mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-10 14:43:19 +01:00
336 lines
12 KiB
Python
336 lines
12 KiB
Python
|
"""
|
|||
|
NumPy
|
|||
|
=====
|
|||
|
|
|||
|
Provides
|
|||
|
1. An array object of arbitrary homogeneous items
|
|||
|
2. Fast mathematical operations over arrays
|
|||
|
3. Linear Algebra, Fourier Transforms, Random Number Generation
|
|||
|
|
|||
|
How to use the documentation
|
|||
|
----------------------------
|
|||
|
Documentation is available in two forms: docstrings provided
|
|||
|
with the code, and a loose standing reference guide, available from
|
|||
|
`the NumPy homepage <https://www.scipy.org>`_.
|
|||
|
|
|||
|
We recommend exploring the docstrings using
|
|||
|
`IPython <https://ipython.org>`_, an advanced Python shell with
|
|||
|
TAB-completion and introspection capabilities. See below for further
|
|||
|
instructions.
|
|||
|
|
|||
|
The docstring examples assume that `numpy` has been imported as `np`::
|
|||
|
|
|||
|
>>> import numpy as np
|
|||
|
|
|||
|
Code snippets are indicated by three greater-than signs::
|
|||
|
|
|||
|
>>> x = 42
|
|||
|
>>> x = x + 1
|
|||
|
|
|||
|
Use the built-in ``help`` function to view a function's docstring::
|
|||
|
|
|||
|
>>> help(np.sort)
|
|||
|
... # doctest: +SKIP
|
|||
|
|
|||
|
For some objects, ``np.info(obj)`` may provide additional help. This is
|
|||
|
particularly true if you see the line "Help on ufunc object:" at the top
|
|||
|
of the help() page. Ufuncs are implemented in C, not Python, for speed.
|
|||
|
The native Python help() does not know how to view their help, but our
|
|||
|
np.info() function does.
|
|||
|
|
|||
|
To search for documents containing a keyword, do::
|
|||
|
|
|||
|
>>> np.lookfor('keyword')
|
|||
|
... # doctest: +SKIP
|
|||
|
|
|||
|
General-purpose documents like a glossary and help on the basic concepts
|
|||
|
of numpy are available under the ``doc`` sub-module::
|
|||
|
|
|||
|
>>> from numpy import doc
|
|||
|
>>> help(doc)
|
|||
|
... # doctest: +SKIP
|
|||
|
|
|||
|
Available subpackages
|
|||
|
---------------------
|
|||
|
doc
|
|||
|
Topical documentation on broadcasting, indexing, etc.
|
|||
|
lib
|
|||
|
Basic functions used by several sub-packages.
|
|||
|
random
|
|||
|
Core Random Tools
|
|||
|
linalg
|
|||
|
Core Linear Algebra Tools
|
|||
|
fft
|
|||
|
Core FFT routines
|
|||
|
polynomial
|
|||
|
Polynomial tools
|
|||
|
testing
|
|||
|
NumPy testing tools
|
|||
|
f2py
|
|||
|
Fortran to Python Interface Generator.
|
|||
|
distutils
|
|||
|
Enhancements to distutils with support for
|
|||
|
Fortran compilers support and more.
|
|||
|
|
|||
|
Utilities
|
|||
|
---------
|
|||
|
test
|
|||
|
Run numpy unittests
|
|||
|
show_config
|
|||
|
Show numpy build configuration
|
|||
|
dual
|
|||
|
Overwrite certain functions with high-performance Scipy tools
|
|||
|
matlib
|
|||
|
Make everything matrices.
|
|||
|
__version__
|
|||
|
NumPy version string
|
|||
|
|
|||
|
Viewing documentation using IPython
|
|||
|
-----------------------------------
|
|||
|
Start IPython with the NumPy profile (``ipython -p numpy``), which will
|
|||
|
import `numpy` under the alias `np`. Then, use the ``cpaste`` command to
|
|||
|
paste examples into the shell. To see which functions are available in
|
|||
|
`numpy`, type ``np.<TAB>`` (where ``<TAB>`` refers to the TAB key), or use
|
|||
|
``np.*cos*?<ENTER>`` (where ``<ENTER>`` refers to the ENTER key) to narrow
|
|||
|
down the list. To view the docstring for a function, use
|
|||
|
``np.cos?<ENTER>`` (to view the docstring) and ``np.cos??<ENTER>`` (to view
|
|||
|
the source code).
|
|||
|
|
|||
|
Copies vs. in-place operation
|
|||
|
-----------------------------
|
|||
|
Most of the functions in `numpy` return a copy of the array argument
|
|||
|
(e.g., `np.sort`). In-place versions of these functions are often
|
|||
|
available as array methods, i.e. ``x = np.array([1,2,3]); x.sort()``.
|
|||
|
Exceptions to this rule are documented.
|
|||
|
|
|||
|
"""
|
|||
|
import sys
|
|||
|
import warnings
|
|||
|
|
|||
|
from ._globals import ModuleDeprecationWarning, VisibleDeprecationWarning
|
|||
|
from ._globals import _NoValue
|
|||
|
|
|||
|
# We first need to detect if we're being called as part of the numpy setup
|
|||
|
# procedure itself in a reliable manner.
|
|||
|
try:
|
|||
|
__NUMPY_SETUP__
|
|||
|
except NameError:
|
|||
|
__NUMPY_SETUP__ = False
|
|||
|
|
|||
|
if __NUMPY_SETUP__:
|
|||
|
sys.stderr.write('Running from numpy source directory.\n')
|
|||
|
else:
|
|||
|
try:
|
|||
|
from numpy.__config__ import show as show_config
|
|||
|
except ImportError:
|
|||
|
msg = """Error importing numpy: you should not try to import numpy from
|
|||
|
its source directory; please exit the numpy source tree, and relaunch
|
|||
|
your python interpreter from there."""
|
|||
|
raise ImportError(msg)
|
|||
|
|
|||
|
from .version import git_revision as __git_revision__
|
|||
|
from .version import version as __version__
|
|||
|
|
|||
|
__all__ = ['ModuleDeprecationWarning',
|
|||
|
'VisibleDeprecationWarning']
|
|||
|
|
|||
|
# Allow distributors to run custom init code
|
|||
|
from . import _distributor_init
|
|||
|
|
|||
|
from . import core
|
|||
|
from .core import *
|
|||
|
from . import compat
|
|||
|
from . import lib
|
|||
|
# NOTE: to be revisited following future namespace cleanup.
|
|||
|
# See gh-14454 and gh-15672 for discussion.
|
|||
|
from .lib import *
|
|||
|
|
|||
|
from . import linalg
|
|||
|
from . import fft
|
|||
|
from . import polynomial
|
|||
|
from . import random
|
|||
|
from . import ctypeslib
|
|||
|
from . import ma
|
|||
|
from . import matrixlib as _mat
|
|||
|
from .matrixlib import *
|
|||
|
|
|||
|
# Make these accessible from numpy name-space
|
|||
|
# but not imported in from numpy import *
|
|||
|
# TODO[gh-6103]: Deprecate these
|
|||
|
from builtins import bool, int, float, complex, object, str
|
|||
|
from .compat import long, unicode
|
|||
|
|
|||
|
from .core import round, abs, max, min
|
|||
|
# now that numpy modules are imported, can initialize limits
|
|||
|
core.getlimits._register_known_types()
|
|||
|
|
|||
|
__all__.extend(['__version__', 'show_config'])
|
|||
|
__all__.extend(core.__all__)
|
|||
|
__all__.extend(_mat.__all__)
|
|||
|
__all__.extend(lib.__all__)
|
|||
|
__all__.extend(['linalg', 'fft', 'random', 'ctypeslib', 'ma'])
|
|||
|
|
|||
|
# These are added by `from .core import *` and `core.__all__`, but we
|
|||
|
# overwrite them above with builtins we do _not_ want to export.
|
|||
|
__all__.remove('long')
|
|||
|
__all__.remove('unicode')
|
|||
|
|
|||
|
# Remove things that are in the numpy.lib but not in the numpy namespace
|
|||
|
# Note that there is a test (numpy/tests/test_public_api.py:test_numpy_namespace)
|
|||
|
# that prevents adding more things to the main namespace by accident.
|
|||
|
# The list below will grow until the `from .lib import *` fixme above is
|
|||
|
# taken care of
|
|||
|
__all__.remove('Arrayterator')
|
|||
|
del Arrayterator
|
|||
|
|
|||
|
# Filter out Cython harmless warnings
|
|||
|
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
|
|||
|
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
|
|||
|
warnings.filterwarnings("ignore", message="numpy.ndarray size changed")
|
|||
|
|
|||
|
# oldnumeric and numarray were removed in 1.9. In case some packages import
|
|||
|
# but do not use them, we define them here for backward compatibility.
|
|||
|
oldnumeric = 'removed'
|
|||
|
numarray = 'removed'
|
|||
|
|
|||
|
if sys.version_info[:2] >= (3, 7):
|
|||
|
# Importing Tester requires importing all of UnitTest which is not a
|
|||
|
# cheap import Since it is mainly used in test suits, we lazy import it
|
|||
|
# here to save on the order of 10 ms of import time for most users
|
|||
|
#
|
|||
|
# The previous way Tester was imported also had a side effect of adding
|
|||
|
# the full `numpy.testing` namespace
|
|||
|
#
|
|||
|
# module level getattr is only supported in 3.7 onwards
|
|||
|
# https://www.python.org/dev/peps/pep-0562/
|
|||
|
def __getattr__(attr):
|
|||
|
if attr == 'testing':
|
|||
|
import numpy.testing as testing
|
|||
|
return testing
|
|||
|
elif attr == 'Tester':
|
|||
|
from .testing import Tester
|
|||
|
return Tester
|
|||
|
else:
|
|||
|
raise AttributeError("module {!r} has no attribute "
|
|||
|
"{!r}".format(__name__, attr))
|
|||
|
|
|||
|
def __dir__():
|
|||
|
return list(globals().keys() | {'Tester', 'testing'})
|
|||
|
|
|||
|
else:
|
|||
|
# We don't actually use this ourselves anymore, but I'm not 100% sure that
|
|||
|
# no-one else in the world is using it (though I hope not)
|
|||
|
from .testing import Tester
|
|||
|
|
|||
|
# Pytest testing
|
|||
|
from numpy._pytesttester import PytestTester
|
|||
|
test = PytestTester(__name__)
|
|||
|
del PytestTester
|
|||
|
|
|||
|
|
|||
|
def _sanity_check():
|
|||
|
"""
|
|||
|
Quick sanity checks for common bugs caused by environment.
|
|||
|
There are some cases e.g. with wrong BLAS ABI that cause wrong
|
|||
|
results under specific runtime conditions that are not necessarily
|
|||
|
achieved during test suite runs, and it is useful to catch those early.
|
|||
|
|
|||
|
See https://github.com/numpy/numpy/issues/8577 and other
|
|||
|
similar bug reports.
|
|||
|
|
|||
|
"""
|
|||
|
try:
|
|||
|
x = ones(2, dtype=float32)
|
|||
|
if not abs(x.dot(x) - 2.0) < 1e-5:
|
|||
|
raise AssertionError()
|
|||
|
except AssertionError:
|
|||
|
msg = ("The current Numpy installation ({!r}) fails to "
|
|||
|
"pass simple sanity checks. This can be caused for example "
|
|||
|
"by incorrect BLAS library being linked in, or by mixing "
|
|||
|
"package managers (pip, conda, apt, ...). Search closed "
|
|||
|
"numpy issues for similar problems.")
|
|||
|
raise RuntimeError(msg.format(__file__))
|
|||
|
|
|||
|
_sanity_check()
|
|||
|
del _sanity_check
|
|||
|
|
|||
|
def _mac_os_check():
|
|||
|
"""
|
|||
|
Quick Sanity check for Mac OS look for accelerate build bugs.
|
|||
|
Testing numpy polyfit calls init_dgelsd(LAPACK)
|
|||
|
"""
|
|||
|
try:
|
|||
|
c = array([3., 2., 1.])
|
|||
|
x = linspace(0, 2, 5)
|
|||
|
y = polyval(c, x)
|
|||
|
_ = polyfit(x, y, 2, cov=True)
|
|||
|
except ValueError:
|
|||
|
pass
|
|||
|
|
|||
|
import sys
|
|||
|
if sys.platform == "darwin":
|
|||
|
with warnings.catch_warnings(record=True) as w:
|
|||
|
_mac_os_check()
|
|||
|
# Throw runtime error, if the test failed Check for warning and error_message
|
|||
|
error_message = ""
|
|||
|
if len(w) > 0:
|
|||
|
error_message = "{}: {}".format(w[-1].category.__name__, str(w[-1].message))
|
|||
|
msg = (
|
|||
|
"Polyfit sanity test emitted a warning, most likely due "
|
|||
|
"to using a buggy Accelerate backend. "
|
|||
|
"If you compiled yourself, "
|
|||
|
"see site.cfg.example for information. "
|
|||
|
"Otherwise report this to the vendor "
|
|||
|
"that provided NumPy.\n{}\n".format(
|
|||
|
error_message))
|
|||
|
raise RuntimeError(msg)
|
|||
|
del _mac_os_check
|
|||
|
|
|||
|
def _win_os_check():
|
|||
|
"""
|
|||
|
Quick Sanity check for Windows OS: look for fmod bug issue 16744.
|
|||
|
 """
|
|||
|
try:
|
|||
|
a = arange(13 * 13, dtype= float64).reshape(13, 13)
|
|||
|
a = a % 17 # calls fmod
|
|||
|
linalg.eig(a)
|
|||
|
except Exception:
|
|||
|
msg = ("The current Numpy installation ({!r}) fails to "
|
|||
|
"pass a sanity check due to a bug in the windows runtime. "
|
|||
|
"See this issue for more information: "
|
|||
|
"https://tinyurl.com/y3dm3h86")
|
|||
|
raise RuntimeError(msg.format(__file__)) from None
|
|||
|
|
|||
|
if sys.platform == "win32" and sys.maxsize > 2**32:
|
|||
|
_win_os_check()
|
|||
|
|
|||
|
del _win_os_check
|
|||
|
|
|||
|
# We usually use madvise hugepages support, but on some old kernels it
|
|||
|
# is slow and thus better avoided.
|
|||
|
# Specifically kernel version 4.6 had a bug fix which probably fixed this:
|
|||
|
# https://github.com/torvalds/linux/commit/7cf91a98e607c2f935dbcc177d70011e95b8faff
|
|||
|
import os
|
|||
|
use_hugepage = os.environ.get("NUMPY_MADVISE_HUGEPAGE", None)
|
|||
|
if sys.platform == "linux" and use_hugepage is None:
|
|||
|
# If there is an issue with parsing the kernel version,
|
|||
|
# set use_hugepages to 0. Usage of LooseVersion will handle
|
|||
|
# the kernel version parsing better, but avoided since it
|
|||
|
# will increase the import time. See: #16679 for related discussion.
|
|||
|
try:
|
|||
|
use_hugepage = 1
|
|||
|
kernel_version = os.uname().release.split(".")[:2]
|
|||
|
kernel_version = tuple(int(v) for v in kernel_version)
|
|||
|
if kernel_version < (4, 6):
|
|||
|
use_hugepage = 0
|
|||
|
except ValueError:
|
|||
|
use_hugepages = 0
|
|||
|
elif use_hugepage is None:
|
|||
|
# This is not Linux, so it should not matter, just enable anyway
|
|||
|
use_hugepage = 1
|
|||
|
else:
|
|||
|
use_hugepage = int(use_hugepage)
|
|||
|
|
|||
|
# Note that this will currently only make a difference on Linux
|
|||
|
core.multiarray._set_madvise_hugepage(use_hugepage)
|