craftbeerpi4-pione/venv/lib/python3.8/site-packages/astroid/brain/brain_namedtuple_enum.py

456 lines
16 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
# Copyright (c) 2012-2015 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
# Copyright (c) 2013-2014 Google, Inc.
# Copyright (c) 2014-2020 Claudiu Popa <pcmanticore@gmail.com>
# Copyright (c) 2014 Eevee (Alex Munroe) <amunroe@yelp.com>
# Copyright (c) 2015-2016 Ceridwen <ceridwenv@gmail.com>
# Copyright (c) 2015 Dmitry Pribysh <dmand@yandex.ru>
# Copyright (c) 2015 David Shea <dshea@redhat.com>
# Copyright (c) 2015 Philip Lorenz <philip@bithub.de>
# Copyright (c) 2016 Jakub Wilk <jwilk@jwilk.net>
# Copyright (c) 2016 Mateusz Bysiek <mb@mbdev.pl>
# Copyright (c) 2017 Hugo <hugovk@users.noreply.github.com>
# Copyright (c) 2017 Łukasz Rogalski <rogalski.91@gmail.com>
# Copyright (c) 2018 Ville Skyttä <ville.skytta@iki.fi>
# Copyright (c) 2019 Ashley Whetter <ashley@awhetter.co.uk>
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
"""Astroid hooks for the Python standard library."""
import functools
import keyword
from textwrap import dedent
from astroid import MANAGER, UseInferenceDefault, inference_tip, InferenceError
from astroid import arguments
from astroid import exceptions
from astroid import nodes
from astroid.builder import AstroidBuilder, extract_node
from astroid import util
TYPING_NAMEDTUPLE_BASENAMES = {"NamedTuple", "typing.NamedTuple"}
ENUM_BASE_NAMES = {
"Enum",
"IntEnum",
"enum.Enum",
"enum.IntEnum",
"IntFlag",
"enum.IntFlag",
}
def _infer_first(node, context):
if node is util.Uninferable:
raise UseInferenceDefault
try:
value = next(node.infer(context=context))
if value is util.Uninferable:
raise UseInferenceDefault()
else:
return value
except StopIteration:
raise InferenceError()
def _find_func_form_arguments(node, context):
def _extract_namedtuple_arg_or_keyword(position, key_name=None):
if len(args) > position:
return _infer_first(args[position], context)
if key_name and key_name in found_keywords:
return _infer_first(found_keywords[key_name], context)
args = node.args
keywords = node.keywords
found_keywords = (
{keyword.arg: keyword.value for keyword in keywords} if keywords else {}
)
name = _extract_namedtuple_arg_or_keyword(position=0, key_name="typename")
names = _extract_namedtuple_arg_or_keyword(position=1, key_name="field_names")
if name and names:
return name.value, names
raise UseInferenceDefault()
def infer_func_form(node, base_type, context=None, enum=False):
"""Specific inference function for namedtuple or Python 3 enum. """
# node is a Call node, class name as first argument and generated class
# attributes as second argument
# namedtuple or enums list of attributes can be a list of strings or a
# whitespace-separate string
try:
name, names = _find_func_form_arguments(node, context)
try:
attributes = names.value.replace(",", " ").split()
except AttributeError:
if not enum:
attributes = [
_infer_first(const, context).value for const in names.elts
]
else:
# Enums supports either iterator of (name, value) pairs
# or mappings.
if hasattr(names, "items") and isinstance(names.items, list):
attributes = [
_infer_first(const[0], context).value
for const in names.items
if isinstance(const[0], nodes.Const)
]
elif hasattr(names, "elts"):
# Enums can support either ["a", "b", "c"]
# or [("a", 1), ("b", 2), ...], but they can't
# be mixed.
if all(isinstance(const, nodes.Tuple) for const in names.elts):
attributes = [
_infer_first(const.elts[0], context).value
for const in names.elts
if isinstance(const, nodes.Tuple)
]
else:
attributes = [
_infer_first(const, context).value for const in names.elts
]
else:
raise AttributeError
if not attributes:
raise AttributeError
except (AttributeError, exceptions.InferenceError):
raise UseInferenceDefault()
attributes = [attr for attr in attributes if " " not in attr]
# If we can't infer the name of the class, don't crash, up to this point
# we know it is a namedtuple anyway.
name = name or "Uninferable"
# we want to return a Class node instance with proper attributes set
class_node = nodes.ClassDef(name, "docstring")
class_node.parent = node.parent
# set base class=tuple
class_node.bases.append(base_type)
# XXX add __init__(*attributes) method
for attr in attributes:
fake_node = nodes.EmptyNode()
fake_node.parent = class_node
fake_node.attrname = attr
class_node.instance_attrs[attr] = [fake_node]
return class_node, name, attributes
def _has_namedtuple_base(node):
"""Predicate for class inference tip
:type node: ClassDef
:rtype: bool
"""
return set(node.basenames) & TYPING_NAMEDTUPLE_BASENAMES
def _looks_like(node, name):
func = node.func
if isinstance(func, nodes.Attribute):
return func.attrname == name
if isinstance(func, nodes.Name):
return func.name == name
return False
_looks_like_namedtuple = functools.partial(_looks_like, name="namedtuple")
_looks_like_enum = functools.partial(_looks_like, name="Enum")
_looks_like_typing_namedtuple = functools.partial(_looks_like, name="NamedTuple")
def infer_named_tuple(node, context=None):
"""Specific inference function for namedtuple Call node"""
tuple_base_name = nodes.Name(name="tuple", parent=node.root())
class_node, name, attributes = infer_func_form(
node, tuple_base_name, context=context
)
call_site = arguments.CallSite.from_call(node, context=context)
func = next(extract_node("import collections; collections.namedtuple").infer())
try:
rename = next(call_site.infer_argument(func, "rename", context)).bool_value()
except InferenceError:
rename = False
if rename:
attributes = _get_renamed_namedtuple_attributes(attributes)
replace_args = ", ".join("{arg}=None".format(arg=arg) for arg in attributes)
field_def = (
" {name} = property(lambda self: self[{index:d}], "
"doc='Alias for field number {index:d}')"
)
field_defs = "\n".join(
field_def.format(name=name, index=index)
for index, name in enumerate(attributes)
)
fake = AstroidBuilder(MANAGER).string_build(
"""
class %(name)s(tuple):
__slots__ = ()
_fields = %(fields)r
def _asdict(self):
return self.__dict__
@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):
return new(cls, iterable)
def _replace(self, %(replace_args)s):
return self
def __getnewargs__(self):
return tuple(self)
%(field_defs)s
"""
% {
"name": name,
"fields": attributes,
"field_defs": field_defs,
"replace_args": replace_args,
}
)
class_node.locals["_asdict"] = fake.body[0].locals["_asdict"]
class_node.locals["_make"] = fake.body[0].locals["_make"]
class_node.locals["_replace"] = fake.body[0].locals["_replace"]
class_node.locals["_fields"] = fake.body[0].locals["_fields"]
for attr in attributes:
class_node.locals[attr] = fake.body[0].locals[attr]
# we use UseInferenceDefault, we can't be a generator so return an iterator
return iter([class_node])
def _get_renamed_namedtuple_attributes(field_names):
names = list(field_names)
seen = set()
for i, name in enumerate(field_names):
if (
not all(c.isalnum() or c == "_" for c in name)
or keyword.iskeyword(name)
or not name
or name[0].isdigit()
or name.startswith("_")
or name in seen
):
names[i] = "_%d" % i
seen.add(name)
return tuple(names)
def infer_enum(node, context=None):
""" Specific inference function for enum Call node. """
enum_meta = extract_node(
"""
class EnumMeta(object):
'docstring'
def __call__(self, node):
class EnumAttribute(object):
name = ''
value = 0
return EnumAttribute()
def __iter__(self):
class EnumAttribute(object):
name = ''
value = 0
return [EnumAttribute()]
def __reversed__(self):
class EnumAttribute(object):
name = ''
value = 0
return (EnumAttribute, )
def __next__(self):
return next(iter(self))
def __getitem__(self, attr):
class Value(object):
@property
def name(self):
return ''
@property
def value(self):
return attr
return Value()
__members__ = ['']
"""
)
class_node = infer_func_form(node, enum_meta, context=context, enum=True)[0]
return iter([class_node.instantiate_class()])
INT_FLAG_ADDITION_METHODS = """
def __or__(self, other):
return {name}(self.value | other.value)
def __and__(self, other):
return {name}(self.value & other.value)
def __xor__(self, other):
return {name}(self.value ^ other.value)
def __add__(self, other):
return {name}(self.value + other.value)
def __div__(self, other):
return {name}(self.value / other.value)
def __invert__(self):
return {name}(~self.value)
def __mul__(self, other):
return {name}(self.value * other.value)
"""
def infer_enum_class(node):
""" Specific inference for enums. """
for basename in node.basenames:
# TODO: doesn't handle subclasses yet. This implementation
# is a hack to support enums.
if basename not in ENUM_BASE_NAMES:
continue
if node.root().name == "enum":
# Skip if the class is directly from enum module.
break
for local, values in node.locals.items():
if any(not isinstance(value, nodes.AssignName) for value in values):
continue
targets = []
stmt = values[0].statement()
if isinstance(stmt, nodes.Assign):
if isinstance(stmt.targets[0], nodes.Tuple):
targets = stmt.targets[0].itered()
else:
targets = stmt.targets
elif isinstance(stmt, nodes.AnnAssign):
targets = [stmt.target]
else:
continue
inferred_return_value = None
if isinstance(stmt, nodes.Assign):
if isinstance(stmt.value, nodes.Const):
if isinstance(stmt.value.value, str):
inferred_return_value = repr(stmt.value.value)
else:
inferred_return_value = stmt.value.value
else:
inferred_return_value = stmt.value.as_string()
new_targets = []
for target in targets:
# Replace all the assignments with our mocked class.
classdef = dedent(
"""
class {name}({types}):
@property
def value(self):
return {return_value}
@property
def name(self):
return "{name}"
""".format(
name=target.name,
types=", ".join(node.basenames),
return_value=inferred_return_value,
)
)
if "IntFlag" in basename:
# Alright, we need to add some additional methods.
# Unfortunately we still can't infer the resulting objects as
# Enum members, but once we'll be able to do that, the following
# should result in some nice symbolic execution
classdef += INT_FLAG_ADDITION_METHODS.format(name=target.name)
fake = AstroidBuilder(MANAGER).string_build(classdef)[target.name]
fake.parent = target.parent
for method in node.mymethods():
fake.locals[method.name] = [method]
new_targets.append(fake.instantiate_class())
node.locals[local] = new_targets
break
return node
def infer_typing_namedtuple_class(class_node, context=None):
"""Infer a subclass of typing.NamedTuple"""
# Check if it has the corresponding bases
annassigns_fields = [
annassign.target.name
for annassign in class_node.body
if isinstance(annassign, nodes.AnnAssign)
]
code = dedent(
"""
from collections import namedtuple
namedtuple({typename!r}, {fields!r})
"""
).format(typename=class_node.name, fields=",".join(annassigns_fields))
node = extract_node(code)
generated_class_node = next(infer_named_tuple(node, context))
for method in class_node.mymethods():
generated_class_node.locals[method.name] = [method]
for assign in class_node.body:
if not isinstance(assign, nodes.Assign):
continue
for target in assign.targets:
attr = target.name
generated_class_node.locals[attr] = class_node.locals[attr]
return iter((generated_class_node,))
def infer_typing_namedtuple(node, context=None):
"""Infer a typing.NamedTuple(...) call."""
# This is essentially a namedtuple with different arguments
# so we extract the args and infer a named tuple.
try:
func = next(node.func.infer())
except InferenceError:
raise UseInferenceDefault
if func.qname() != "typing.NamedTuple":
raise UseInferenceDefault
if len(node.args) != 2:
raise UseInferenceDefault
if not isinstance(node.args[1], (nodes.List, nodes.Tuple)):
raise UseInferenceDefault
names = []
for elt in node.args[1].elts:
if not isinstance(elt, (nodes.List, nodes.Tuple)):
raise UseInferenceDefault
if len(elt.elts) != 2:
raise UseInferenceDefault
names.append(elt.elts[0].as_string())
typename = node.args[0].as_string()
if names:
field_names = "({},)".format(",".join(names))
else:
field_names = "''"
node = extract_node(
"namedtuple({typename}, {fields})".format(typename=typename, fields=field_names)
)
return infer_named_tuple(node, context)
MANAGER.register_transform(
nodes.Call, inference_tip(infer_named_tuple), _looks_like_namedtuple
)
MANAGER.register_transform(nodes.Call, inference_tip(infer_enum), _looks_like_enum)
MANAGER.register_transform(
nodes.ClassDef,
infer_enum_class,
predicate=lambda cls: any(
basename for basename in cls.basenames if basename in ENUM_BASE_NAMES
),
)
MANAGER.register_transform(
nodes.ClassDef, inference_tip(infer_typing_namedtuple_class), _has_namedtuple_base
)
MANAGER.register_transform(
nodes.Call, inference_tip(infer_typing_namedtuple), _looks_like_typing_namedtuple
)