craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/tests/test_multilevel.py

420 lines
14 KiB
Python
Raw Normal View History

import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, MultiIndex, Series
import pandas._testing as tm
AGG_FUNCTIONS = [
"sum",
"prod",
"min",
"max",
"median",
"mean",
"skew",
"mad",
"std",
"var",
"sem",
]
class TestMultiLevel:
def test_reindex_level(self, multiindex_year_month_day_dataframe_random_data):
# axis=0
ymd = multiindex_year_month_day_dataframe_random_data
month_sums = ymd.sum(level="month")
result = month_sums.reindex(ymd.index, level=1)
expected = ymd.groupby(level="month").transform(np.sum)
tm.assert_frame_equal(result, expected)
# Series
result = month_sums["A"].reindex(ymd.index, level=1)
expected = ymd["A"].groupby(level="month").transform(np.sum)
tm.assert_series_equal(result, expected, check_names=False)
# axis=1
month_sums = ymd.T.sum(axis=1, level="month")
result = month_sums.reindex(columns=ymd.index, level=1)
expected = ymd.groupby(level="month").transform(np.sum).T
tm.assert_frame_equal(result, expected)
def test_binops_level(self, multiindex_year_month_day_dataframe_random_data):
ymd = multiindex_year_month_day_dataframe_random_data
def _check_op(opname):
op = getattr(DataFrame, opname)
month_sums = ymd.sum(level="month")
result = op(ymd, month_sums, level="month")
broadcasted = ymd.groupby(level="month").transform(np.sum)
expected = op(ymd, broadcasted)
tm.assert_frame_equal(result, expected)
# Series
op = getattr(Series, opname)
result = op(ymd["A"], month_sums["A"], level="month")
broadcasted = ymd["A"].groupby(level="month").transform(np.sum)
expected = op(ymd["A"], broadcasted)
expected.name = "A"
tm.assert_series_equal(result, expected)
_check_op("sub")
_check_op("add")
_check_op("mul")
_check_op("div")
def test_reindex(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
expected = frame.iloc[[0, 3]]
reindexed = frame.loc[[("foo", "one"), ("bar", "one")]]
tm.assert_frame_equal(reindexed, expected)
def test_reindex_preserve_levels(
self, multiindex_year_month_day_dataframe_random_data
):
ymd = multiindex_year_month_day_dataframe_random_data
new_index = ymd.index[::10]
chunk = ymd.reindex(new_index)
assert chunk.index is new_index
chunk = ymd.loc[new_index]
assert chunk.index is new_index
ymdT = ymd.T
chunk = ymdT.reindex(columns=new_index)
assert chunk.columns is new_index
chunk = ymdT.loc[:, new_index]
assert chunk.columns is new_index
def test_groupby_transform(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
s = frame["A"]
grouper = s.index.get_level_values(0)
grouped = s.groupby(grouper)
applied = grouped.apply(lambda x: x * 2)
expected = grouped.transform(lambda x: x * 2)
result = applied.reindex(expected.index)
tm.assert_series_equal(result, expected, check_names=False)
def test_groupby_corner(self):
midx = MultiIndex(
levels=[["foo"], ["bar"], ["baz"]],
codes=[[0], [0], [0]],
names=["one", "two", "three"],
)
df = DataFrame([np.random.rand(4)], columns=["a", "b", "c", "d"], index=midx)
# should work
df.groupby(level="three")
def test_groupby_level_no_obs(self):
# #1697
midx = MultiIndex.from_tuples(
[
("f1", "s1"),
("f1", "s2"),
("f2", "s1"),
("f2", "s2"),
("f3", "s1"),
("f3", "s2"),
]
)
df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx)
df1 = df.loc(axis=1)[df.columns.map(lambda u: u[0] in ["f2", "f3"])]
grouped = df1.groupby(axis=1, level=0)
result = grouped.sum()
assert (result.columns == ["f2", "f3"]).all()
def test_setitem_with_expansion_multiindex_columns(
self, multiindex_year_month_day_dataframe_random_data
):
ymd = multiindex_year_month_day_dataframe_random_data
df = ymd[:5].T
df[2000, 1, 10] = df[2000, 1, 7]
assert isinstance(df.columns, MultiIndex)
assert (df[2000, 1, 10] == df[2000, 1, 7]).all()
def test_alignment(self):
x = Series(
data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])
)
y = Series(
data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])
)
res = x - y
exp_index = x.index.union(y.index)
exp = x.reindex(exp_index) - y.reindex(exp_index)
tm.assert_series_equal(res, exp)
# hit non-monotonic code path
res = x[::-1] - y[::-1]
exp_index = x.index.union(y.index)
exp = x.reindex(exp_index) - y.reindex(exp_index)
tm.assert_series_equal(res, exp)
@pytest.mark.parametrize("op", AGG_FUNCTIONS)
@pytest.mark.parametrize("level", [0, 1])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("sort", [True, False])
def test_series_group_min_max(
self, op, level, skipna, sort, series_with_multilevel_index
):
# GH 17537
ser = series_with_multilevel_index
grouped = ser.groupby(level=level, sort=sort)
# skipna=True
leftside = grouped.agg(lambda x: getattr(x, op)(skipna=skipna))
rightside = getattr(ser, op)(level=level, skipna=skipna)
if sort:
rightside = rightside.sort_index(level=level)
tm.assert_series_equal(leftside, rightside)
@pytest.mark.parametrize("op", AGG_FUNCTIONS)
@pytest.mark.parametrize("level", [0, 1])
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("sort", [True, False])
def test_frame_group_ops(
self, op, level, axis, skipna, sort, multiindex_dataframe_random_data
):
# GH 17537
frame = multiindex_dataframe_random_data
frame.iloc[1, [1, 2]] = np.nan
frame.iloc[7, [0, 1]] = np.nan
level_name = frame.index.names[level]
if axis == 0:
frame = frame
else:
frame = frame.T
grouped = frame.groupby(level=level, axis=axis, sort=sort)
pieces = []
def aggf(x):
pieces.append(x)
return getattr(x, op)(skipna=skipna, axis=axis)
leftside = grouped.agg(aggf)
rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna)
if sort:
rightside = rightside.sort_index(level=level, axis=axis)
frame = frame.sort_index(level=level, axis=axis)
# for good measure, groupby detail
level_index = frame._get_axis(axis).levels[level].rename(level_name)
tm.assert_index_equal(leftside._get_axis(axis), level_index)
tm.assert_index_equal(rightside._get_axis(axis), level_index)
tm.assert_frame_equal(leftside, rightside)
def test_std_var_pass_ddof(self):
index = MultiIndex.from_arrays(
[np.arange(5).repeat(10), np.tile(np.arange(10), 5)]
)
df = DataFrame(np.random.randn(len(index), 5), index=index)
for meth in ["var", "std"]:
ddof = 4
alt = lambda x: getattr(x, meth)(ddof=ddof)
result = getattr(df[0], meth)(level=0, ddof=ddof)
expected = df[0].groupby(level=0).agg(alt)
tm.assert_series_equal(result, expected)
result = getattr(df, meth)(level=0, ddof=ddof)
expected = df.groupby(level=0).agg(alt)
tm.assert_frame_equal(result, expected)
def test_agg_multiple_levels(
self, multiindex_year_month_day_dataframe_random_data, frame_or_series
):
ymd = multiindex_year_month_day_dataframe_random_data
if frame_or_series is Series:
ymd = ymd["A"]
result = ymd.sum(level=["year", "month"])
expected = ymd.groupby(level=["year", "month"]).sum()
tm.assert_equal(result, expected)
def test_groupby_multilevel(self, multiindex_year_month_day_dataframe_random_data):
ymd = multiindex_year_month_day_dataframe_random_data
result = ymd.groupby(level=[0, 1]).mean()
k1 = ymd.index.get_level_values(0)
k2 = ymd.index.get_level_values(1)
expected = ymd.groupby([k1, k2]).mean()
# TODO groupby with level_values drops names
tm.assert_frame_equal(result, expected, check_names=False)
assert result.index.names == ymd.index.names[:2]
result2 = ymd.groupby(level=ymd.index.names[:2]).mean()
tm.assert_frame_equal(result, result2)
def test_groupby_multilevel_with_transform(self):
pass
def test_multilevel_consolidate(self):
index = MultiIndex.from_tuples(
[("foo", "one"), ("foo", "two"), ("bar", "one"), ("bar", "two")]
)
df = DataFrame(np.random.randn(4, 4), index=index, columns=index)
df["Totals", ""] = df.sum(1)
df = df._consolidate()
def test_level_with_tuples(self):
index = MultiIndex(
levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
)
series = Series(np.random.randn(6), index=index)
frame = DataFrame(np.random.randn(6, 4), index=index)
result = series[("foo", "bar", 0)]
result2 = series.loc[("foo", "bar", 0)]
expected = series[:2]
expected.index = expected.index.droplevel(0)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
with pytest.raises(KeyError, match=r"^\(\('foo', 'bar', 0\), 2\)$"):
series[("foo", "bar", 0), 2]
result = frame.loc[("foo", "bar", 0)]
result2 = frame.xs(("foo", "bar", 0))
expected = frame[:2]
expected.index = expected.index.droplevel(0)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
index = MultiIndex(
levels=[[("foo", "bar"), ("foo", "baz"), ("foo", "qux")], [0, 1]],
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
)
series = Series(np.random.randn(6), index=index)
frame = DataFrame(np.random.randn(6, 4), index=index)
result = series[("foo", "bar")]
result2 = series.loc[("foo", "bar")]
expected = series[:2]
expected.index = expected.index.droplevel(0)
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result2, expected)
result = frame.loc[("foo", "bar")]
result2 = frame.xs(("foo", "bar"))
expected = frame[:2]
expected.index = expected.index.droplevel(0)
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
def test_reindex_level_partial_selection(self, multiindex_dataframe_random_data):
frame = multiindex_dataframe_random_data
result = frame.reindex(["foo", "qux"], level=0)
expected = frame.iloc[[0, 1, 2, 7, 8, 9]]
tm.assert_frame_equal(result, expected)
result = frame.T.reindex(["foo", "qux"], axis=1, level=0)
tm.assert_frame_equal(result, expected.T)
result = frame.loc[["foo", "qux"]]
tm.assert_frame_equal(result, expected)
result = frame["A"].loc[["foo", "qux"]]
tm.assert_series_equal(result, expected["A"])
result = frame.T.loc[:, ["foo", "qux"]]
tm.assert_frame_equal(result, expected.T)
@pytest.mark.parametrize("d", [4, "d"])
def test_empty_frame_groupby_dtypes_consistency(self, d):
# GH 20888
group_keys = ["a", "b", "c"]
df = DataFrame({"a": [1], "b": [2], "c": [3], "d": [d]})
g = df[df.a == 2].groupby(group_keys)
result = g.first().index
expected = MultiIndex(
levels=[[1], [2], [3]], codes=[[], [], []], names=["a", "b", "c"]
)
tm.assert_index_equal(result, expected)
def test_duplicate_groupby_issues(self):
idx_tp = [
("600809", "20061231"),
("600809", "20070331"),
("600809", "20070630"),
("600809", "20070331"),
]
dt = ["demo", "demo", "demo", "demo"]
idx = MultiIndex.from_tuples(idx_tp, names=["STK_ID", "RPT_Date"])
s = Series(dt, index=idx)
result = s.groupby(s.index).first()
assert len(result) == 3
def test_subsets_multiindex_dtype(self):
# GH 20757
data = [["x", 1]]
columns = [("a", "b", np.nan), ("a", "c", 0.0)]
df = DataFrame(data, columns=MultiIndex.from_tuples(columns))
expected = df.dtypes.a.b
result = df.a.b.dtypes
tm.assert_series_equal(result, expected)
class TestSorted:
""" everything you wanted to test about sorting """
def test_sort_non_lexsorted(self):
# degenerate case where we sort but don't
# have a satisfying result :<
# GH 15797
idx = MultiIndex(
[["A", "B", "C"], ["c", "b", "a"]], [[0, 1, 2, 0, 1, 2], [0, 2, 1, 1, 0, 2]]
)
df = DataFrame({"col": range(len(idx))}, index=idx, dtype="int64")
assert df.index.is_lexsorted() is False
assert df.index.is_monotonic is False
sorted = df.sort_index()
assert sorted.index.is_lexsorted() is True
assert sorted.index.is_monotonic is True
expected = DataFrame(
{"col": [1, 4, 5, 2]},
index=MultiIndex.from_tuples(
[("B", "a"), ("B", "c"), ("C", "a"), ("C", "b")]
),
dtype="int64",
)
result = sorted.loc[pd.IndexSlice["B":"C", "a":"c"], :]
tm.assert_frame_equal(result, expected)