mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-12-05 04:55:06 +01:00
167 lines
5.1 KiB
Python
167 lines
5.1 KiB
Python
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.errors import NumbaUtilError
|
||
|
import pandas.util._test_decorators as td
|
||
|
|
||
|
from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("bad_raw", [None, 1, 0])
|
||
|
def test_rolling_apply_invalid_raw(bad_raw):
|
||
|
with pytest.raises(ValueError, match="raw parameter must be `True` or `False`"):
|
||
|
Series(range(3)).rolling(1).apply(len, raw=bad_raw)
|
||
|
|
||
|
|
||
|
def test_rolling_apply_out_of_bounds(engine_and_raw):
|
||
|
# gh-1850
|
||
|
engine, raw = engine_and_raw
|
||
|
|
||
|
vals = Series([1, 2, 3, 4])
|
||
|
|
||
|
result = vals.rolling(10).apply(np.sum, engine=engine, raw=raw)
|
||
|
assert result.isna().all()
|
||
|
|
||
|
result = vals.rolling(10, min_periods=1).apply(np.sum, engine=engine, raw=raw)
|
||
|
expected = Series([1, 3, 6, 10], dtype=float)
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("window", [2, "2s"])
|
||
|
def test_rolling_apply_with_pandas_objects(window):
|
||
|
# 5071
|
||
|
df = DataFrame(
|
||
|
{"A": np.random.randn(5), "B": np.random.randint(0, 10, size=5)},
|
||
|
index=date_range("20130101", periods=5, freq="s"),
|
||
|
)
|
||
|
|
||
|
# we have an equal spaced timeseries index
|
||
|
# so simulate removing the first period
|
||
|
def f(x):
|
||
|
if x.index[0] == df.index[0]:
|
||
|
return np.nan
|
||
|
return x.iloc[-1]
|
||
|
|
||
|
result = df.rolling(window).apply(f, raw=False)
|
||
|
expected = df.iloc[2:].reindex_like(df)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
with pytest.raises(AttributeError):
|
||
|
df.rolling(window).apply(f, raw=True)
|
||
|
|
||
|
|
||
|
def test_rolling_apply(engine_and_raw):
|
||
|
engine, raw = engine_and_raw
|
||
|
|
||
|
expected = Series([], dtype="float64")
|
||
|
result = expected.rolling(10).apply(lambda x: x.mean(), engine=engine, raw=raw)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# gh-8080
|
||
|
s = Series([None, None, None])
|
||
|
result = s.rolling(2, min_periods=0).apply(lambda x: len(x), engine=engine, raw=raw)
|
||
|
expected = Series([1.0, 2.0, 2.0])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.rolling(2, min_periods=0).apply(len, engine=engine, raw=raw)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_all_apply(engine_and_raw):
|
||
|
engine, raw = engine_and_raw
|
||
|
|
||
|
df = (
|
||
|
DataFrame(
|
||
|
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
|
||
|
).set_index("A")
|
||
|
* 2
|
||
|
)
|
||
|
er = df.rolling(window=1)
|
||
|
r = df.rolling(window="1s")
|
||
|
|
||
|
result = r.apply(lambda x: 1, engine=engine, raw=raw)
|
||
|
expected = er.apply(lambda x: 1, engine=engine, raw=raw)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_ragged_apply(engine_and_raw):
|
||
|
engine, raw = engine_and_raw
|
||
|
|
||
|
df = DataFrame({"B": range(5)})
|
||
|
df.index = [
|
||
|
Timestamp("20130101 09:00:00"),
|
||
|
Timestamp("20130101 09:00:02"),
|
||
|
Timestamp("20130101 09:00:03"),
|
||
|
Timestamp("20130101 09:00:05"),
|
||
|
Timestamp("20130101 09:00:06"),
|
||
|
]
|
||
|
|
||
|
f = lambda x: 1
|
||
|
result = df.rolling(window="1s", min_periods=1).apply(f, engine=engine, raw=raw)
|
||
|
expected = df.copy()
|
||
|
expected["B"] = 1.0
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
result = df.rolling(window="2s", min_periods=1).apply(f, engine=engine, raw=raw)
|
||
|
expected = df.copy()
|
||
|
expected["B"] = 1.0
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
result = df.rolling(window="5s", min_periods=1).apply(f, engine=engine, raw=raw)
|
||
|
expected = df.copy()
|
||
|
expected["B"] = 1.0
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_invalid_engine():
|
||
|
with pytest.raises(ValueError, match="engine must be either 'numba' or 'cython'"):
|
||
|
Series(range(1)).rolling(1).apply(lambda x: x, engine="foo")
|
||
|
|
||
|
|
||
|
def test_invalid_engine_kwargs_cython():
|
||
|
with pytest.raises(ValueError, match="cython engine does not accept engine_kwargs"):
|
||
|
Series(range(1)).rolling(1).apply(
|
||
|
lambda x: x, engine="cython", engine_kwargs={"nopython": False}
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_invalid_raw_numba():
|
||
|
with pytest.raises(
|
||
|
ValueError, match="raw must be `True` when using the numba engine"
|
||
|
):
|
||
|
Series(range(1)).rolling(1).apply(lambda x: x, raw=False, engine="numba")
|
||
|
|
||
|
|
||
|
@td.skip_if_no("numba")
|
||
|
def test_invalid_kwargs_nopython():
|
||
|
with pytest.raises(NumbaUtilError, match="numba does not support kwargs with"):
|
||
|
Series(range(1)).rolling(1).apply(
|
||
|
lambda x: x, kwargs={"a": 1}, engine="numba", raw=True
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("args_kwargs", [[None, {"par": 10}], [(10,), None]])
|
||
|
def test_rolling_apply_args_kwargs(args_kwargs):
|
||
|
# GH 33433
|
||
|
def foo(x, par):
|
||
|
return np.sum(x + par)
|
||
|
|
||
|
df = DataFrame({"gr": [1, 1], "a": [1, 2]})
|
||
|
|
||
|
idx = Index(["gr", "a"])
|
||
|
expected = DataFrame([[11.0, 11.0], [11.0, 12.0]], columns=idx)
|
||
|
|
||
|
result = df.rolling(1).apply(foo, args=args_kwargs[0], kwargs=args_kwargs[1])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
result = df.rolling(1).apply(foo, args=(10,))
|
||
|
|
||
|
midx = MultiIndex.from_tuples([(1, 0), (1, 1)], names=["gr", None])
|
||
|
expected = Series([11.0, 12.0], index=midx, name="a")
|
||
|
|
||
|
gb_rolling = df.groupby("gr")["a"].rolling(1)
|
||
|
|
||
|
result = gb_rolling.apply(foo, args=args_kwargs[0], kwargs=args_kwargs[1])
|
||
|
tm.assert_series_equal(result, expected)
|