mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-12-05 04:55:06 +01:00
173 lines
5.4 KiB
Python
173 lines
5.4 KiB
Python
|
"""
|
||
|
Tests for Series cumulative operations.
|
||
|
|
||
|
See also
|
||
|
--------
|
||
|
tests.frame.test_cumulative
|
||
|
"""
|
||
|
from itertools import product
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
def _check_accum_op(name, series, check_dtype=True):
|
||
|
func = getattr(np, name)
|
||
|
tm.assert_numpy_array_equal(
|
||
|
func(series).values, func(np.array(series)), check_dtype=check_dtype,
|
||
|
)
|
||
|
|
||
|
# with missing values
|
||
|
ts = series.copy()
|
||
|
ts[::2] = np.NaN
|
||
|
|
||
|
result = func(ts)[1::2]
|
||
|
expected = func(np.array(ts.dropna()))
|
||
|
|
||
|
tm.assert_numpy_array_equal(result.values, expected, check_dtype=False)
|
||
|
|
||
|
|
||
|
class TestSeriesCumulativeOps:
|
||
|
def test_cumsum(self, datetime_series):
|
||
|
_check_accum_op("cumsum", datetime_series)
|
||
|
|
||
|
def test_cumprod(self, datetime_series):
|
||
|
_check_accum_op("cumprod", datetime_series)
|
||
|
|
||
|
def test_cummin(self, datetime_series):
|
||
|
tm.assert_numpy_array_equal(
|
||
|
datetime_series.cummin().values,
|
||
|
np.minimum.accumulate(np.array(datetime_series)),
|
||
|
)
|
||
|
ts = datetime_series.copy()
|
||
|
ts[::2] = np.NaN
|
||
|
result = ts.cummin()[1::2]
|
||
|
expected = np.minimum.accumulate(ts.dropna())
|
||
|
|
||
|
result.index = result.index._with_freq(None)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_cummax(self, datetime_series):
|
||
|
tm.assert_numpy_array_equal(
|
||
|
datetime_series.cummax().values,
|
||
|
np.maximum.accumulate(np.array(datetime_series)),
|
||
|
)
|
||
|
ts = datetime_series.copy()
|
||
|
ts[::2] = np.NaN
|
||
|
result = ts.cummax()[1::2]
|
||
|
expected = np.maximum.accumulate(ts.dropna())
|
||
|
|
||
|
result.index = result.index._with_freq(None)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("tz", [None, "US/Pacific"])
|
||
|
def test_cummin_datetime64(self, tz):
|
||
|
s = pd.Series(
|
||
|
pd.to_datetime(
|
||
|
["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-3"]
|
||
|
).tz_localize(tz)
|
||
|
)
|
||
|
|
||
|
expected = pd.Series(
|
||
|
pd.to_datetime(
|
||
|
["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-1"]
|
||
|
).tz_localize(tz)
|
||
|
)
|
||
|
result = s.cummin(skipna=True)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
expected = pd.Series(
|
||
|
pd.to_datetime(
|
||
|
["NaT", "2000-1-2", "2000-1-2", "2000-1-1", "2000-1-1", "2000-1-1"]
|
||
|
).tz_localize(tz)
|
||
|
)
|
||
|
result = s.cummin(skipna=False)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
@pytest.mark.parametrize("tz", [None, "US/Pacific"])
|
||
|
def test_cummax_datetime64(self, tz):
|
||
|
s = pd.Series(
|
||
|
pd.to_datetime(
|
||
|
["NaT", "2000-1-2", "NaT", "2000-1-1", "NaT", "2000-1-3"]
|
||
|
).tz_localize(tz)
|
||
|
)
|
||
|
|
||
|
expected = pd.Series(
|
||
|
pd.to_datetime(
|
||
|
["NaT", "2000-1-2", "NaT", "2000-1-2", "NaT", "2000-1-3"]
|
||
|
).tz_localize(tz)
|
||
|
)
|
||
|
result = s.cummax(skipna=True)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
expected = pd.Series(
|
||
|
pd.to_datetime(
|
||
|
["NaT", "2000-1-2", "2000-1-2", "2000-1-2", "2000-1-2", "2000-1-3"]
|
||
|
).tz_localize(tz)
|
||
|
)
|
||
|
result = s.cummax(skipna=False)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
def test_cummin_timedelta64(self):
|
||
|
s = pd.Series(pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "3 min"]))
|
||
|
|
||
|
expected = pd.Series(
|
||
|
pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "1 min"])
|
||
|
)
|
||
|
result = s.cummin(skipna=True)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
expected = pd.Series(
|
||
|
pd.to_timedelta(["NaT", "2 min", "2 min", "1 min", "1 min", "1 min"])
|
||
|
)
|
||
|
result = s.cummin(skipna=False)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
def test_cummax_timedelta64(self):
|
||
|
s = pd.Series(pd.to_timedelta(["NaT", "2 min", "NaT", "1 min", "NaT", "3 min"]))
|
||
|
|
||
|
expected = pd.Series(
|
||
|
pd.to_timedelta(["NaT", "2 min", "NaT", "2 min", "NaT", "3 min"])
|
||
|
)
|
||
|
result = s.cummax(skipna=True)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
expected = pd.Series(
|
||
|
pd.to_timedelta(["NaT", "2 min", "2 min", "2 min", "2 min", "3 min"])
|
||
|
)
|
||
|
result = s.cummax(skipna=False)
|
||
|
tm.assert_series_equal(expected, result)
|
||
|
|
||
|
def test_cummethods_bool(self):
|
||
|
# GH#6270
|
||
|
|
||
|
a = pd.Series([False, False, False, True, True, False, False])
|
||
|
b = ~a
|
||
|
c = pd.Series([False] * len(b))
|
||
|
d = ~c
|
||
|
methods = {
|
||
|
"cumsum": np.cumsum,
|
||
|
"cumprod": np.cumprod,
|
||
|
"cummin": np.minimum.accumulate,
|
||
|
"cummax": np.maximum.accumulate,
|
||
|
}
|
||
|
args = product((a, b, c, d), methods)
|
||
|
for s, method in args:
|
||
|
expected = pd.Series(methods[method](s.values))
|
||
|
result = getattr(s, method)()
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
e = pd.Series([False, True, np.nan, False])
|
||
|
cse = pd.Series([0, 1, np.nan, 1], dtype=object)
|
||
|
cpe = pd.Series([False, 0, np.nan, 0])
|
||
|
cmin = pd.Series([False, False, np.nan, False])
|
||
|
cmax = pd.Series([False, True, np.nan, True])
|
||
|
expecteds = {"cumsum": cse, "cumprod": cpe, "cummin": cmin, "cummax": cmax}
|
||
|
|
||
|
for method in methods:
|
||
|
res = getattr(e, method)()
|
||
|
tm.assert_series_equal(res, expecteds[method])
|