mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-11-15 03:28:13 +01:00
1731 lines
56 KiB
Python
1731 lines
56 KiB
Python
|
"""
|
||
|
Module for applying conditional formatting to DataFrames and Series.
|
||
|
"""
|
||
|
from collections import defaultdict
|
||
|
from contextlib import contextmanager
|
||
|
import copy
|
||
|
from functools import partial
|
||
|
from itertools import product
|
||
|
from typing import (
|
||
|
Any,
|
||
|
Callable,
|
||
|
DefaultDict,
|
||
|
Dict,
|
||
|
List,
|
||
|
Optional,
|
||
|
Sequence,
|
||
|
Tuple,
|
||
|
Union,
|
||
|
)
|
||
|
from uuid import uuid4
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._config import get_option
|
||
|
|
||
|
from pandas._libs import lib
|
||
|
from pandas._typing import Axis, FrameOrSeries, FrameOrSeriesUnion, Label
|
||
|
from pandas.compat._optional import import_optional_dependency
|
||
|
from pandas.util._decorators import doc
|
||
|
|
||
|
from pandas.core.dtypes.common import is_float
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas.api.types import is_dict_like, is_list_like
|
||
|
from pandas.core import generic
|
||
|
import pandas.core.common as com
|
||
|
from pandas.core.frame import DataFrame
|
||
|
from pandas.core.generic import NDFrame
|
||
|
from pandas.core.indexing import maybe_numeric_slice, non_reducing_slice
|
||
|
|
||
|
jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.")
|
||
|
|
||
|
|
||
|
try:
|
||
|
from matplotlib import colors
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
has_mpl = True
|
||
|
except ImportError:
|
||
|
has_mpl = False
|
||
|
no_mpl_message = "{0} requires matplotlib."
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def _mpl(func: Callable):
|
||
|
if has_mpl:
|
||
|
yield plt, colors
|
||
|
else:
|
||
|
raise ImportError(no_mpl_message.format(func.__name__))
|
||
|
|
||
|
|
||
|
class Styler:
|
||
|
"""
|
||
|
Helps style a DataFrame or Series according to the data with HTML and CSS.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : Series or DataFrame
|
||
|
Data to be styled - either a Series or DataFrame.
|
||
|
precision : int
|
||
|
Precision to round floats to, defaults to pd.options.display.precision.
|
||
|
table_styles : list-like, default None
|
||
|
List of {selector: (attr, value)} dicts; see Notes.
|
||
|
uuid : str, default None
|
||
|
A unique identifier to avoid CSS collisions; generated automatically.
|
||
|
caption : str, default None
|
||
|
Caption to attach to the table.
|
||
|
table_attributes : str, default None
|
||
|
Items that show up in the opening ``<table>`` tag
|
||
|
in addition to automatic (by default) id.
|
||
|
cell_ids : bool, default True
|
||
|
If True, each cell will have an ``id`` attribute in their HTML tag.
|
||
|
The ``id`` takes the form ``T_<uuid>_row<num_row>_col<num_col>``
|
||
|
where ``<uuid>`` is the unique identifier, ``<num_row>`` is the row
|
||
|
number and ``<num_col>`` is the column number.
|
||
|
na_rep : str, optional
|
||
|
Representation for missing values.
|
||
|
If ``na_rep`` is None, no special formatting is applied.
|
||
|
|
||
|
.. versionadded:: 1.0.0
|
||
|
|
||
|
uuid_len : int, default 5
|
||
|
If ``uuid`` is not specified, the length of the ``uuid`` to randomly generate
|
||
|
expressed in hex characters, in range [0, 32].
|
||
|
|
||
|
.. versionadded:: 1.2.0
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
env : Jinja2 jinja2.Environment
|
||
|
template : Jinja2 Template
|
||
|
loader : Jinja2 Loader
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.style : Return a Styler object containing methods for building
|
||
|
a styled HTML representation for the DataFrame.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Most styling will be done by passing style functions into
|
||
|
``Styler.apply`` or ``Styler.applymap``. Style functions should
|
||
|
return values with strings containing CSS ``'attr: value'`` that will
|
||
|
be applied to the indicated cells.
|
||
|
|
||
|
If using in the Jupyter notebook, Styler has defined a ``_repr_html_``
|
||
|
to automatically render itself. Otherwise call Styler.render to get
|
||
|
the generated HTML.
|
||
|
|
||
|
CSS classes are attached to the generated HTML
|
||
|
|
||
|
* Index and Column names include ``index_name`` and ``level<k>``
|
||
|
where `k` is its level in a MultiIndex
|
||
|
* Index label cells include
|
||
|
|
||
|
* ``row_heading``
|
||
|
* ``row<n>`` where `n` is the numeric position of the row
|
||
|
* ``level<k>`` where `k` is the level in a MultiIndex
|
||
|
|
||
|
* Column label cells include
|
||
|
* ``col_heading``
|
||
|
* ``col<n>`` where `n` is the numeric position of the column
|
||
|
* ``level<k>`` where `k` is the level in a MultiIndex
|
||
|
|
||
|
* Blank cells include ``blank``
|
||
|
* Data cells include ``data``
|
||
|
"""
|
||
|
|
||
|
loader = jinja2.PackageLoader("pandas", "io/formats/templates")
|
||
|
env = jinja2.Environment(loader=loader, trim_blocks=True)
|
||
|
template = env.get_template("html.tpl")
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
data: FrameOrSeriesUnion,
|
||
|
precision: Optional[int] = None,
|
||
|
table_styles: Optional[List[Dict[str, List[Tuple[str, str]]]]] = None,
|
||
|
uuid: Optional[str] = None,
|
||
|
caption: Optional[str] = None,
|
||
|
table_attributes: Optional[str] = None,
|
||
|
cell_ids: bool = True,
|
||
|
na_rep: Optional[str] = None,
|
||
|
uuid_len: int = 5,
|
||
|
):
|
||
|
self.ctx: DefaultDict[Tuple[int, int], List[str]] = defaultdict(list)
|
||
|
self._todo: List[Tuple[Callable, Tuple, Dict]] = []
|
||
|
|
||
|
if not isinstance(data, (pd.Series, pd.DataFrame)):
|
||
|
raise TypeError("``data`` must be a Series or DataFrame")
|
||
|
if data.ndim == 1:
|
||
|
data = data.to_frame()
|
||
|
if not data.index.is_unique or not data.columns.is_unique:
|
||
|
raise ValueError("style is not supported for non-unique indices.")
|
||
|
|
||
|
self.data = data
|
||
|
self.index = data.index
|
||
|
self.columns = data.columns
|
||
|
|
||
|
if not isinstance(uuid_len, int) or not uuid_len >= 0:
|
||
|
raise TypeError("``uuid_len`` must be an integer in range [0, 32].")
|
||
|
self.uuid_len = min(32, uuid_len)
|
||
|
self.uuid = (uuid or uuid4().hex[: self.uuid_len]) + "_"
|
||
|
self.table_styles = table_styles
|
||
|
self.caption = caption
|
||
|
if precision is None:
|
||
|
precision = get_option("display.precision")
|
||
|
self.precision = precision
|
||
|
self.table_attributes = table_attributes
|
||
|
self.hidden_index = False
|
||
|
self.hidden_columns: Sequence[int] = []
|
||
|
self.cell_ids = cell_ids
|
||
|
self.na_rep = na_rep
|
||
|
|
||
|
self.cell_context: Dict[str, Any] = {}
|
||
|
|
||
|
# display_funcs maps (row, col) -> formatting function
|
||
|
|
||
|
def default_display_func(x):
|
||
|
if self.na_rep is not None and pd.isna(x):
|
||
|
return self.na_rep
|
||
|
elif is_float(x):
|
||
|
display_format = f"{x:.{self.precision}f}"
|
||
|
return display_format
|
||
|
else:
|
||
|
return x
|
||
|
|
||
|
self._display_funcs: DefaultDict[
|
||
|
Tuple[int, int], Callable[[Any], str]
|
||
|
] = defaultdict(lambda: default_display_func)
|
||
|
|
||
|
def _repr_html_(self) -> str:
|
||
|
"""
|
||
|
Hooks into Jupyter notebook rich display system.
|
||
|
"""
|
||
|
return self.render()
|
||
|
|
||
|
@doc(
|
||
|
NDFrame.to_excel,
|
||
|
klass="Styler",
|
||
|
storage_options=generic._shared_docs["storage_options"],
|
||
|
)
|
||
|
def to_excel(
|
||
|
self,
|
||
|
excel_writer,
|
||
|
sheet_name: str = "Sheet1",
|
||
|
na_rep: str = "",
|
||
|
float_format: Optional[str] = None,
|
||
|
columns: Optional[Sequence[Label]] = None,
|
||
|
header: Union[Sequence[Label], bool] = True,
|
||
|
index: bool = True,
|
||
|
index_label: Optional[Union[Label, Sequence[Label]]] = None,
|
||
|
startrow: int = 0,
|
||
|
startcol: int = 0,
|
||
|
engine: Optional[str] = None,
|
||
|
merge_cells: bool = True,
|
||
|
encoding: Optional[str] = None,
|
||
|
inf_rep: str = "inf",
|
||
|
verbose: bool = True,
|
||
|
freeze_panes: Optional[Tuple[int, int]] = None,
|
||
|
) -> None:
|
||
|
|
||
|
from pandas.io.formats.excel import ExcelFormatter
|
||
|
|
||
|
formatter = ExcelFormatter(
|
||
|
self,
|
||
|
na_rep=na_rep,
|
||
|
cols=columns,
|
||
|
header=header,
|
||
|
float_format=float_format,
|
||
|
index=index,
|
||
|
index_label=index_label,
|
||
|
merge_cells=merge_cells,
|
||
|
inf_rep=inf_rep,
|
||
|
)
|
||
|
formatter.write(
|
||
|
excel_writer,
|
||
|
sheet_name=sheet_name,
|
||
|
startrow=startrow,
|
||
|
startcol=startcol,
|
||
|
freeze_panes=freeze_panes,
|
||
|
engine=engine,
|
||
|
)
|
||
|
|
||
|
def _translate(self):
|
||
|
"""
|
||
|
Convert the DataFrame in `self.data` and the attrs from `_build_styles`
|
||
|
into a dictionary of {head, body, uuid, cellstyle}.
|
||
|
"""
|
||
|
table_styles = self.table_styles or []
|
||
|
caption = self.caption
|
||
|
ctx = self.ctx
|
||
|
precision = self.precision
|
||
|
hidden_index = self.hidden_index
|
||
|
hidden_columns = self.hidden_columns
|
||
|
uuid = self.uuid
|
||
|
ROW_HEADING_CLASS = "row_heading"
|
||
|
COL_HEADING_CLASS = "col_heading"
|
||
|
INDEX_NAME_CLASS = "index_name"
|
||
|
|
||
|
DATA_CLASS = "data"
|
||
|
BLANK_CLASS = "blank"
|
||
|
BLANK_VALUE = ""
|
||
|
|
||
|
def format_attr(pair):
|
||
|
return f"{pair['key']}={pair['value']}"
|
||
|
|
||
|
# for sparsifying a MultiIndex
|
||
|
idx_lengths = _get_level_lengths(self.index)
|
||
|
col_lengths = _get_level_lengths(self.columns, hidden_columns)
|
||
|
|
||
|
cell_context = self.cell_context
|
||
|
|
||
|
n_rlvls = self.data.index.nlevels
|
||
|
n_clvls = self.data.columns.nlevels
|
||
|
rlabels = self.data.index.tolist()
|
||
|
clabels = self.data.columns.tolist()
|
||
|
|
||
|
if n_rlvls == 1:
|
||
|
rlabels = [[x] for x in rlabels]
|
||
|
if n_clvls == 1:
|
||
|
clabels = [[x] for x in clabels]
|
||
|
clabels = list(zip(*clabels))
|
||
|
|
||
|
cellstyle_map = defaultdict(list)
|
||
|
head = []
|
||
|
|
||
|
for r in range(n_clvls):
|
||
|
# Blank for Index columns...
|
||
|
row_es = [
|
||
|
{
|
||
|
"type": "th",
|
||
|
"value": BLANK_VALUE,
|
||
|
"display_value": BLANK_VALUE,
|
||
|
"is_visible": not hidden_index,
|
||
|
"class": " ".join([BLANK_CLASS]),
|
||
|
}
|
||
|
] * (n_rlvls - 1)
|
||
|
|
||
|
# ... except maybe the last for columns.names
|
||
|
name = self.data.columns.names[r]
|
||
|
cs = [
|
||
|
BLANK_CLASS if name is None else INDEX_NAME_CLASS,
|
||
|
f"level{r}",
|
||
|
]
|
||
|
name = BLANK_VALUE if name is None else name
|
||
|
row_es.append(
|
||
|
{
|
||
|
"type": "th",
|
||
|
"value": name,
|
||
|
"display_value": name,
|
||
|
"class": " ".join(cs),
|
||
|
"is_visible": not hidden_index,
|
||
|
}
|
||
|
)
|
||
|
|
||
|
if clabels:
|
||
|
for c, value in enumerate(clabels[r]):
|
||
|
cs = [
|
||
|
COL_HEADING_CLASS,
|
||
|
f"level{r}",
|
||
|
f"col{c}",
|
||
|
]
|
||
|
cs.extend(
|
||
|
cell_context.get("col_headings", {}).get(r, {}).get(c, [])
|
||
|
)
|
||
|
es = {
|
||
|
"type": "th",
|
||
|
"value": value,
|
||
|
"display_value": value,
|
||
|
"class": " ".join(cs),
|
||
|
"is_visible": _is_visible(c, r, col_lengths),
|
||
|
}
|
||
|
colspan = col_lengths.get((r, c), 0)
|
||
|
if colspan > 1:
|
||
|
es["attributes"] = [
|
||
|
format_attr({"key": "colspan", "value": f'"{colspan}"'})
|
||
|
]
|
||
|
row_es.append(es)
|
||
|
head.append(row_es)
|
||
|
|
||
|
if (
|
||
|
self.data.index.names
|
||
|
and com.any_not_none(*self.data.index.names)
|
||
|
and not hidden_index
|
||
|
):
|
||
|
index_header_row = []
|
||
|
|
||
|
for c, name in enumerate(self.data.index.names):
|
||
|
cs = [INDEX_NAME_CLASS, f"level{c}"]
|
||
|
name = "" if name is None else name
|
||
|
index_header_row.append(
|
||
|
{"type": "th", "value": name, "class": " ".join(cs)}
|
||
|
)
|
||
|
|
||
|
index_header_row.extend(
|
||
|
[{"type": "th", "value": BLANK_VALUE, "class": " ".join([BLANK_CLASS])}]
|
||
|
* (len(clabels[0]) - len(hidden_columns))
|
||
|
)
|
||
|
|
||
|
head.append(index_header_row)
|
||
|
|
||
|
body = []
|
||
|
for r, idx in enumerate(self.data.index):
|
||
|
row_es = []
|
||
|
for c, value in enumerate(rlabels[r]):
|
||
|
rid = [
|
||
|
ROW_HEADING_CLASS,
|
||
|
f"level{c}",
|
||
|
f"row{r}",
|
||
|
]
|
||
|
es = {
|
||
|
"type": "th",
|
||
|
"is_visible": (_is_visible(r, c, idx_lengths) and not hidden_index),
|
||
|
"value": value,
|
||
|
"display_value": value,
|
||
|
"id": "_".join(rid[1:]),
|
||
|
"class": " ".join(rid),
|
||
|
}
|
||
|
rowspan = idx_lengths.get((c, r), 0)
|
||
|
if rowspan > 1:
|
||
|
es["attributes"] = [
|
||
|
format_attr({"key": "rowspan", "value": f'"{rowspan}"'})
|
||
|
]
|
||
|
row_es.append(es)
|
||
|
|
||
|
for c, col in enumerate(self.data.columns):
|
||
|
cs = [DATA_CLASS, f"row{r}", f"col{c}"]
|
||
|
cs.extend(cell_context.get("data", {}).get(r, {}).get(c, []))
|
||
|
formatter = self._display_funcs[(r, c)]
|
||
|
value = self.data.iloc[r, c]
|
||
|
row_dict = {
|
||
|
"type": "td",
|
||
|
"value": value,
|
||
|
"class": " ".join(cs),
|
||
|
"display_value": formatter(value),
|
||
|
"is_visible": (c not in hidden_columns),
|
||
|
}
|
||
|
# only add an id if the cell has a style
|
||
|
props = []
|
||
|
if self.cell_ids or (r, c) in ctx:
|
||
|
row_dict["id"] = "_".join(cs[1:])
|
||
|
for x in ctx[r, c]:
|
||
|
# have to handle empty styles like ['']
|
||
|
if x.count(":"):
|
||
|
props.append(tuple(x.split(":")))
|
||
|
else:
|
||
|
props.append(("", ""))
|
||
|
row_es.append(row_dict)
|
||
|
cellstyle_map[tuple(props)].append(f"row{r}_col{c}")
|
||
|
body.append(row_es)
|
||
|
|
||
|
cellstyle = [
|
||
|
{"props": list(props), "selectors": selectors}
|
||
|
for props, selectors in cellstyle_map.items()
|
||
|
]
|
||
|
|
||
|
table_attr = self.table_attributes
|
||
|
use_mathjax = get_option("display.html.use_mathjax")
|
||
|
if not use_mathjax:
|
||
|
table_attr = table_attr or ""
|
||
|
if 'class="' in table_attr:
|
||
|
table_attr = table_attr.replace('class="', 'class="tex2jax_ignore ')
|
||
|
else:
|
||
|
table_attr += ' class="tex2jax_ignore"'
|
||
|
|
||
|
return {
|
||
|
"head": head,
|
||
|
"cellstyle": cellstyle,
|
||
|
"body": body,
|
||
|
"uuid": uuid,
|
||
|
"precision": precision,
|
||
|
"table_styles": table_styles,
|
||
|
"caption": caption,
|
||
|
"table_attributes": table_attr,
|
||
|
}
|
||
|
|
||
|
def format(self, formatter, subset=None, na_rep: Optional[str] = None) -> "Styler":
|
||
|
"""
|
||
|
Format the text display value of cells.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
formatter : str, callable, dict or None
|
||
|
If ``formatter`` is None, the default formatter is used.
|
||
|
subset : IndexSlice
|
||
|
An argument to ``DataFrame.loc`` that restricts which elements
|
||
|
``formatter`` is applied to.
|
||
|
na_rep : str, optional
|
||
|
Representation for missing values.
|
||
|
If ``na_rep`` is None, no special formatting is applied.
|
||
|
|
||
|
.. versionadded:: 1.0.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
``formatter`` is either an ``a`` or a dict ``{column name: a}`` where
|
||
|
``a`` is one of
|
||
|
|
||
|
- str: this will be wrapped in: ``a.format(x)``
|
||
|
- callable: called with the value of an individual cell
|
||
|
|
||
|
The default display value for numeric values is the "general" (``g``)
|
||
|
format with ``pd.options.display.precision`` precision.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b'])
|
||
|
>>> df.style.format("{:.2%}")
|
||
|
>>> df['c'] = ['a', 'b', 'c', 'd']
|
||
|
>>> df.style.format({'c': str.upper})
|
||
|
"""
|
||
|
if formatter is None:
|
||
|
assert self._display_funcs.default_factory is not None
|
||
|
formatter = self._display_funcs.default_factory()
|
||
|
|
||
|
if subset is None:
|
||
|
row_locs = range(len(self.data))
|
||
|
col_locs = range(len(self.data.columns))
|
||
|
else:
|
||
|
subset = non_reducing_slice(subset)
|
||
|
if len(subset) == 1:
|
||
|
subset = subset, self.data.columns
|
||
|
|
||
|
sub_df = self.data.loc[subset]
|
||
|
row_locs = self.data.index.get_indexer_for(sub_df.index)
|
||
|
col_locs = self.data.columns.get_indexer_for(sub_df.columns)
|
||
|
|
||
|
if is_dict_like(formatter):
|
||
|
for col, col_formatter in formatter.items():
|
||
|
# formatter must be callable, so '{}' are converted to lambdas
|
||
|
col_formatter = _maybe_wrap_formatter(col_formatter, na_rep)
|
||
|
col_num = self.data.columns.get_indexer_for([col])[0]
|
||
|
|
||
|
for row_num in row_locs:
|
||
|
self._display_funcs[(row_num, col_num)] = col_formatter
|
||
|
else:
|
||
|
# single scalar to format all cells with
|
||
|
formatter = _maybe_wrap_formatter(formatter, na_rep)
|
||
|
locs = product(*(row_locs, col_locs))
|
||
|
for i, j in locs:
|
||
|
self._display_funcs[(i, j)] = formatter
|
||
|
return self
|
||
|
|
||
|
def set_td_classes(self, classes: DataFrame) -> "Styler":
|
||
|
"""
|
||
|
Add string based CSS class names to data cells that will appear within the
|
||
|
`Styler` HTML result. These classes are added within specified `<td>` elements.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
classes : DataFrame
|
||
|
DataFrame containing strings that will be translated to CSS classes,
|
||
|
mapped by identical column and index values that must exist on the
|
||
|
underlying `Styler` data. None, NaN values, and empty strings will
|
||
|
be ignored and not affect the rendered HTML.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(data=[[1, 2, 3], [4, 5, 6]], columns=["A", "B", "C"])
|
||
|
>>> classes = pd.DataFrame([
|
||
|
... ["min-val red", "", "blue"],
|
||
|
... ["red", None, "blue max-val"]
|
||
|
... ], index=df.index, columns=df.columns)
|
||
|
>>> df.style.set_td_classes(classes)
|
||
|
|
||
|
Using `MultiIndex` columns and a `classes` `DataFrame` as a subset of the
|
||
|
underlying,
|
||
|
|
||
|
>>> df = pd.DataFrame([[1,2],[3,4]], index=["a", "b"],
|
||
|
... columns=[["level0", "level0"], ["level1a", "level1b"]])
|
||
|
>>> classes = pd.DataFrame(["min-val"], index=["a"],
|
||
|
... columns=[["level0"],["level1a"]])
|
||
|
>>> df.style.set_td_classes(classes)
|
||
|
|
||
|
Form of the output with new additional css classes,
|
||
|
|
||
|
>>> df = pd.DataFrame([[1]])
|
||
|
>>> css = pd.DataFrame(["other-class"])
|
||
|
>>> s = Styler(df, uuid="_", cell_ids=False).set_td_classes(css)
|
||
|
>>> s.hide_index().render()
|
||
|
'<style type="text/css" ></style>'
|
||
|
'<table id="T__" >'
|
||
|
' <thead>'
|
||
|
' <tr><th class="col_heading level0 col0" >0</th></tr>'
|
||
|
' </thead>'
|
||
|
' <tbody>'
|
||
|
' <tr><td class="data row0 col0 other-class" >1</td></tr>'
|
||
|
' </tbody>'
|
||
|
'</table>'
|
||
|
"""
|
||
|
classes = classes.reindex_like(self.data)
|
||
|
|
||
|
mask = (classes.isna()) | (classes.eq(""))
|
||
|
self.cell_context["data"] = {
|
||
|
r: {c: [str(classes.iloc[r, c])]}
|
||
|
for r, rn in enumerate(classes.index)
|
||
|
for c, cn in enumerate(classes.columns)
|
||
|
if not mask.iloc[r, c]
|
||
|
}
|
||
|
|
||
|
return self
|
||
|
|
||
|
def render(self, **kwargs) -> str:
|
||
|
"""
|
||
|
Render the built up styles to HTML.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
**kwargs
|
||
|
Any additional keyword arguments are passed
|
||
|
through to ``self.template.render``.
|
||
|
This is useful when you need to provide
|
||
|
additional variables for a custom template.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
rendered : str
|
||
|
The rendered HTML.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
``Styler`` objects have defined the ``_repr_html_`` method
|
||
|
which automatically calls ``self.render()`` when it's the
|
||
|
last item in a Notebook cell. When calling ``Styler.render()``
|
||
|
directly, wrap the result in ``IPython.display.HTML`` to view
|
||
|
the rendered HTML in the notebook.
|
||
|
|
||
|
Pandas uses the following keys in render. Arguments passed
|
||
|
in ``**kwargs`` take precedence, so think carefully if you want
|
||
|
to override them:
|
||
|
|
||
|
* head
|
||
|
* cellstyle
|
||
|
* body
|
||
|
* uuid
|
||
|
* precision
|
||
|
* table_styles
|
||
|
* caption
|
||
|
* table_attributes
|
||
|
"""
|
||
|
self._compute()
|
||
|
# TODO: namespace all the pandas keys
|
||
|
d = self._translate()
|
||
|
# filter out empty styles, every cell will have a class
|
||
|
# but the list of props may just be [['', '']].
|
||
|
# so we have the nested anys below
|
||
|
trimmed = [x for x in d["cellstyle"] if any(any(y) for y in x["props"])]
|
||
|
d["cellstyle"] = trimmed
|
||
|
d.update(kwargs)
|
||
|
return self.template.render(**d)
|
||
|
|
||
|
def _update_ctx(self, attrs: DataFrame) -> None:
|
||
|
"""
|
||
|
Update the state of the Styler.
|
||
|
|
||
|
Collects a mapping of {index_label: ['<property>: <value>']}.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
attrs : DataFrame
|
||
|
should contain strings of '<property>: <value>;<prop2>: <val2>'
|
||
|
Whitespace shouldn't matter and the final trailing ';' shouldn't
|
||
|
matter.
|
||
|
"""
|
||
|
coli = {k: i for i, k in enumerate(self.columns)}
|
||
|
rowi = {k: i for i, k in enumerate(self.index)}
|
||
|
for jj in range(len(attrs.columns)):
|
||
|
cn = attrs.columns[jj]
|
||
|
j = coli[cn]
|
||
|
for rn, c in attrs[[cn]].itertuples():
|
||
|
if not c:
|
||
|
continue
|
||
|
c = c.rstrip(";")
|
||
|
if not c:
|
||
|
continue
|
||
|
i = rowi[rn]
|
||
|
for pair in c.split(";"):
|
||
|
self.ctx[(i, j)].append(pair)
|
||
|
|
||
|
def _copy(self, deepcopy: bool = False) -> "Styler":
|
||
|
styler = Styler(
|
||
|
self.data,
|
||
|
precision=self.precision,
|
||
|
caption=self.caption,
|
||
|
uuid=self.uuid,
|
||
|
table_styles=self.table_styles,
|
||
|
na_rep=self.na_rep,
|
||
|
)
|
||
|
if deepcopy:
|
||
|
styler.ctx = copy.deepcopy(self.ctx)
|
||
|
styler._todo = copy.deepcopy(self._todo)
|
||
|
else:
|
||
|
styler.ctx = self.ctx
|
||
|
styler._todo = self._todo
|
||
|
return styler
|
||
|
|
||
|
def __copy__(self) -> "Styler":
|
||
|
"""
|
||
|
Deep copy by default.
|
||
|
"""
|
||
|
return self._copy(deepcopy=False)
|
||
|
|
||
|
def __deepcopy__(self, memo) -> "Styler":
|
||
|
return self._copy(deepcopy=True)
|
||
|
|
||
|
def clear(self) -> None:
|
||
|
"""
|
||
|
Reset the styler, removing any previously applied styles.
|
||
|
|
||
|
Returns None.
|
||
|
"""
|
||
|
self.ctx.clear()
|
||
|
self.cell_context = {}
|
||
|
self._todo = []
|
||
|
|
||
|
def _compute(self):
|
||
|
"""
|
||
|
Execute the style functions built up in `self._todo`.
|
||
|
|
||
|
Relies on the conventions that all style functions go through
|
||
|
.apply or .applymap. The append styles to apply as tuples of
|
||
|
|
||
|
(application method, *args, **kwargs)
|
||
|
"""
|
||
|
r = self
|
||
|
for func, args, kwargs in self._todo:
|
||
|
r = func(self)(*args, **kwargs)
|
||
|
return r
|
||
|
|
||
|
def _apply(
|
||
|
self,
|
||
|
func: Callable[..., "Styler"],
|
||
|
axis: Optional[Axis] = 0,
|
||
|
subset=None,
|
||
|
**kwargs,
|
||
|
) -> "Styler":
|
||
|
subset = slice(None) if subset is None else subset
|
||
|
subset = non_reducing_slice(subset)
|
||
|
data = self.data.loc[subset]
|
||
|
if axis is not None:
|
||
|
result = data.apply(func, axis=axis, result_type="expand", **kwargs)
|
||
|
result.columns = data.columns
|
||
|
else:
|
||
|
result = func(data, **kwargs)
|
||
|
if not isinstance(result, pd.DataFrame):
|
||
|
raise TypeError(
|
||
|
f"Function {repr(func)} must return a DataFrame when "
|
||
|
f"passed to `Styler.apply` with axis=None"
|
||
|
)
|
||
|
if not (
|
||
|
result.index.equals(data.index) and result.columns.equals(data.columns)
|
||
|
):
|
||
|
raise ValueError(
|
||
|
f"Result of {repr(func)} must have identical "
|
||
|
f"index and columns as the input"
|
||
|
)
|
||
|
|
||
|
result_shape = result.shape
|
||
|
expected_shape = self.data.loc[subset].shape
|
||
|
if result_shape != expected_shape:
|
||
|
raise ValueError(
|
||
|
f"Function {repr(func)} returned the wrong shape.\n"
|
||
|
f"Result has shape: {result.shape}\n"
|
||
|
f"Expected shape: {expected_shape}"
|
||
|
)
|
||
|
self._update_ctx(result)
|
||
|
return self
|
||
|
|
||
|
def apply(
|
||
|
self,
|
||
|
func: Callable[..., "Styler"],
|
||
|
axis: Optional[Axis] = 0,
|
||
|
subset=None,
|
||
|
**kwargs,
|
||
|
) -> "Styler":
|
||
|
"""
|
||
|
Apply a function column-wise, row-wise, or table-wise.
|
||
|
|
||
|
Updates the HTML representation with the result.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
``func`` should take a Series or DataFrame (depending
|
||
|
on ``axis``), and return an object with the same shape.
|
||
|
Must return a DataFrame with identical index and
|
||
|
column labels when ``axis=None``.
|
||
|
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
||
|
Apply to each column (``axis=0`` or ``'index'``), to each row
|
||
|
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
|
||
|
with ``axis=None``.
|
||
|
subset : IndexSlice
|
||
|
A valid indexer to limit ``data`` to *before* applying the
|
||
|
function. Consider using a pandas.IndexSlice.
|
||
|
**kwargs : dict
|
||
|
Pass along to ``func``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The output shape of ``func`` should match the input, i.e. if
|
||
|
``x`` is the input row, column, or table (depending on ``axis``),
|
||
|
then ``func(x).shape == x.shape`` should be true.
|
||
|
|
||
|
This is similar to ``DataFrame.apply``, except that ``axis=None``
|
||
|
applies the function to the entire DataFrame at once,
|
||
|
rather than column-wise or row-wise.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def highlight_max(x):
|
||
|
... return ['background-color: yellow' if v == x.max() else ''
|
||
|
for v in x]
|
||
|
...
|
||
|
>>> df = pd.DataFrame(np.random.randn(5, 2))
|
||
|
>>> df.style.apply(highlight_max)
|
||
|
"""
|
||
|
self._todo.append(
|
||
|
(lambda instance: getattr(instance, "_apply"), (func, axis, subset), kwargs)
|
||
|
)
|
||
|
return self
|
||
|
|
||
|
def _applymap(self, func: Callable, subset=None, **kwargs) -> "Styler":
|
||
|
func = partial(func, **kwargs) # applymap doesn't take kwargs?
|
||
|
if subset is None:
|
||
|
subset = pd.IndexSlice[:]
|
||
|
subset = non_reducing_slice(subset)
|
||
|
result = self.data.loc[subset].applymap(func)
|
||
|
self._update_ctx(result)
|
||
|
return self
|
||
|
|
||
|
def applymap(self, func: Callable, subset=None, **kwargs) -> "Styler":
|
||
|
"""
|
||
|
Apply a function elementwise.
|
||
|
|
||
|
Updates the HTML representation with the result.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
``func`` should take a scalar and return a scalar.
|
||
|
subset : IndexSlice
|
||
|
A valid indexer to limit ``data`` to *before* applying the
|
||
|
function. Consider using a pandas.IndexSlice.
|
||
|
**kwargs : dict
|
||
|
Pass along to ``func``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Styler.where: Updates the HTML representation with a style which is
|
||
|
selected in accordance with the return value of a function.
|
||
|
"""
|
||
|
self._todo.append(
|
||
|
(lambda instance: getattr(instance, "_applymap"), (func, subset), kwargs)
|
||
|
)
|
||
|
return self
|
||
|
|
||
|
def where(
|
||
|
self,
|
||
|
cond: Callable,
|
||
|
value: str,
|
||
|
other: Optional[str] = None,
|
||
|
subset=None,
|
||
|
**kwargs,
|
||
|
) -> "Styler":
|
||
|
"""
|
||
|
Apply a function elementwise.
|
||
|
|
||
|
Updates the HTML representation with a style which is
|
||
|
selected in accordance with the return value of a function.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cond : callable
|
||
|
``cond`` should take a scalar and return a boolean.
|
||
|
value : str
|
||
|
Applied when ``cond`` returns true.
|
||
|
other : str
|
||
|
Applied when ``cond`` returns false.
|
||
|
subset : IndexSlice
|
||
|
A valid indexer to limit ``data`` to *before* applying the
|
||
|
function. Consider using a pandas.IndexSlice.
|
||
|
**kwargs : dict
|
||
|
Pass along to ``cond``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Styler.applymap: Updates the HTML representation with the result.
|
||
|
"""
|
||
|
if other is None:
|
||
|
other = ""
|
||
|
|
||
|
return self.applymap(
|
||
|
lambda val: value if cond(val) else other, subset=subset, **kwargs
|
||
|
)
|
||
|
|
||
|
def set_precision(self, precision: int) -> "Styler":
|
||
|
"""
|
||
|
Set the precision used to render.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
precision : int
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.precision = precision
|
||
|
return self
|
||
|
|
||
|
def set_table_attributes(self, attributes: str) -> "Styler":
|
||
|
"""
|
||
|
Set the table attributes.
|
||
|
|
||
|
These are the items that show up in the opening ``<table>`` tag
|
||
|
in addition to automatic (by default) id.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
attributes : str
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.random.randn(10, 4))
|
||
|
>>> df.style.set_table_attributes('class="pure-table"')
|
||
|
# ... <table class="pure-table"> ...
|
||
|
"""
|
||
|
self.table_attributes = attributes
|
||
|
return self
|
||
|
|
||
|
def export(self) -> List[Tuple[Callable, Tuple, Dict]]:
|
||
|
"""
|
||
|
Export the styles to applied to the current Styler.
|
||
|
|
||
|
Can be applied to a second style with ``Styler.use``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
styles : list
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Styler.use: Set the styles on the current Styler.
|
||
|
"""
|
||
|
return self._todo
|
||
|
|
||
|
def use(self, styles: List[Tuple[Callable, Tuple, Dict]]) -> "Styler":
|
||
|
"""
|
||
|
Set the styles on the current Styler.
|
||
|
|
||
|
Possibly uses styles from ``Styler.export``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
styles : list
|
||
|
List of style functions.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Styler.export : Export the styles to applied to the current Styler.
|
||
|
"""
|
||
|
self._todo.extend(styles)
|
||
|
return self
|
||
|
|
||
|
def set_uuid(self, uuid: str) -> "Styler":
|
||
|
"""
|
||
|
Set the uuid for a Styler.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
uuid : str
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.uuid = uuid
|
||
|
return self
|
||
|
|
||
|
def set_caption(self, caption: str) -> "Styler":
|
||
|
"""
|
||
|
Set the caption on a Styler.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
caption : str
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.caption = caption
|
||
|
return self
|
||
|
|
||
|
def set_table_styles(self, table_styles, axis=0, overwrite=True) -> "Styler":
|
||
|
"""
|
||
|
Set the table styles on a Styler.
|
||
|
|
||
|
These are placed in a ``<style>`` tag before the generated HTML table.
|
||
|
|
||
|
This function can be used to style the entire table, columns, rows or
|
||
|
specific HTML selectors.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
table_styles : list or dict
|
||
|
If supplying a list, each individual table_style should be a
|
||
|
dictionary with ``selector`` and ``props`` keys. ``selector``
|
||
|
should be a CSS selector that the style will be applied to
|
||
|
(automatically prefixed by the table's UUID) and ``props``
|
||
|
should be a list of tuples with ``(attribute, value)``.
|
||
|
If supplying a dict, the dict keys should correspond to
|
||
|
column names or index values, depending upon the specified
|
||
|
`axis` argument. These will be mapped to row or col CSS
|
||
|
selectors. MultiIndex values as dict keys should be
|
||
|
in their respective tuple form. The dict values should be
|
||
|
a list as specified in the form with CSS selectors and
|
||
|
props that will be applied to the specified row or column.
|
||
|
|
||
|
.. versionchanged:: 1.2.0
|
||
|
|
||
|
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
||
|
Apply to each column (``axis=0`` or ``'index'``), to each row
|
||
|
(``axis=1`` or ``'columns'``). Only used if `table_styles` is
|
||
|
dict.
|
||
|
|
||
|
.. versionadded:: 1.2.0
|
||
|
|
||
|
overwrite : boolean, default True
|
||
|
Styles are replaced if `True`, or extended if `False`. CSS
|
||
|
rules are preserved so most recent styles set will dominate
|
||
|
if selectors intersect.
|
||
|
|
||
|
.. versionadded:: 1.2.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.random.randn(10, 4),
|
||
|
... columns=['A', 'B', 'C', 'D'])
|
||
|
>>> df.style.set_table_styles(
|
||
|
... [{'selector': 'tr:hover',
|
||
|
... 'props': [('background-color', 'yellow')]}]
|
||
|
... )
|
||
|
|
||
|
Adding column styling by name
|
||
|
|
||
|
>>> df.style.set_table_styles({
|
||
|
... 'A': [{'selector': '',
|
||
|
... 'props': [('color', 'red')]}],
|
||
|
... 'B': [{'selector': 'td',
|
||
|
... 'props': [('color', 'blue')]}]
|
||
|
... }, overwrite=False)
|
||
|
|
||
|
Adding row styling
|
||
|
|
||
|
>>> df.style.set_table_styles({
|
||
|
... 0: [{'selector': 'td:hover',
|
||
|
... 'props': [('font-size', '25px')]}]
|
||
|
... }, axis=1, overwrite=False)
|
||
|
"""
|
||
|
if is_dict_like(table_styles):
|
||
|
if axis in [0, "index"]:
|
||
|
obj, idf = self.data.columns, ".col"
|
||
|
else:
|
||
|
obj, idf = self.data.index, ".row"
|
||
|
|
||
|
table_styles = [
|
||
|
{
|
||
|
"selector": s["selector"] + idf + str(obj.get_loc(key)),
|
||
|
"props": s["props"],
|
||
|
}
|
||
|
for key, styles in table_styles.items()
|
||
|
for s in styles
|
||
|
]
|
||
|
|
||
|
if not overwrite and self.table_styles is not None:
|
||
|
self.table_styles.extend(table_styles)
|
||
|
else:
|
||
|
self.table_styles = table_styles
|
||
|
return self
|
||
|
|
||
|
def set_na_rep(self, na_rep: str) -> "Styler":
|
||
|
"""
|
||
|
Set the missing data representation on a Styler.
|
||
|
|
||
|
.. versionadded:: 1.0.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
na_rep : str
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.na_rep = na_rep
|
||
|
return self
|
||
|
|
||
|
def hide_index(self) -> "Styler":
|
||
|
"""
|
||
|
Hide any indices from rendering.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.hidden_index = True
|
||
|
return self
|
||
|
|
||
|
def hide_columns(self, subset) -> "Styler":
|
||
|
"""
|
||
|
Hide columns from rendering.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset : IndexSlice
|
||
|
An argument to ``DataFrame.loc`` that identifies which columns
|
||
|
are hidden.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
subset = non_reducing_slice(subset)
|
||
|
hidden_df = self.data.loc[subset]
|
||
|
self.hidden_columns = self.columns.get_indexer_for(hidden_df.columns)
|
||
|
return self
|
||
|
|
||
|
# -----------------------------------------------------------------------
|
||
|
# A collection of "builtin" styles
|
||
|
# -----------------------------------------------------------------------
|
||
|
|
||
|
@staticmethod
|
||
|
def _highlight_null(v, null_color: str) -> str:
|
||
|
return f"background-color: {null_color}" if pd.isna(v) else ""
|
||
|
|
||
|
def highlight_null(
|
||
|
self,
|
||
|
null_color: str = "red",
|
||
|
subset: Optional[Union[Label, Sequence[Label]]] = None,
|
||
|
) -> "Styler":
|
||
|
"""
|
||
|
Shade the background ``null_color`` for missing values.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
null_color : str, default 'red'
|
||
|
subset : label or list of labels, default None
|
||
|
A valid slice for ``data`` to limit the style application to.
|
||
|
|
||
|
.. versionadded:: 1.1.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
self.applymap(self._highlight_null, null_color=null_color, subset=subset)
|
||
|
return self
|
||
|
|
||
|
def background_gradient(
|
||
|
self,
|
||
|
cmap="PuBu",
|
||
|
low: float = 0,
|
||
|
high: float = 0,
|
||
|
axis: Optional[Axis] = 0,
|
||
|
subset=None,
|
||
|
text_color_threshold: float = 0.408,
|
||
|
vmin: Optional[float] = None,
|
||
|
vmax: Optional[float] = None,
|
||
|
) -> "Styler":
|
||
|
"""
|
||
|
Color the background in a gradient style.
|
||
|
|
||
|
The background color is determined according
|
||
|
to the data in each column (optionally row). Requires matplotlib.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cmap : str or colormap
|
||
|
Matplotlib colormap.
|
||
|
low : float
|
||
|
Compress the range by the low.
|
||
|
high : float
|
||
|
Compress the range by the high.
|
||
|
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
||
|
Apply to each column (``axis=0`` or ``'index'``), to each row
|
||
|
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
|
||
|
with ``axis=None``.
|
||
|
subset : IndexSlice
|
||
|
A valid slice for ``data`` to limit the style application to.
|
||
|
text_color_threshold : float or int
|
||
|
Luminance threshold for determining text color. Facilitates text
|
||
|
visibility across varying background colors. From 0 to 1.
|
||
|
0 = all text is dark colored, 1 = all text is light colored.
|
||
|
|
||
|
.. versionadded:: 0.24.0
|
||
|
|
||
|
vmin : float, optional
|
||
|
Minimum data value that corresponds to colormap minimum value.
|
||
|
When None (default): the minimum value of the data will be used.
|
||
|
|
||
|
.. versionadded:: 1.0.0
|
||
|
|
||
|
vmax : float, optional
|
||
|
Maximum data value that corresponds to colormap maximum value.
|
||
|
When None (default): the maximum value of the data will be used.
|
||
|
|
||
|
.. versionadded:: 1.0.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If ``text_color_threshold`` is not a value from 0 to 1.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Set ``text_color_threshold`` or tune ``low`` and ``high`` to keep the
|
||
|
text legible by not using the entire range of the color map. The range
|
||
|
of the data is extended by ``low * (x.max() - x.min())`` and ``high *
|
||
|
(x.max() - x.min())`` before normalizing.
|
||
|
"""
|
||
|
subset = maybe_numeric_slice(self.data, subset)
|
||
|
subset = non_reducing_slice(subset)
|
||
|
self.apply(
|
||
|
self._background_gradient,
|
||
|
cmap=cmap,
|
||
|
subset=subset,
|
||
|
axis=axis,
|
||
|
low=low,
|
||
|
high=high,
|
||
|
text_color_threshold=text_color_threshold,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
)
|
||
|
return self
|
||
|
|
||
|
@staticmethod
|
||
|
def _background_gradient(
|
||
|
s,
|
||
|
cmap="PuBu",
|
||
|
low: float = 0,
|
||
|
high: float = 0,
|
||
|
text_color_threshold: float = 0.408,
|
||
|
vmin: Optional[float] = None,
|
||
|
vmax: Optional[float] = None,
|
||
|
):
|
||
|
"""
|
||
|
Color background in a range according to the data.
|
||
|
"""
|
||
|
if (
|
||
|
not isinstance(text_color_threshold, (float, int))
|
||
|
or not 0 <= text_color_threshold <= 1
|
||
|
):
|
||
|
msg = "`text_color_threshold` must be a value from 0 to 1."
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
with _mpl(Styler.background_gradient) as (plt, colors):
|
||
|
smin = np.nanmin(s.to_numpy()) if vmin is None else vmin
|
||
|
smax = np.nanmax(s.to_numpy()) if vmax is None else vmax
|
||
|
rng = smax - smin
|
||
|
# extend lower / upper bounds, compresses color range
|
||
|
norm = colors.Normalize(smin - (rng * low), smax + (rng * high))
|
||
|
# matplotlib colors.Normalize modifies inplace?
|
||
|
# https://github.com/matplotlib/matplotlib/issues/5427
|
||
|
rgbas = plt.cm.get_cmap(cmap)(norm(s.to_numpy(dtype=float)))
|
||
|
|
||
|
def relative_luminance(rgba) -> float:
|
||
|
"""
|
||
|
Calculate relative luminance of a color.
|
||
|
|
||
|
The calculation adheres to the W3C standards
|
||
|
(https://www.w3.org/WAI/GL/wiki/Relative_luminance)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
color : rgb or rgba tuple
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
float
|
||
|
The relative luminance as a value from 0 to 1
|
||
|
"""
|
||
|
r, g, b = (
|
||
|
x / 12.92 if x <= 0.03928 else ((x + 0.055) / 1.055 ** 2.4)
|
||
|
for x in rgba[:3]
|
||
|
)
|
||
|
return 0.2126 * r + 0.7152 * g + 0.0722 * b
|
||
|
|
||
|
def css(rgba) -> str:
|
||
|
dark = relative_luminance(rgba) < text_color_threshold
|
||
|
text_color = "#f1f1f1" if dark else "#000000"
|
||
|
return f"background-color: {colors.rgb2hex(rgba)};color: {text_color};"
|
||
|
|
||
|
if s.ndim == 1:
|
||
|
return [css(rgba) for rgba in rgbas]
|
||
|
else:
|
||
|
return pd.DataFrame(
|
||
|
[[css(rgba) for rgba in row] for row in rgbas],
|
||
|
index=s.index,
|
||
|
columns=s.columns,
|
||
|
)
|
||
|
|
||
|
def set_properties(self, subset=None, **kwargs) -> "Styler":
|
||
|
"""
|
||
|
Method to set one or more non-data dependent properties or each cell.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset : IndexSlice
|
||
|
A valid slice for ``data`` to limit the style application to.
|
||
|
**kwargs : dict
|
||
|
A dictionary of property, value pairs to be set for each cell.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame(np.random.randn(10, 4))
|
||
|
>>> df.style.set_properties(color="white", align="right")
|
||
|
>>> df.style.set_properties(**{'background-color': 'yellow'})
|
||
|
"""
|
||
|
values = ";".join(f"{p}: {v}" for p, v in kwargs.items())
|
||
|
f = lambda x: values
|
||
|
return self.applymap(f, subset=subset)
|
||
|
|
||
|
@staticmethod
|
||
|
def _bar(
|
||
|
s,
|
||
|
align: str,
|
||
|
colors: List[str],
|
||
|
width: float = 100,
|
||
|
vmin: Optional[float] = None,
|
||
|
vmax: Optional[float] = None,
|
||
|
):
|
||
|
"""
|
||
|
Draw bar chart in dataframe cells.
|
||
|
"""
|
||
|
# Get input value range.
|
||
|
smin = np.nanmin(s.to_numpy()) if vmin is None else vmin
|
||
|
smax = np.nanmax(s.to_numpy()) if vmax is None else vmax
|
||
|
if align == "mid":
|
||
|
smin = min(0, smin)
|
||
|
smax = max(0, smax)
|
||
|
elif align == "zero":
|
||
|
# For "zero" mode, we want the range to be symmetrical around zero.
|
||
|
smax = max(abs(smin), abs(smax))
|
||
|
smin = -smax
|
||
|
# Transform to percent-range of linear-gradient
|
||
|
normed = width * (s.to_numpy(dtype=float) - smin) / (smax - smin + 1e-12)
|
||
|
zero = -width * smin / (smax - smin + 1e-12)
|
||
|
|
||
|
def css_bar(start: float, end: float, color: str) -> str:
|
||
|
"""
|
||
|
Generate CSS code to draw a bar from start to end.
|
||
|
"""
|
||
|
css = "width: 10em; height: 80%;"
|
||
|
if end > start:
|
||
|
css += "background: linear-gradient(90deg,"
|
||
|
if start > 0:
|
||
|
css += f" transparent {start:.1f}%, {color} {start:.1f}%, "
|
||
|
e = min(end, width)
|
||
|
css += f"{color} {e:.1f}%, transparent {e:.1f}%)"
|
||
|
return css
|
||
|
|
||
|
def css(x):
|
||
|
if pd.isna(x):
|
||
|
return ""
|
||
|
|
||
|
# avoid deprecated indexing `colors[x > zero]`
|
||
|
color = colors[1] if x > zero else colors[0]
|
||
|
|
||
|
if align == "left":
|
||
|
return css_bar(0, x, color)
|
||
|
else:
|
||
|
return css_bar(min(x, zero), max(x, zero), color)
|
||
|
|
||
|
if s.ndim == 1:
|
||
|
return [css(x) for x in normed]
|
||
|
else:
|
||
|
return pd.DataFrame(
|
||
|
[[css(x) for x in row] for row in normed],
|
||
|
index=s.index,
|
||
|
columns=s.columns,
|
||
|
)
|
||
|
|
||
|
def bar(
|
||
|
self,
|
||
|
subset=None,
|
||
|
axis: Optional[Axis] = 0,
|
||
|
color="#d65f5f",
|
||
|
width: float = 100,
|
||
|
align: str = "left",
|
||
|
vmin: Optional[float] = None,
|
||
|
vmax: Optional[float] = None,
|
||
|
) -> "Styler":
|
||
|
"""
|
||
|
Draw bar chart in the cell backgrounds.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset : IndexSlice, optional
|
||
|
A valid slice for `data` to limit the style application to.
|
||
|
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
||
|
Apply to each column (``axis=0`` or ``'index'``), to each row
|
||
|
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
|
||
|
with ``axis=None``.
|
||
|
color : str or 2-tuple/list
|
||
|
If a str is passed, the color is the same for both
|
||
|
negative and positive numbers. If 2-tuple/list is used, the
|
||
|
first element is the color_negative and the second is the
|
||
|
color_positive (eg: ['#d65f5f', '#5fba7d']).
|
||
|
width : float, default 100
|
||
|
A number between 0 or 100. The largest value will cover `width`
|
||
|
percent of the cell's width.
|
||
|
align : {'left', 'zero',' mid'}, default 'left'
|
||
|
How to align the bars with the cells.
|
||
|
|
||
|
- 'left' : the min value starts at the left of the cell.
|
||
|
- 'zero' : a value of zero is located at the center of the cell.
|
||
|
- 'mid' : the center of the cell is at (max-min)/2, or
|
||
|
if values are all negative (positive) the zero is aligned
|
||
|
at the right (left) of the cell.
|
||
|
vmin : float, optional
|
||
|
Minimum bar value, defining the left hand limit
|
||
|
of the bar drawing range, lower values are clipped to `vmin`.
|
||
|
When None (default): the minimum value of the data will be used.
|
||
|
|
||
|
.. versionadded:: 0.24.0
|
||
|
|
||
|
vmax : float, optional
|
||
|
Maximum bar value, defining the right hand limit
|
||
|
of the bar drawing range, higher values are clipped to `vmax`.
|
||
|
When None (default): the maximum value of the data will be used.
|
||
|
|
||
|
.. versionadded:: 0.24.0
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
if align not in ("left", "zero", "mid"):
|
||
|
raise ValueError("`align` must be one of {'left', 'zero',' mid'}")
|
||
|
|
||
|
if not (is_list_like(color)):
|
||
|
color = [color, color]
|
||
|
elif len(color) == 1:
|
||
|
color = [color[0], color[0]]
|
||
|
elif len(color) > 2:
|
||
|
raise ValueError(
|
||
|
"`color` must be string or a list-like "
|
||
|
"of length 2: [`color_neg`, `color_pos`] "
|
||
|
"(eg: color=['#d65f5f', '#5fba7d'])"
|
||
|
)
|
||
|
|
||
|
subset = maybe_numeric_slice(self.data, subset)
|
||
|
subset = non_reducing_slice(subset)
|
||
|
self.apply(
|
||
|
self._bar,
|
||
|
subset=subset,
|
||
|
axis=axis,
|
||
|
align=align,
|
||
|
colors=color,
|
||
|
width=width,
|
||
|
vmin=vmin,
|
||
|
vmax=vmax,
|
||
|
)
|
||
|
|
||
|
return self
|
||
|
|
||
|
def highlight_max(
|
||
|
self, subset=None, color: str = "yellow", axis: Optional[Axis] = 0
|
||
|
) -> "Styler":
|
||
|
"""
|
||
|
Highlight the maximum by shading the background.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset : IndexSlice, default None
|
||
|
A valid slice for ``data`` to limit the style application to.
|
||
|
color : str, default 'yellow'
|
||
|
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
||
|
Apply to each column (``axis=0`` or ``'index'``), to each row
|
||
|
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
|
||
|
with ``axis=None``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
return self._highlight_handler(subset=subset, color=color, axis=axis, max_=True)
|
||
|
|
||
|
def highlight_min(
|
||
|
self, subset=None, color: str = "yellow", axis: Optional[Axis] = 0
|
||
|
) -> "Styler":
|
||
|
"""
|
||
|
Highlight the minimum by shading the background.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
subset : IndexSlice, default None
|
||
|
A valid slice for ``data`` to limit the style application to.
|
||
|
color : str, default 'yellow'
|
||
|
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
||
|
Apply to each column (``axis=0`` or ``'index'``), to each row
|
||
|
(``axis=1`` or ``'columns'``), or to the entire DataFrame at once
|
||
|
with ``axis=None``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : Styler
|
||
|
"""
|
||
|
return self._highlight_handler(
|
||
|
subset=subset, color=color, axis=axis, max_=False
|
||
|
)
|
||
|
|
||
|
def _highlight_handler(
|
||
|
self,
|
||
|
subset=None,
|
||
|
color: str = "yellow",
|
||
|
axis: Optional[Axis] = None,
|
||
|
max_: bool = True,
|
||
|
) -> "Styler":
|
||
|
subset = non_reducing_slice(maybe_numeric_slice(self.data, subset))
|
||
|
self.apply(
|
||
|
self._highlight_extrema, color=color, axis=axis, subset=subset, max_=max_
|
||
|
)
|
||
|
return self
|
||
|
|
||
|
@staticmethod
|
||
|
def _highlight_extrema(
|
||
|
data: FrameOrSeries, color: str = "yellow", max_: bool = True
|
||
|
):
|
||
|
"""
|
||
|
Highlight the min or max in a Series or DataFrame.
|
||
|
"""
|
||
|
attr = f"background-color: {color}"
|
||
|
|
||
|
if max_:
|
||
|
extrema = data == np.nanmax(data.to_numpy())
|
||
|
else:
|
||
|
extrema = data == np.nanmin(data.to_numpy())
|
||
|
|
||
|
if data.ndim == 1: # Series from .apply
|
||
|
return [attr if v else "" for v in extrema]
|
||
|
else: # DataFrame from .tee
|
||
|
return pd.DataFrame(
|
||
|
np.where(extrema, attr, ""), index=data.index, columns=data.columns
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def from_custom_template(cls, searchpath, name):
|
||
|
"""
|
||
|
Factory function for creating a subclass of ``Styler``.
|
||
|
|
||
|
Uses a custom template and Jinja environment.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
searchpath : str or list
|
||
|
Path or paths of directories containing the templates.
|
||
|
name : str
|
||
|
Name of your custom template to use for rendering.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
MyStyler : subclass of Styler
|
||
|
Has the correct ``env`` and ``template`` class attributes set.
|
||
|
"""
|
||
|
loader = jinja2.ChoiceLoader([jinja2.FileSystemLoader(searchpath), cls.loader])
|
||
|
|
||
|
# mypy doesnt like dynamically-defined class
|
||
|
# error: Variable "cls" is not valid as a type [valid-type]
|
||
|
# error: Invalid base class "cls" [misc]
|
||
|
class MyStyler(cls): # type:ignore[valid-type,misc]
|
||
|
env = jinja2.Environment(loader=loader)
|
||
|
template = env.get_template(name)
|
||
|
|
||
|
return MyStyler
|
||
|
|
||
|
def pipe(self, func: Callable, *args, **kwargs):
|
||
|
"""
|
||
|
Apply ``func(self, *args, **kwargs)``, and return the result.
|
||
|
|
||
|
.. versionadded:: 0.24.0
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
func : function
|
||
|
Function to apply to the Styler. Alternatively, a
|
||
|
``(callable, keyword)`` tuple where ``keyword`` is a string
|
||
|
indicating the keyword of ``callable`` that expects the Styler.
|
||
|
*args : optional
|
||
|
Arguments passed to `func`.
|
||
|
**kwargs : optional
|
||
|
A dictionary of keyword arguments passed into ``func``.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
object :
|
||
|
The value returned by ``func``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.pipe : Analogous method for DataFrame.
|
||
|
Styler.apply : Apply a function row-wise, column-wise, or table-wise to
|
||
|
modify the dataframe's styling.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Like :meth:`DataFrame.pipe`, this method can simplify the
|
||
|
application of several user-defined functions to a styler. Instead
|
||
|
of writing:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
f(g(df.style.set_precision(3), arg1=a), arg2=b, arg3=c)
|
||
|
|
||
|
users can write:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
(df.style.set_precision(3)
|
||
|
.pipe(g, arg1=a)
|
||
|
.pipe(f, arg2=b, arg3=c))
|
||
|
|
||
|
In particular, this allows users to define functions that take a
|
||
|
styler object, along with other parameters, and return the styler after
|
||
|
making styling changes (such as calling :meth:`Styler.apply` or
|
||
|
:meth:`Styler.set_properties`). Using ``.pipe``, these user-defined
|
||
|
style "transformations" can be interleaved with calls to the built-in
|
||
|
Styler interface.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def format_conversion(styler):
|
||
|
... return (styler.set_properties(**{'text-align': 'right'})
|
||
|
... .format({'conversion': '{:.1%}'}))
|
||
|
|
||
|
The user-defined ``format_conversion`` function above can be called
|
||
|
within a sequence of other style modifications:
|
||
|
|
||
|
>>> df = pd.DataFrame({'trial': list(range(5)),
|
||
|
... 'conversion': [0.75, 0.85, np.nan, 0.7, 0.72]})
|
||
|
>>> (df.style
|
||
|
... .highlight_min(subset=['conversion'], color='yellow')
|
||
|
... .pipe(format_conversion)
|
||
|
... .set_caption("Results with minimum conversion highlighted."))
|
||
|
"""
|
||
|
return com.pipe(self, func, *args, **kwargs)
|
||
|
|
||
|
|
||
|
def _is_visible(idx_row, idx_col, lengths) -> bool:
|
||
|
"""
|
||
|
Index -> {(idx_row, idx_col): bool}).
|
||
|
"""
|
||
|
return (idx_col, idx_row) in lengths
|
||
|
|
||
|
|
||
|
def _get_level_lengths(index, hidden_elements=None):
|
||
|
"""
|
||
|
Given an index, find the level length for each element.
|
||
|
|
||
|
Optional argument is a list of index positions which
|
||
|
should not be visible.
|
||
|
|
||
|
Result is a dictionary of (level, initial_position): span
|
||
|
"""
|
||
|
if isinstance(index, pd.MultiIndex):
|
||
|
levels = index.format(sparsify=lib.no_default, adjoin=False)
|
||
|
else:
|
||
|
levels = index.format()
|
||
|
|
||
|
if hidden_elements is None:
|
||
|
hidden_elements = []
|
||
|
|
||
|
lengths = {}
|
||
|
if index.nlevels == 1:
|
||
|
for i, value in enumerate(levels):
|
||
|
if i not in hidden_elements:
|
||
|
lengths[(0, i)] = 1
|
||
|
return lengths
|
||
|
|
||
|
for i, lvl in enumerate(levels):
|
||
|
for j, row in enumerate(lvl):
|
||
|
if not get_option("display.multi_sparse"):
|
||
|
lengths[(i, j)] = 1
|
||
|
elif (row is not lib.no_default) and (j not in hidden_elements):
|
||
|
last_label = j
|
||
|
lengths[(i, last_label)] = 1
|
||
|
elif row is not lib.no_default:
|
||
|
# even if its hidden, keep track of it in case
|
||
|
# length >1 and later elements are visible
|
||
|
last_label = j
|
||
|
lengths[(i, last_label)] = 0
|
||
|
elif j not in hidden_elements:
|
||
|
lengths[(i, last_label)] += 1
|
||
|
|
||
|
non_zero_lengths = {
|
||
|
element: length for element, length in lengths.items() if length >= 1
|
||
|
}
|
||
|
|
||
|
return non_zero_lengths
|
||
|
|
||
|
|
||
|
def _maybe_wrap_formatter(
|
||
|
formatter: Union[Callable, str], na_rep: Optional[str]
|
||
|
) -> Callable:
|
||
|
if isinstance(formatter, str):
|
||
|
formatter_func = lambda x: formatter.format(x)
|
||
|
elif callable(formatter):
|
||
|
formatter_func = formatter
|
||
|
else:
|
||
|
msg = f"Expected a template string or callable, got {formatter} instead"
|
||
|
raise TypeError(msg)
|
||
|
|
||
|
if na_rep is None:
|
||
|
return formatter_func
|
||
|
elif isinstance(na_rep, str):
|
||
|
return lambda x: na_rep if pd.isna(x) else formatter_func(x)
|
||
|
else:
|
||
|
msg = f"Expected a string, got {na_rep} instead"
|
||
|
raise TypeError(msg)
|