups, 3), assert_msg
tm.assert_frame_equal(
result, # numpy's equivalent function
df.groupby(keys).apply(getattr(np, fname)),
)
if f != sum:
expected = df.groupby(keys).agg(fname).reset_index()
expected.set_index(keys, inplace=True, drop=False)
tm.assert_frame_equal(result, expected, check_dtype=False)
tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)())
def test_arg_passthru():
# make sure that we are passing thru kwargs
# to our agg functions
# GH3668
# GH5724
df = pd.DataFrame(
{
"group": [1, 1, 2],
"int": [1, 2, 3],
"float": [4.0, 5.0, 6.0],
"string": list("abc"),
"category_string": pd.Series(list("abc")).astype("category"),
"category_int": [7, 8, 9],
"datetime": pd.date_range("20130101", periods=3),
"datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"),
"timedelta": pd.timedelta_range("1 s", periods=3, freq="s"),
},
columns=[
"group",
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
],
)
expected_columns_numeric = Index(["int", "float", "category_int"])
# mean / median
expected = pd.DataFrame(
{
"category_int": [7.5, 9],
"float": [4.5, 6.0],
"timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")],
"int": [1.5, 3],
"datetime": [
pd.Timestamp("2013-01-01 12:00:00"),
pd.Timestamp("2013-01-03 00:00:00"),
],
"datetimetz": [
pd.Timestamp("2013-01-01 12:00:00", tz="US/Eastern"),
pd.Timestamp("2013-01-03 00:00:00", tz="US/Eastern"),
],
},
index=Index([1, 2], name="group"),
columns=["int", "float", "category_int", "datetime", "datetimetz", "timedelta"],
)
for attr in ["mean", "median"]:
result = getattr(df.groupby("group"), attr)()
tm.assert_index_equal(result.columns, expected_columns_numeric)
result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_frame_equal(result.reindex_like(expected), expected)
# TODO: min, max *should* handle
# categorical (ordered) dtype
expected_columns = Index(
[
"int",
"float",
"string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
for attr in ["min", "max"]:
result = getattr(df.groupby("group"), attr)()
tm.assert_index_equal(result.columns, expected_columns)
result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
expected_columns = Index(
[
"int",
"float",
"string",
"category_string",
"category_int",
"datetime",
"datetimetz",
"timedelta",
]
)
for attr in ["first", "last"]:
result = getattr(df.groupby("group"), attr)()
tm.assert_index_equal(result.columns, expected_columns)
result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
expected_columns = Index(["int", "float", "string", "category_int", "timedelta"])
result = df.groupby("group").sum()
tm.assert_index_equal(result.columns, expected_columns_numeric)
result = df.groupby("group").sum(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
expected_columns = Index(["int", "float", "category_int"])
for attr in ["prod", "cumprod"]:
result = getattr(df.groupby("group"), attr)()
tm.assert_index_equal(result.columns, expected_columns_numeric)
result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
# like min, max, but don't include strings
expected_columns = Index(
["int", "float", "category_int", "datetime", "datetimetz", "timedelta"]
)
for attr in ["cummin", "cummax"]:
result = getattr(df.groupby("group"), attr)()
# GH 15561: numeric_only=False set by default like min/max
tm.assert_index_equal(result.columns, expected_columns)
result = getattr(df.groupby("group"), attr)(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
expected_columns = Index(["int", "float", "category_int", "timedelta"])
result = getattr(df.groupby("group"), "cumsum")()
tm.assert_index_equal(result.columns, expected_columns_numeric)
result = getattr(df.groupby("group"), "cumsum")(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
def test_non_cython_api():
# GH5610
# non-cython calls should not include the grouper
df = DataFrame(
[[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]], columns=["A", "B", "C"]
)
g = df.groupby("A")
gni = df.groupby("A", as_index=False)
# mad
expected = DataFrame([[0], [np.nan]], columns=["B"], index=[1, 3])
expected.index.name = "A"
result = g.mad()
tm.assert_frame_equal(result, expected)
expected = DataFrame([[1, 0.0], [3, np.nan]], columns=["A", "B"], index=[0, 1])
result = gni.mad()
tm.assert_frame_equal(result, expected)
# describe
expected_index = pd.Index([1, 3], name="A")
expected_col = pd.MultiIndex(
levels=[["B"], ["count", "mean", "std", "min", "25%", "50%", "75%", "max"]],
codes=[[0] * 8, list(range(8))],
)
expected = pd.DataFrame(
[
[1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0],
[0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan],
],
index=expected_index,
columns=expected_col,
)
result = g.describe()
tm.assert_frame_equal(result, expected)
expected = pd.concat(
[
df[df.A == 1].describe().unstack().to_frame().T,
df[df.A == 3].describe().unstack().to_frame().T,
]
)
expected.index = pd.Index([0, 1])
result = gni.describe()
tm.assert_frame_equal(result, expected)
# any
expected = DataFrame(
[[True, True], [False, True]], columns=["B", "C"], index=[1, 3]
)
expected.index.name = "A"
result = g.any()
tm.assert_frame_equal(result, expected)
# idxmax
expected = DataFrame([[0.0], [np.nan]], columns=["B"], index=[1, 3])
expected.index.name = "A"
result = g.idxmax()
tm.assert_frame_equal(result, expected)
def test_cython_api2():
# this takes the fast apply path
# cumsum (GH5614)
df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"])
expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"])
result = df.groupby("A").cumsum()
tm.assert_frame_equal(result, expected)
# GH 5755 - cumsum is a transformer and should ignore as_index
result = df.groupby("A", as_index=False).cumsum()
tm.assert_frame_equal(result, expected)
# GH 13994
result = df.groupby("A").cumsum(axis=1)
expected = df.cumsum(axis=1)
tm.assert_frame_equal(result, expected)
result = df.groupby("A").cumprod(axis=1)
expected = df.cumprod(axis=1)
tm.assert_frame_equal(result, expected)
def test_cython_median():
df = DataFrame(np.random.randn(1000))
df.values[::2] = np.nan
labels = np.random.randint(0, 50, size=1000).astype(float)
labels[::17] = np.nan
result = df.groupby(labels).median()
exp = df.groupby(labels).agg(nanops.nanmedian)
tm.assert_frame_equal(result, exp)
df = DataFrame(np.random.randn(1000, 5))
rs = df.groupby(labels).agg(np.median)
xp = df.groupby(labels).median()
tm.assert_frame_equal(rs, xp)
def test_median_empty_bins(observed):
df = pd.DataFrame(np.random.randint(0, 44, 500))
grps = range(0, 55, 5)
bins = pd.cut(df[0], grps)
result = df.groupby(bins, observed=observed).median()
expected = df.groupby(bins, observed=observed).agg(lambda x: x.median())
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"]
)
@pytest.mark.parametrize(
"method,data",
[
("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}),
("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}),
("nth", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}], "args": [1]}),
("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}),
],
)
def test_groupby_non_arithmetic_agg_types(dtype, method, data):
# GH9311, GH6620
df = pd.DataFrame(
[{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}]
)
df["b"] = df.b.astype(dtype)
if "args" not in data:
data["args"] = []
if "out_type" in data:
out_type = data["out_type"]
else:
out_type = dtype
exp = data["df"]
df_out = pd.DataFrame(exp)
df_out["b"] = df_out.b.astype(out_type)
df_out.set_index("a", inplace=True)
grpd = df.groupby("a")
t = getattr(grpd, method)(*data["args"])
tm.assert_frame_equal(t, df_out)
@pytest.mark.parametrize(
"i",
[
(
Timestamp("2011-01-15 12:50:28.502376"),
Timestamp("2011-01-20 12:50:28.593448"),
),
(24650000000000001, 24650000000000002),
],
)
def test_groupby_non_arithmetic_agg_int_like_precision(i):
# see gh-6620, gh-9311
df = pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}])
grp_exp = {
"first": {"expected": i[0]},
"last": {"expected": i[1]},
"min": {"expected": i[0]},
"max": {"expected": i[1]},
"nth": {"expected": i[1], "args": [1]},
"count": {"expected": 2},
}
for method, data in grp_exp.items():
if "args" not in data:
data["args"] = []
grouped = df.groupby("a")
res = getattr(grouped, method)(*data["args"])
assert res.iloc[0].b == data["expected"]
@pytest.mark.parametrize(
"func, values",
[
("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}),
("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}),
],
)
def test_idxmin_idxmax_returns_int_types(func, values):
# GH 25444
df = pd.DataFrame(
{
"name": ["A", "A", "B", "B"],
"c_int": [1, 2, 3, 4],
"c_float": [4.02, 3.03, 2.04, 1.05],
"c_date": ["2019", "2018", "2016", "2017"],
}
)
df["c_date"] = pd.to_datetime(df["c_date"])
result = getattr(df.groupby("name"), func)()
expected = pd.DataFrame(values, index=Index(["A", "B"], name="name"))
tm.assert_frame_equal(result, expected)
def test_fill_consistency():
# GH9221
# pass thru keyword arguments to the generated wrapper
# are set if the passed kw is None (only)
df = DataFrame(
index=pd.MultiIndex.from_product(
[["value1", "value2"], date_range("2014-01-01", "2014-01-06")]
),
columns=Index(["1", "2"], name="id"),
)
df["1"] = [
np.nan,
1,
np.nan,
np.nan,
11,
np.nan,
np.nan,
2,
np.nan,
np.nan,
22,
np.nan,
]
df["2"] = [
np.nan,
3,
np.nan,
np.nan,
33,
np.nan,
np.nan,
4,
np.nan,
np.nan,
44,
np.nan,
]
expected = df.groupby(level=0, axis=0).fillna(method="ffill")
result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T
tm.assert_frame_equal(result, expected)
def test_groupby_cumprod():
# GH 4095
df = pd.DataFrame({"key": ["b"] * 10, "value": 2})
actual = df.groupby("key")["value"].cumprod()
expected = df.groupby("key")["value"].apply(lambda x: x.cumprod())
expected.name = "value"
tm.assert_series_equal(actual, expected)
df = pd.DataFrame({"key": ["b"] * 100, "value": 2})
actual = df.groupby("key")["value"].cumprod()
# if overflows, groupby product casts to float
# while numpy passes back invalid values
df["value"] = df["value"].astype(float)
expected = df.groupby("key")["value"].apply(lambda x: x.cumprod())
expected.name = "value"
tm.assert_series_equal(actual, expected)
def scipy_sem(*args, **kwargs):
from scipy.stats import sem
return sem(*args, ddof=1, **kwargs)
@pytest.mark.parametrize(
"op,targop",
[
("mean", np.mean),
("median", np.median),
("std", np.std),
("var", np.var),
("sum", np.sum),
("prod", np.prod),
("min", np.min),
("max", np.max),
("first", lambda x: x.iloc[0]),
("last", lambda x: x.iloc[-1]),
("count", np.size),
pytest.param("sem", scipy_sem, marks=td.skip_if_no_scipy),
],
)
def test_ops_general(op, targop):
df = DataFrame(np.random.randn(1000))
labels = np.random.randint(0, 50, size=1000).astype(float)
result = getattr(df.groupby(labels), op)().astype(float)
expected = df.groupby(labels).agg(targop)
tm.assert_frame_equal(result, expected)
def test_max_nan_bug():
raw = """,Date,app,File
-04-23,2013-04-23 00:00:00,,log080001.log
-05-06,2013-05-06 00:00:00,,log.log
-05-07,2013-05-07 00:00:00,OE,xlsx"""
df = pd.read_csv(StringIO(raw), parse_dates=[0])
gb = df.groupby("Date")
r = gb[["File"]].max()
e = gb["File"].max().to_frame()
tm.assert_frame_equal(r, e)
assert not r["File"].isna().any()
def test_nlargest():
a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10])
b = Series(list("a" * 5 + "b" * 5))
gb = a.groupby(b)
r = gb.nlargest(3)
e = Series(
[7, 5, 3, 10, 9, 6],
index=MultiIndex.from_arrays([list("aaabbb"), [3, 2, 1, 9, 5, 8]]),
)
tm.assert_series_equal(r, e)
a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0])
gb = a.groupby(b)
e = Series(
[3, 2, 1, 3, 3, 2],
index=MultiIndex.from_arrays([list("aaabbb"), [2, 3, 1, 6, 5, 7]]),
)
tm.assert_series_equal(gb.nlargest(3, keep="last"), e)
def test_nlargest_mi_grouper():
# see gh-21411
npr = np.random.RandomState(123456789)
dts = date_range("20180101", periods=10)
iterables = [dts, ["one", "two"]]
idx = MultiIndex.from_product(iterables, names=["first", "second"])
s = Series(npr.randn(20), index=idx)
result = s.groupby("first").nlargest(1)
exp_idx = MultiIndex.from_tuples(
[
(dts[0], dts[0], "one"),
(dts[1], dts[1], "one"),
(dts[2], dts[2], "one"),
(dts[3], dts[3], "two"),
(dts[4], dts[4], "one"),
(dts[5], dts[5], "one"),
(dts[6], dts[6], "one"),
(dts[7], dts[7], "one"),
(dts[8], dts[8], "two"),
(dts[9], dts[9], "one"),
],
names=["first", "first", "second"],
)
exp_values = [
2.2129019979039612,
1.8417114045748335,
0.858963679564603,
1.3759151378258088,
0.9430284594687134,
0.5296914208183142,
0.8318045593815487,
-0.8476703342910327,
0.3804446884133735,
-0.8028845810770998,
]
expected = Series(exp_values, index=exp_idx)
tm.assert_series_equal(result, expected, check_exact=False, rtol=1e-3)
def test_nsmallest():
a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10])
b = Series(list("a" * 5 + "b" * 5))
gb = a.groupby(b)
r = gb.nsmallest(3)
e = Series(
[1, 2, 3, 0, 4, 6],
index=MultiIndex.from_arrays([list("aaabbb"), [0, 4, 1, 6, 7, 8]]),
)
tm.assert_series_equal(r, e)
a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0])
gb = a.groupby(b)
e = Series(
[0, 1, 1, 0, 1, 2],
index=MultiIndex.from_arrays([list("aaabbb"), [4, 1, 0, 9, 8, 7]]),
)
tm.assert_series_equal(gb.nsmallest(3, keep="last"), e)
@pytest.mark.parametrize("func", ["cumprod", "cumsum"])
def test_numpy_compat(func):
# see gh-12811
df = pd.DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]})
g = df.groupby("A")
msg = "numpy operations are not valid with groupby"
with pytest.raises(UnsupportedFunctionCall, match=msg):
getattr(g, func)(1, 2, 3)
with pytest.raises(UnsupportedFunctionCall, match=msg):
getattr(g, func)(foo=1)
def test_cummin(numpy_dtypes_for_minmax):
dtype = numpy_dtypes_for_minmax[0]
min_val = numpy_dtypes_for_minmax[1]
# GH 15048
base_df = pd.DataFrame(
{"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]}
)
expected_mins = [3, 3, 3, 2, 2, 2, 2, 1]
df = base_df.astype(dtype)
expected = pd.DataFrame({"B": expected_mins}).astype(dtype)
result = df.groupby("A").cummin()
tm.assert_frame_equal(result, expected)
result = df.groupby("A").B.apply(lambda x: x.cummin()).to_frame()
tm.assert_frame_equal(result, expected)
# Test w/ min value for dtype
df.loc[[2, 6], "B"] = min_val
expected.loc[[2, 3, 6, 7], "B"] = min_val
result = df.groupby("A").cummin()
tm.assert_frame_equal(result, expected)
expected = df.groupby("A").B.apply(lambda x: x.cummin()).to_frame()
tm.assert_frame_equal(result, expected)
# Test nan in some values
base_df.loc[[0, 2, 4, 6], "B"] = np.nan
expected = pd.DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]})
result = base_df.groupby("A").cummin()
tm.assert_frame_equal(result, expected)
expected = base_df.groupby("A").B.apply(lambda x: x.cummin()).to_frame()
tm.assert_frame_equal(result, expected)
# GH 15561
df = pd.DataFrame(dict(a=[1], b=pd.to_datetime(["2001"])))
expected = pd.Series(pd.to_datetime("2001"), index=[0], name="b")
result = df.groupby("a")["b"].cummin()
tm.assert_series_equal(expected, result)
# GH 15635
df = pd.DataFrame(dict(a=[1, 2, 1], b=[1, 2, 2]))
result = df.groupby("a").b.cummin()
expected = pd.Series([1, 2, 1], name="b")
tm.assert_series_equal(result, expected)
def test_cummin_all_nan_column():
base_df = pd.DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8})
expected = pd.DataFrame({"B": [np.nan] * 8})
result = base_df.groupby("A").cummin()
tm.assert_frame_equal(expected, result)
result = base_df.groupby("A").B.apply(lambda x: x.cummin()).to_frame()
tm.assert_frame_equal(expected, result)
def test_cummax(numpy_dtypes_for_minmax):
dtype = numpy_dtypes_for_minmax[0]
max_val = numpy_dtypes_for_minmax[2]
# GH 15048
base_df = pd.DataFrame(
{"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]}
)
expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3]
df = base_df.astype(dtype)
expected = pd.DataFrame({"B": expected_maxs}).astype(dtype)
result = df.groupby("A").cummax()
tm.assert_frame_equal(result, expected)
result = df.groupby("A").B.apply(lambda x: x.cummax()).to_frame()
tm.assert_frame_equal(result, expected)
# Test w/ max value for dtype
df.loc[[2, 6], "B"] = max_val
expected.loc[[2, 3, 6, 7], "B"] = max_val
result = df.groupby("A").cummax()
tm.assert_frame_equal(result, expected)
expected = df.groupby("A").B.apply(lambda x: x.cummax()).to_frame()
tm.assert_frame_equal(result, expected)
# Test nan in some values
base_df.loc[[0, 2, 4, 6], "B"] = np.nan
expected = pd.DataFrame({"B": [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]})
result = base_df.groupby("A").cummax()
tm.assert_frame_equal(result, expected)
expected = base_df.groupby("A").B.apply(lambda x: x.cummax()).to_frame()
tm.assert_frame_equal(result, expected)
# GH 15561
df = pd.DataFrame(dict(a=[1], b=pd.to_datetime(["2001"])))
expected = pd.Series(pd.to_datetime("2001"), index=[0], name="b")
result = df.groupby("a")["b"].cummax()
tm.assert_series_equal(expected, result)
# GH 15635
df = pd.DataFrame(dict(a=[1, 2, 1], b=[2, 1, 1]))
result = df.groupby("a").b.cummax()
expected = pd.Series([2, 1, 2], name="b")
tm.assert_series_equal(result, expected)
def test_cummax_all_nan_column():
base_df = pd.DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8})
expected = pd.DataFrame({"B": [np.nan] * 8})
result = base_df.groupby("A").cummax()
tm.assert_frame_equal(expected, result)
result = base_df.groupby("A").B.apply(lambda x: x.cummax()).to_frame()
tm.assert_frame_equal(expected, result)
@pytest.mark.parametrize(
"in_vals, out_vals",
[
# Basics: strictly increasing (T), strictly decreasing (F),
# abs val increasing (F), non-strictly increasing (T)
([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]),
# Test with inf vals
(
[1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf],
[True, False, True, False],
),
# Test with nan vals; should always be False
(
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan],
[False, False, False, False],
),
],
)
def test_is_monotonic_increasing(in_vals, out_vals):
# GH 17015
source_dict = {
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"],
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"],
"C": in_vals,
}
df = pd.DataFrame(source_dict)
result = df.groupby("B").C.is_monotonic_increasing
index = Index(list("abcd"), name="B")
expected = pd.Series(index=index, data=out_vals, name="C")
tm.assert_series_equal(result, expected)
# Also check result equal to manually taking x.is_monotonic_increasing.
expected = df.groupby(["B"]).C.apply(lambda x: x.is_monotonic_increasing)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"in_vals, out_vals",
[
# Basics: strictly decreasing (T), strictly increasing (F),
# abs val decreasing (F), non-strictly increasing (T)
([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]),
# Test with inf vals
(
[np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf],
[True, True, False, True],
),
# Test with nan vals; should always be False
(
[1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan],
[False, False, False, False],
),
],
)
def test_is_monotonic_decreasing(in_vals, out_vals):
# GH 17015
source_dict = {
"A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"],
"B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"],
"C": in_vals,
}
df = pd.DataFrame(source_dict)
result = df.groupby("B").C.is_monotonic_decreasing
index = Index(list("abcd"), name="B")
expected = pd.Series(index=index, data=out_vals, name="C")
tm.assert_series_equal(result, expected)
# describe
# --------------------------------
def test_apply_describe_bug(mframe):
grouped = mframe.groupby(level="first")
grouped.describe() # it works!
def test_series_describe_multikey():
ts = tm.makeTimeSeries()
grouped = ts.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.describe()
tm.assert_series_equal(result["mean"], grouped.mean(), check_names=False)
tm.assert_series_equal(result["std"], grouped.std(), check_names=False)
tm.assert_series_equal(result["min"], grouped.min(), check_names=False)
def test_series_describe_single():
ts = tm.makeTimeSeries()
grouped = ts.groupby(lambda x: x.month)
result = grouped.apply(lambda x: x.describe())
expected = grouped.describe().stack()
tm.assert_series_equal(result, expected)
def test_series_index_name(df):
grouped = df.loc[:, ["C"]].groupby(df["A"])
result = grouped.agg(lambda x: x.mean())
assert result.index.name == "A"
def test_frame_describe_multikey(tsframe):
grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month])
result = grouped.describe()
desc_groups = []
for col in tsframe:
group = grouped[col].describe()
# GH 17464 - Remove duplicate MultiIndex levels
group_col = pd.MultiIndex(
levels=[[col], group.columns],
codes=[[0] * len(group.columns), range(len(group.columns))],
)
group = pd.DataFrame(group.values, columns=group_col, index=group.index)
desc_groups.append(group)
expected = pd.concat(desc_groups, axis=1)
tm.assert_frame_equal(result, expected)
groupedT = tsframe.groupby({"A": 0, "B": 0, "C": 1, "D": 1}, axis=1)
result = groupedT.describe()
expected = tsframe.describe().T
expected.index = pd.MultiIndex(
levels=[[0, 1], expected.index],
codes=[[0, 0, 1, 1], range(len(expected.index))],
)
tm.assert_frame_equal(result, expected)
def test_frame_describe_tupleindex():
# GH 14848 - regression from 0.19.0 to 0.19.1
df1 = DataFrame(
{
"x": [1, 2, 3, 4, 5] * 3,
"y": [10, 20, 30, 40, 50] * 3,
"z": [100, 200, 300, 400, 500] * 3,
}
)
df1["k"] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5
df2 = df1.rename(columns={"k": "key"})
msg = "Names should be list-like for a MultiIndex"
with pytest.raises(ValueError, match=msg):
df1.groupby("k").describe()
with pytest.raises(ValueError, match=msg):
df2.groupby("key").describe()
def test_frame_describe_unstacked_format():
# GH 4792
prices = {
pd.Timestamp("2011-01-06 10:59:05", tz=None): 24990,
pd.Timestamp("2011-01-06 12:43:33", tz=None): 25499,
pd.Timestamp("2011-01-06 12:54:09", tz=None): 25499,
}
volumes = {
pd.Timestamp("2011-01-06 10:59:05", tz=None): 1500000000,
pd.Timestamp("2011-01-06 12:43:33", tz=None): 5000000000,
pd.Timestamp("2011-01-06 12:54:09", tz=None): 100000000,
}
df = pd.DataFrame({"PRICE": prices, "VOLUME": volumes})
result = df.groupby("PRICE").VOLUME.describe()
data = [
df[df.PRICE == 24990].VOLUME.describe().values.tolist(),
df[df.PRICE == 25499].VOLUME.describe().values.tolist(),
]
expected = pd.DataFrame(
data,
index=pd.Index([24990, 25499], name="PRICE"),
columns=["count", "mean", "std", "min", "25%", "50%", "75%", "max"],
)
tm.assert_frame_equal(result, expected)
def test_groupby_mean_no_overflow():
# Regression test for (#22487)
df = pd.DataFrame(
{
"user": ["A", "A", "A", "A", "A"],
"connections": [4970, 4749, 4719, 4704, 18446744073699999744],
}
)
assert df.groupby("user")["connections"].mean()["A"] == 3689348814740003840
@pytest.mark.parametrize(
"values",
[
{
"a": [1, 1, 1, 2, 2, 2, 3, 3, 3],
"b": [1, pd.NA, 2, 1, pd.NA, 2, 1, pd.NA, 2],
},
{"a": [1, 1, 2, 2, 3, 3], "b": [1, 2, 1, 2, 1, 2]},
],
)
@pytest.mark.parametrize("function", ["mean", "median", "var"])
def test_apply_to_nullable_integer_returns_float(values, function):
# https://github.com/pandas-dev/pandas/issues/32219
output = 0.5 if function == "var" else 1.5
arr = np.array([output] * 3, dtype=float)
idx = pd.Index([1, 2, 3], dtype=object, name="a")
expected = pd.DataFrame({"b": arr}, index=idx)
groups = pd.DataFrame(values, dtype="Int64").groupby("a")
result = getattr(groups, function)()
tm.assert_frame_equal(result, expected)
result = groups.agg(function)
tm.assert_frame_equal(result, expected)
result = groups.agg([function])
expected.columns = MultiIndex.from_tuples([("b", function)])
tm.assert_frame_equal(result, expected)
def test_groupby_sum_below_mincount_nullable_integer():
# https://github.com/pandas-dev/pandas/issues/32861
df = pd.DataFrame({"a": [0, 1, 2], "b": [0, 1, 2], "c": [0, 1, 2]}, dtype="Int64")
grouped = df.groupby("a")
idx = pd.Index([0, 1, 2], dtype=object, name="a")
result = grouped["b"].sum(min_count=2)
expected = pd.Series([pd.NA] * 3, dtype="Int64", index=idx, name="b")
tm.assert_series_equal(result, expected)
result = grouped.sum(min_count=2)
expected = pd.DataFrame(
{"b": [pd.NA] * 3, "c": [pd.NA] * 3}, dtype="Int64", index=idx
)
tm.assert_frame_equal(result, expected)