mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-12-05 04:55:06 +01:00
418 lines
13 KiB
Python
418 lines
13 KiB
Python
|
"""
|
||
|
For compatibility with numpy libraries, pandas functions or
|
||
|
methods have to accept '*args' and '**kwargs' parameters to
|
||
|
accommodate numpy arguments that are not actually used or
|
||
|
respected in the pandas implementation.
|
||
|
|
||
|
To ensure that users do not abuse these parameters, validation
|
||
|
is performed in 'validators.py' to make sure that any extra
|
||
|
parameters passed correspond ONLY to those in the numpy signature.
|
||
|
Part of that validation includes whether or not the user attempted
|
||
|
to pass in non-default values for these extraneous parameters. As we
|
||
|
want to discourage users from relying on these parameters when calling
|
||
|
the pandas implementation, we want them only to pass in the default values
|
||
|
for these parameters.
|
||
|
|
||
|
This module provides a set of commonly used default arguments for functions
|
||
|
and methods that are spread throughout the codebase. This module will make it
|
||
|
easier to adjust to future upstream changes in the analogous numpy signatures.
|
||
|
"""
|
||
|
from collections import OrderedDict
|
||
|
from distutils.version import LooseVersion
|
||
|
from typing import Any, Dict, Optional, Union
|
||
|
|
||
|
from numpy import __version__ as _np_version, ndarray
|
||
|
|
||
|
from pandas._libs.lib import is_bool, is_integer
|
||
|
from pandas.errors import UnsupportedFunctionCall
|
||
|
from pandas.util._validators import (
|
||
|
validate_args,
|
||
|
validate_args_and_kwargs,
|
||
|
validate_kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
class CompatValidator:
|
||
|
def __init__(
|
||
|
self,
|
||
|
defaults,
|
||
|
fname=None,
|
||
|
method: Optional[str] = None,
|
||
|
max_fname_arg_count=None,
|
||
|
):
|
||
|
self.fname = fname
|
||
|
self.method = method
|
||
|
self.defaults = defaults
|
||
|
self.max_fname_arg_count = max_fname_arg_count
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
args,
|
||
|
kwargs,
|
||
|
fname=None,
|
||
|
max_fname_arg_count=None,
|
||
|
method: Optional[str] = None,
|
||
|
) -> None:
|
||
|
if args or kwargs:
|
||
|
fname = self.fname if fname is None else fname
|
||
|
max_fname_arg_count = (
|
||
|
self.max_fname_arg_count
|
||
|
if max_fname_arg_count is None
|
||
|
else max_fname_arg_count
|
||
|
)
|
||
|
method = self.method if method is None else method
|
||
|
|
||
|
if method == "args":
|
||
|
validate_args(fname, args, max_fname_arg_count, self.defaults)
|
||
|
elif method == "kwargs":
|
||
|
validate_kwargs(fname, kwargs, self.defaults)
|
||
|
elif method == "both":
|
||
|
validate_args_and_kwargs(
|
||
|
fname, args, kwargs, max_fname_arg_count, self.defaults
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(f"invalid validation method '{method}'")
|
||
|
|
||
|
|
||
|
ARGMINMAX_DEFAULTS = dict(out=None)
|
||
|
validate_argmin = CompatValidator(
|
||
|
ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
validate_argmax = CompatValidator(
|
||
|
ARGMINMAX_DEFAULTS, fname="argmax", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
|
||
|
|
||
|
def process_skipna(skipna, args):
|
||
|
if isinstance(skipna, ndarray) or skipna is None:
|
||
|
args = (skipna,) + args
|
||
|
skipna = True
|
||
|
|
||
|
return skipna, args
|
||
|
|
||
|
|
||
|
def validate_argmin_with_skipna(skipna, args, kwargs):
|
||
|
"""
|
||
|
If 'Series.argmin' is called via the 'numpy' library,
|
||
|
the third parameter in its signature is 'out', which
|
||
|
takes either an ndarray or 'None', so check if the
|
||
|
'skipna' parameter is either an instance of ndarray or
|
||
|
is None, since 'skipna' itself should be a boolean
|
||
|
"""
|
||
|
skipna, args = process_skipna(skipna, args)
|
||
|
validate_argmin(args, kwargs)
|
||
|
return skipna
|
||
|
|
||
|
|
||
|
def validate_argmax_with_skipna(skipna, args, kwargs):
|
||
|
"""
|
||
|
If 'Series.argmax' is called via the 'numpy' library,
|
||
|
the third parameter in its signature is 'out', which
|
||
|
takes either an ndarray or 'None', so check if the
|
||
|
'skipna' parameter is either an instance of ndarray or
|
||
|
is None, since 'skipna' itself should be a boolean
|
||
|
"""
|
||
|
skipna, args = process_skipna(skipna, args)
|
||
|
validate_argmax(args, kwargs)
|
||
|
return skipna
|
||
|
|
||
|
|
||
|
ARGSORT_DEFAULTS: "OrderedDict[str, Optional[Union[int, str]]]" = OrderedDict()
|
||
|
ARGSORT_DEFAULTS["axis"] = -1
|
||
|
ARGSORT_DEFAULTS["kind"] = "quicksort"
|
||
|
ARGSORT_DEFAULTS["order"] = None
|
||
|
|
||
|
if LooseVersion(_np_version) >= LooseVersion("1.17.0"):
|
||
|
# GH-26361. NumPy added radix sort and changed default to None.
|
||
|
ARGSORT_DEFAULTS["kind"] = None
|
||
|
|
||
|
|
||
|
validate_argsort = CompatValidator(
|
||
|
ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both"
|
||
|
)
|
||
|
|
||
|
# two different signatures of argsort, this second validation
|
||
|
# for when the `kind` param is supported
|
||
|
ARGSORT_DEFAULTS_KIND: "OrderedDict[str, Optional[int]]" = OrderedDict()
|
||
|
ARGSORT_DEFAULTS_KIND["axis"] = -1
|
||
|
ARGSORT_DEFAULTS_KIND["order"] = None
|
||
|
validate_argsort_kind = CompatValidator(
|
||
|
ARGSORT_DEFAULTS_KIND, fname="argsort", max_fname_arg_count=0, method="both"
|
||
|
)
|
||
|
|
||
|
|
||
|
def validate_argsort_with_ascending(ascending, args, kwargs):
|
||
|
"""
|
||
|
If 'Categorical.argsort' is called via the 'numpy' library, the
|
||
|
first parameter in its signature is 'axis', which takes either
|
||
|
an integer or 'None', so check if the 'ascending' parameter has
|
||
|
either integer type or is None, since 'ascending' itself should
|
||
|
be a boolean
|
||
|
"""
|
||
|
if is_integer(ascending) or ascending is None:
|
||
|
args = (ascending,) + args
|
||
|
ascending = True
|
||
|
|
||
|
validate_argsort_kind(args, kwargs, max_fname_arg_count=3)
|
||
|
return ascending
|
||
|
|
||
|
|
||
|
CLIP_DEFAULTS: Dict[str, Any] = dict(out=None)
|
||
|
validate_clip = CompatValidator(
|
||
|
CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3
|
||
|
)
|
||
|
|
||
|
|
||
|
def validate_clip_with_axis(axis, args, kwargs):
|
||
|
"""
|
||
|
If 'NDFrame.clip' is called via the numpy library, the third
|
||
|
parameter in its signature is 'out', which can takes an ndarray,
|
||
|
so check if the 'axis' parameter is an instance of ndarray, since
|
||
|
'axis' itself should either be an integer or None
|
||
|
"""
|
||
|
if isinstance(axis, ndarray):
|
||
|
args = (axis,) + args
|
||
|
axis = None
|
||
|
|
||
|
validate_clip(args, kwargs)
|
||
|
return axis
|
||
|
|
||
|
|
||
|
CUM_FUNC_DEFAULTS: "OrderedDict[str, Any]" = OrderedDict()
|
||
|
CUM_FUNC_DEFAULTS["dtype"] = None
|
||
|
CUM_FUNC_DEFAULTS["out"] = None
|
||
|
validate_cum_func = CompatValidator(
|
||
|
CUM_FUNC_DEFAULTS, method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
validate_cumsum = CompatValidator(
|
||
|
CUM_FUNC_DEFAULTS, fname="cumsum", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
|
||
|
|
||
|
def validate_cum_func_with_skipna(skipna, args, kwargs, name):
|
||
|
"""
|
||
|
If this function is called via the 'numpy' library, the third
|
||
|
parameter in its signature is 'dtype', which takes either a
|
||
|
'numpy' dtype or 'None', so check if the 'skipna' parameter is
|
||
|
a boolean or not
|
||
|
"""
|
||
|
if not is_bool(skipna):
|
||
|
args = (skipna,) + args
|
||
|
skipna = True
|
||
|
|
||
|
validate_cum_func(args, kwargs, fname=name)
|
||
|
return skipna
|
||
|
|
||
|
|
||
|
ALLANY_DEFAULTS: "OrderedDict[str, Optional[bool]]" = OrderedDict()
|
||
|
ALLANY_DEFAULTS["dtype"] = None
|
||
|
ALLANY_DEFAULTS["out"] = None
|
||
|
ALLANY_DEFAULTS["keepdims"] = False
|
||
|
validate_all = CompatValidator(
|
||
|
ALLANY_DEFAULTS, fname="all", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
validate_any = CompatValidator(
|
||
|
ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
|
||
|
LOGICAL_FUNC_DEFAULTS = dict(out=None, keepdims=False)
|
||
|
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")
|
||
|
|
||
|
MINMAX_DEFAULTS = dict(axis=None, out=None, keepdims=False)
|
||
|
validate_min = CompatValidator(
|
||
|
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
validate_max = CompatValidator(
|
||
|
MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
|
||
|
RESHAPE_DEFAULTS: Dict[str, str] = dict(order="C")
|
||
|
validate_reshape = CompatValidator(
|
||
|
RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
|
||
|
REPEAT_DEFAULTS: Dict[str, Any] = dict(axis=None)
|
||
|
validate_repeat = CompatValidator(
|
||
|
REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
|
||
|
ROUND_DEFAULTS: Dict[str, Any] = dict(out=None)
|
||
|
validate_round = CompatValidator(
|
||
|
ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
|
||
|
SORT_DEFAULTS: "OrderedDict[str, Optional[Union[int, str]]]" = OrderedDict()
|
||
|
SORT_DEFAULTS["axis"] = -1
|
||
|
SORT_DEFAULTS["kind"] = "quicksort"
|
||
|
SORT_DEFAULTS["order"] = None
|
||
|
validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs")
|
||
|
|
||
|
STAT_FUNC_DEFAULTS: "OrderedDict[str, Optional[Any]]" = OrderedDict()
|
||
|
STAT_FUNC_DEFAULTS["dtype"] = None
|
||
|
STAT_FUNC_DEFAULTS["out"] = None
|
||
|
|
||
|
SUM_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
||
|
SUM_DEFAULTS["axis"] = None
|
||
|
SUM_DEFAULTS["keepdims"] = False
|
||
|
SUM_DEFAULTS["initial"] = None
|
||
|
|
||
|
PROD_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
||
|
PROD_DEFAULTS["axis"] = None
|
||
|
PROD_DEFAULTS["keepdims"] = False
|
||
|
PROD_DEFAULTS["initial"] = None
|
||
|
|
||
|
MEDIAN_DEFAULTS = STAT_FUNC_DEFAULTS.copy()
|
||
|
MEDIAN_DEFAULTS["overwrite_input"] = False
|
||
|
MEDIAN_DEFAULTS["keepdims"] = False
|
||
|
|
||
|
STAT_FUNC_DEFAULTS["keepdims"] = False
|
||
|
|
||
|
validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method="kwargs")
|
||
|
validate_sum = CompatValidator(
|
||
|
SUM_DEFAULTS, fname="sum", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
validate_prod = CompatValidator(
|
||
|
PROD_DEFAULTS, fname="prod", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
validate_mean = CompatValidator(
|
||
|
STAT_FUNC_DEFAULTS, fname="mean", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
validate_median = CompatValidator(
|
||
|
MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1
|
||
|
)
|
||
|
|
||
|
STAT_DDOF_FUNC_DEFAULTS: "OrderedDict[str, Optional[bool]]" = OrderedDict()
|
||
|
STAT_DDOF_FUNC_DEFAULTS["dtype"] = None
|
||
|
STAT_DDOF_FUNC_DEFAULTS["out"] = None
|
||
|
STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False
|
||
|
validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs")
|
||
|
|
||
|
TAKE_DEFAULTS: "OrderedDict[str, Optional[str]]" = OrderedDict()
|
||
|
TAKE_DEFAULTS["out"] = None
|
||
|
TAKE_DEFAULTS["mode"] = "raise"
|
||
|
validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
|
||
|
|
||
|
|
||
|
def validate_take_with_convert(convert, args, kwargs):
|
||
|
"""
|
||
|
If this function is called via the 'numpy' library, the third
|
||
|
parameter in its signature is 'axis', which takes either an
|
||
|
ndarray or 'None', so check if the 'convert' parameter is either
|
||
|
an instance of ndarray or is None
|
||
|
"""
|
||
|
if isinstance(convert, ndarray) or convert is None:
|
||
|
args = (convert,) + args
|
||
|
convert = True
|
||
|
|
||
|
validate_take(args, kwargs, max_fname_arg_count=3, method="both")
|
||
|
return convert
|
||
|
|
||
|
|
||
|
TRANSPOSE_DEFAULTS = dict(axes=None)
|
||
|
validate_transpose = CompatValidator(
|
||
|
TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0
|
||
|
)
|
||
|
|
||
|
|
||
|
def validate_window_func(name, args, kwargs) -> None:
|
||
|
numpy_args = ("axis", "dtype", "out")
|
||
|
msg = (
|
||
|
f"numpy operations are not valid with window objects. "
|
||
|
f"Use .{name}() directly instead "
|
||
|
)
|
||
|
|
||
|
if len(args) > 0:
|
||
|
raise UnsupportedFunctionCall(msg)
|
||
|
|
||
|
for arg in numpy_args:
|
||
|
if arg in kwargs:
|
||
|
raise UnsupportedFunctionCall(msg)
|
||
|
|
||
|
|
||
|
def validate_rolling_func(name, args, kwargs) -> None:
|
||
|
numpy_args = ("axis", "dtype", "out")
|
||
|
msg = (
|
||
|
f"numpy operations are not valid with window objects. "
|
||
|
f"Use .rolling(...).{name}() instead "
|
||
|
)
|
||
|
|
||
|
if len(args) > 0:
|
||
|
raise UnsupportedFunctionCall(msg)
|
||
|
|
||
|
for arg in numpy_args:
|
||
|
if arg in kwargs:
|
||
|
raise UnsupportedFunctionCall(msg)
|
||
|
|
||
|
|
||
|
def validate_expanding_func(name, args, kwargs) -> None:
|
||
|
numpy_args = ("axis", "dtype", "out")
|
||
|
msg = (
|
||
|
f"numpy operations are not valid with window objects. "
|
||
|
f"Use .expanding(...).{name}() instead "
|
||
|
)
|
||
|
|
||
|
if len(args) > 0:
|
||
|
raise UnsupportedFunctionCall(msg)
|
||
|
|
||
|
for arg in numpy_args:
|
||
|
if arg in kwargs:
|
||
|
raise UnsupportedFunctionCall(msg)
|
||
|
|
||
|
|
||
|
def validate_groupby_func(name, args, kwargs, allowed=None) -> None:
|
||
|
"""
|
||
|
'args' and 'kwargs' should be empty, except for allowed
|
||
|
kwargs because all of
|
||
|
their necessary parameters are explicitly listed in
|
||
|
the function signature
|
||
|
"""
|
||
|
if allowed is None:
|
||
|
allowed = []
|
||
|
|
||
|
kwargs = set(kwargs) - set(allowed)
|
||
|
|
||
|
if len(args) + len(kwargs) > 0:
|
||
|
raise UnsupportedFunctionCall(
|
||
|
"numpy operations are not valid with groupby. "
|
||
|
f"Use .groupby(...).{name}() instead"
|
||
|
)
|
||
|
|
||
|
|
||
|
RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var")
|
||
|
|
||
|
|
||
|
def validate_resampler_func(method: str, args, kwargs) -> None:
|
||
|
"""
|
||
|
'args' and 'kwargs' should be empty because all of
|
||
|
their necessary parameters are explicitly listed in
|
||
|
the function signature
|
||
|
"""
|
||
|
if len(args) + len(kwargs) > 0:
|
||
|
if method in RESAMPLER_NUMPY_OPS:
|
||
|
raise UnsupportedFunctionCall(
|
||
|
"numpy operations are not valid with resample. "
|
||
|
f"Use .resample(...).{method}() instead"
|
||
|
)
|
||
|
else:
|
||
|
raise TypeError("too many arguments passed in")
|
||
|
|
||
|
|
||
|
def validate_minmax_axis(axis: Optional[int]) -> None:
|
||
|
"""
|
||
|
Ensure that the axis argument passed to min, max, argmin, or argmax is
|
||
|
zero or None, as otherwise it will be incorrectly ignored.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
axis : int or None
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
"""
|
||
|
ndim = 1 # hard-coded for Index
|
||
|
if axis is None:
|
||
|
return
|
||
|
if axis >= ndim or (axis < 0 and ndim + axis < 0):
|
||
|
raise ValueError(f"`axis` must be fewer than the number of dimensions ({ndim})")
|