mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-12-24 14:34:59 +01:00
471 lines
16 KiB
Python
471 lines
16 KiB
Python
|
from datetime import datetime
|
||
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas._libs import iNaT
|
||
|
|
||
|
import pandas._testing as tm
|
||
|
import pandas.core.algorithms as algos
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=[True, False])
|
||
|
def writeable(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
# Check that take_nd works both with writeable arrays
|
||
|
# (in which case fast typed memory-views implementation)
|
||
|
# and read-only arrays alike.
|
||
|
@pytest.fixture(
|
||
|
params=[
|
||
|
(np.float64, True),
|
||
|
(np.float32, True),
|
||
|
(np.uint64, False),
|
||
|
(np.uint32, False),
|
||
|
(np.uint16, False),
|
||
|
(np.uint8, False),
|
||
|
(np.int64, False),
|
||
|
(np.int32, False),
|
||
|
(np.int16, False),
|
||
|
(np.int8, False),
|
||
|
(np.object_, True),
|
||
|
(np.bool_, False),
|
||
|
]
|
||
|
)
|
||
|
def dtype_can_hold_na(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
@pytest.fixture(
|
||
|
params=[
|
||
|
(np.int8, np.int16(127), np.int8),
|
||
|
(np.int8, np.int16(128), np.int16),
|
||
|
(np.int32, 1, np.int32),
|
||
|
(np.int32, 2.0, np.float64),
|
||
|
(np.int32, 3.0 + 4.0j, np.complex128),
|
||
|
(np.int32, True, np.object_),
|
||
|
(np.int32, "", np.object_),
|
||
|
(np.float64, 1, np.float64),
|
||
|
(np.float64, 2.0, np.float64),
|
||
|
(np.float64, 3.0 + 4.0j, np.complex128),
|
||
|
(np.float64, True, np.object_),
|
||
|
(np.float64, "", np.object_),
|
||
|
(np.complex128, 1, np.complex128),
|
||
|
(np.complex128, 2.0, np.complex128),
|
||
|
(np.complex128, 3.0 + 4.0j, np.complex128),
|
||
|
(np.complex128, True, np.object_),
|
||
|
(np.complex128, "", np.object_),
|
||
|
(np.bool_, 1, np.object_),
|
||
|
(np.bool_, 2.0, np.object_),
|
||
|
(np.bool_, 3.0 + 4.0j, np.object_),
|
||
|
(np.bool_, True, np.bool_),
|
||
|
(np.bool_, "", np.object_),
|
||
|
]
|
||
|
)
|
||
|
def dtype_fill_out_dtype(request):
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
class TestTake:
|
||
|
# Standard incompatible fill error.
|
||
|
fill_error = re.compile("Incompatible type for fill_value")
|
||
|
|
||
|
def test_1d_with_out(self, dtype_can_hold_na, writeable):
|
||
|
dtype, can_hold_na = dtype_can_hold_na
|
||
|
|
||
|
data = np.random.randint(0, 2, 4).astype(dtype)
|
||
|
data.flags.writeable = writeable
|
||
|
|
||
|
indexer = [2, 1, 0, 1]
|
||
|
out = np.empty(4, dtype=dtype)
|
||
|
algos.take_1d(data, indexer, out=out)
|
||
|
|
||
|
expected = data.take(indexer)
|
||
|
tm.assert_almost_equal(out, expected)
|
||
|
|
||
|
indexer = [2, 1, 0, -1]
|
||
|
out = np.empty(4, dtype=dtype)
|
||
|
|
||
|
if can_hold_na:
|
||
|
algos.take_1d(data, indexer, out=out)
|
||
|
expected = data.take(indexer)
|
||
|
expected[3] = np.nan
|
||
|
tm.assert_almost_equal(out, expected)
|
||
|
else:
|
||
|
with pytest.raises(TypeError, match=self.fill_error):
|
||
|
algos.take_1d(data, indexer, out=out)
|
||
|
|
||
|
# No Exception otherwise.
|
||
|
data.take(indexer, out=out)
|
||
|
|
||
|
def test_1d_fill_nonna(self, dtype_fill_out_dtype):
|
||
|
dtype, fill_value, out_dtype = dtype_fill_out_dtype
|
||
|
data = np.random.randint(0, 2, 4).astype(dtype)
|
||
|
indexer = [2, 1, 0, -1]
|
||
|
|
||
|
result = algos.take_1d(data, indexer, fill_value=fill_value)
|
||
|
assert (result[[0, 1, 2]] == data[[2, 1, 0]]).all()
|
||
|
assert result[3] == fill_value
|
||
|
assert result.dtype == out_dtype
|
||
|
|
||
|
indexer = [2, 1, 0, 1]
|
||
|
|
||
|
result = algos.take_1d(data, indexer, fill_value=fill_value)
|
||
|
assert (result[[0, 1, 2, 3]] == data[indexer]).all()
|
||
|
assert result.dtype == dtype
|
||
|
|
||
|
def test_2d_with_out(self, dtype_can_hold_na, writeable):
|
||
|
dtype, can_hold_na = dtype_can_hold_na
|
||
|
|
||
|
data = np.random.randint(0, 2, (5, 3)).astype(dtype)
|
||
|
data.flags.writeable = writeable
|
||
|
|
||
|
indexer = [2, 1, 0, 1]
|
||
|
out0 = np.empty((4, 3), dtype=dtype)
|
||
|
out1 = np.empty((5, 4), dtype=dtype)
|
||
|
algos.take_nd(data, indexer, out=out0, axis=0)
|
||
|
algos.take_nd(data, indexer, out=out1, axis=1)
|
||
|
|
||
|
expected0 = data.take(indexer, axis=0)
|
||
|
expected1 = data.take(indexer, axis=1)
|
||
|
tm.assert_almost_equal(out0, expected0)
|
||
|
tm.assert_almost_equal(out1, expected1)
|
||
|
|
||
|
indexer = [2, 1, 0, -1]
|
||
|
out0 = np.empty((4, 3), dtype=dtype)
|
||
|
out1 = np.empty((5, 4), dtype=dtype)
|
||
|
|
||
|
if can_hold_na:
|
||
|
algos.take_nd(data, indexer, out=out0, axis=0)
|
||
|
algos.take_nd(data, indexer, out=out1, axis=1)
|
||
|
|
||
|
expected0 = data.take(indexer, axis=0)
|
||
|
expected1 = data.take(indexer, axis=1)
|
||
|
expected0[3, :] = np.nan
|
||
|
expected1[:, 3] = np.nan
|
||
|
|
||
|
tm.assert_almost_equal(out0, expected0)
|
||
|
tm.assert_almost_equal(out1, expected1)
|
||
|
else:
|
||
|
for i, out in enumerate([out0, out1]):
|
||
|
with pytest.raises(TypeError, match=self.fill_error):
|
||
|
algos.take_nd(data, indexer, out=out, axis=i)
|
||
|
|
||
|
# No Exception otherwise.
|
||
|
data.take(indexer, out=out, axis=i)
|
||
|
|
||
|
def test_2d_fill_nonna(self, dtype_fill_out_dtype):
|
||
|
dtype, fill_value, out_dtype = dtype_fill_out_dtype
|
||
|
data = np.random.randint(0, 2, (5, 3)).astype(dtype)
|
||
|
indexer = [2, 1, 0, -1]
|
||
|
|
||
|
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value)
|
||
|
assert (result[[0, 1, 2], :] == data[[2, 1, 0], :]).all()
|
||
|
assert (result[3, :] == fill_value).all()
|
||
|
assert result.dtype == out_dtype
|
||
|
|
||
|
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value)
|
||
|
assert (result[:, [0, 1, 2]] == data[:, [2, 1, 0]]).all()
|
||
|
assert (result[:, 3] == fill_value).all()
|
||
|
assert result.dtype == out_dtype
|
||
|
|
||
|
indexer = [2, 1, 0, 1]
|
||
|
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value)
|
||
|
assert (result[[0, 1, 2, 3], :] == data[indexer, :]).all()
|
||
|
assert result.dtype == dtype
|
||
|
|
||
|
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value)
|
||
|
assert (result[:, [0, 1, 2, 3]] == data[:, indexer]).all()
|
||
|
assert result.dtype == dtype
|
||
|
|
||
|
def test_3d_with_out(self, dtype_can_hold_na):
|
||
|
dtype, can_hold_na = dtype_can_hold_na
|
||
|
|
||
|
data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype)
|
||
|
indexer = [2, 1, 0, 1]
|
||
|
|
||
|
out0 = np.empty((4, 4, 3), dtype=dtype)
|
||
|
out1 = np.empty((5, 4, 3), dtype=dtype)
|
||
|
out2 = np.empty((5, 4, 4), dtype=dtype)
|
||
|
|
||
|
algos.take_nd(data, indexer, out=out0, axis=0)
|
||
|
algos.take_nd(data, indexer, out=out1, axis=1)
|
||
|
algos.take_nd(data, indexer, out=out2, axis=2)
|
||
|
|
||
|
expected0 = data.take(indexer, axis=0)
|
||
|
expected1 = data.take(indexer, axis=1)
|
||
|
expected2 = data.take(indexer, axis=2)
|
||
|
|
||
|
tm.assert_almost_equal(out0, expected0)
|
||
|
tm.assert_almost_equal(out1, expected1)
|
||
|
tm.assert_almost_equal(out2, expected2)
|
||
|
|
||
|
indexer = [2, 1, 0, -1]
|
||
|
out0 = np.empty((4, 4, 3), dtype=dtype)
|
||
|
out1 = np.empty((5, 4, 3), dtype=dtype)
|
||
|
out2 = np.empty((5, 4, 4), dtype=dtype)
|
||
|
|
||
|
if can_hold_na:
|
||
|
algos.take_nd(data, indexer, out=out0, axis=0)
|
||
|
algos.take_nd(data, indexer, out=out1, axis=1)
|
||
|
algos.take_nd(data, indexer, out=out2, axis=2)
|
||
|
|
||
|
expected0 = data.take(indexer, axis=0)
|
||
|
expected1 = data.take(indexer, axis=1)
|
||
|
expected2 = data.take(indexer, axis=2)
|
||
|
|
||
|
expected0[3, :, :] = np.nan
|
||
|
expected1[:, 3, :] = np.nan
|
||
|
expected2[:, :, 3] = np.nan
|
||
|
|
||
|
tm.assert_almost_equal(out0, expected0)
|
||
|
tm.assert_almost_equal(out1, expected1)
|
||
|
tm.assert_almost_equal(out2, expected2)
|
||
|
else:
|
||
|
for i, out in enumerate([out0, out1, out2]):
|
||
|
with pytest.raises(TypeError, match=self.fill_error):
|
||
|
algos.take_nd(data, indexer, out=out, axis=i)
|
||
|
|
||
|
# No Exception otherwise.
|
||
|
data.take(indexer, out=out, axis=i)
|
||
|
|
||
|
def test_3d_fill_nonna(self, dtype_fill_out_dtype):
|
||
|
dtype, fill_value, out_dtype = dtype_fill_out_dtype
|
||
|
|
||
|
data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype)
|
||
|
indexer = [2, 1, 0, -1]
|
||
|
|
||
|
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value)
|
||
|
assert (result[[0, 1, 2], :, :] == data[[2, 1, 0], :, :]).all()
|
||
|
assert (result[3, :, :] == fill_value).all()
|
||
|
assert result.dtype == out_dtype
|
||
|
|
||
|
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value)
|
||
|
assert (result[:, [0, 1, 2], :] == data[:, [2, 1, 0], :]).all()
|
||
|
assert (result[:, 3, :] == fill_value).all()
|
||
|
assert result.dtype == out_dtype
|
||
|
|
||
|
result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value)
|
||
|
assert (result[:, :, [0, 1, 2]] == data[:, :, [2, 1, 0]]).all()
|
||
|
assert (result[:, :, 3] == fill_value).all()
|
||
|
assert result.dtype == out_dtype
|
||
|
|
||
|
indexer = [2, 1, 0, 1]
|
||
|
result = algos.take_nd(data, indexer, axis=0, fill_value=fill_value)
|
||
|
assert (result[[0, 1, 2, 3], :, :] == data[indexer, :, :]).all()
|
||
|
assert result.dtype == dtype
|
||
|
|
||
|
result = algos.take_nd(data, indexer, axis=1, fill_value=fill_value)
|
||
|
assert (result[:, [0, 1, 2, 3], :] == data[:, indexer, :]).all()
|
||
|
assert result.dtype == dtype
|
||
|
|
||
|
result = algos.take_nd(data, indexer, axis=2, fill_value=fill_value)
|
||
|
assert (result[:, :, [0, 1, 2, 3]] == data[:, :, indexer]).all()
|
||
|
assert result.dtype == dtype
|
||
|
|
||
|
def test_1d_other_dtypes(self):
|
||
|
arr = np.random.randn(10).astype(np.float32)
|
||
|
|
||
|
indexer = [1, 2, 3, -1]
|
||
|
result = algos.take_1d(arr, indexer)
|
||
|
expected = arr.take(indexer)
|
||
|
expected[-1] = np.nan
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def test_2d_other_dtypes(self):
|
||
|
arr = np.random.randn(10, 5).astype(np.float32)
|
||
|
|
||
|
indexer = [1, 2, 3, -1]
|
||
|
|
||
|
# axis=0
|
||
|
result = algos.take_nd(arr, indexer, axis=0)
|
||
|
expected = arr.take(indexer, axis=0)
|
||
|
expected[-1] = np.nan
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
# axis=1
|
||
|
result = algos.take_nd(arr, indexer, axis=1)
|
||
|
expected = arr.take(indexer, axis=1)
|
||
|
expected[:, -1] = np.nan
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def test_1d_bool(self):
|
||
|
arr = np.array([0, 1, 0], dtype=bool)
|
||
|
|
||
|
result = algos.take_1d(arr, [0, 2, 2, 1])
|
||
|
expected = arr.take([0, 2, 2, 1])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = algos.take_1d(arr, [0, 2, -1])
|
||
|
assert result.dtype == np.object_
|
||
|
|
||
|
def test_2d_bool(self):
|
||
|
arr = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=bool)
|
||
|
|
||
|
result = algos.take_nd(arr, [0, 2, 2, 1])
|
||
|
expected = arr.take([0, 2, 2, 1], axis=0)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = algos.take_nd(arr, [0, 2, 2, 1], axis=1)
|
||
|
expected = arr.take([0, 2, 2, 1], axis=1)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = algos.take_nd(arr, [0, 2, -1])
|
||
|
assert result.dtype == np.object_
|
||
|
|
||
|
def test_2d_float32(self):
|
||
|
arr = np.random.randn(4, 3).astype(np.float32)
|
||
|
indexer = [0, 2, -1, 1, -1]
|
||
|
|
||
|
# axis=0
|
||
|
result = algos.take_nd(arr, indexer, axis=0)
|
||
|
result2 = np.empty_like(result)
|
||
|
algos.take_nd(arr, indexer, axis=0, out=result2)
|
||
|
tm.assert_almost_equal(result, result2)
|
||
|
|
||
|
expected = arr.take(indexer, axis=0)
|
||
|
expected[[2, 4], :] = np.nan
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
# this now accepts a float32! # test with float64 out buffer
|
||
|
out = np.empty((len(indexer), arr.shape[1]), dtype="float32")
|
||
|
algos.take_nd(arr, indexer, out=out) # it works!
|
||
|
|
||
|
# axis=1
|
||
|
result = algos.take_nd(arr, indexer, axis=1)
|
||
|
result2 = np.empty_like(result)
|
||
|
algos.take_nd(arr, indexer, axis=1, out=result2)
|
||
|
tm.assert_almost_equal(result, result2)
|
||
|
|
||
|
expected = arr.take(indexer, axis=1)
|
||
|
expected[:, [2, 4]] = np.nan
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def test_2d_datetime64(self):
|
||
|
# 2005/01/01 - 2006/01/01
|
||
|
arr = np.random.randint(11_045_376, 11_360_736, (5, 3)) * 100_000_000_000
|
||
|
arr = arr.view(dtype="datetime64[ns]")
|
||
|
indexer = [0, 2, -1, 1, -1]
|
||
|
|
||
|
# axis=0
|
||
|
result = algos.take_nd(arr, indexer, axis=0)
|
||
|
result2 = np.empty_like(result)
|
||
|
algos.take_nd(arr, indexer, axis=0, out=result2)
|
||
|
tm.assert_almost_equal(result, result2)
|
||
|
|
||
|
expected = arr.take(indexer, axis=0)
|
||
|
expected.view(np.int64)[[2, 4], :] = iNaT
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
result = algos.take_nd(arr, indexer, axis=0, fill_value=datetime(2007, 1, 1))
|
||
|
result2 = np.empty_like(result)
|
||
|
algos.take_nd(
|
||
|
arr, indexer, out=result2, axis=0, fill_value=datetime(2007, 1, 1)
|
||
|
)
|
||
|
tm.assert_almost_equal(result, result2)
|
||
|
|
||
|
expected = arr.take(indexer, axis=0)
|
||
|
expected[[2, 4], :] = datetime(2007, 1, 1)
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
# axis=1
|
||
|
result = algos.take_nd(arr, indexer, axis=1)
|
||
|
result2 = np.empty_like(result)
|
||
|
algos.take_nd(arr, indexer, axis=1, out=result2)
|
||
|
tm.assert_almost_equal(result, result2)
|
||
|
|
||
|
expected = arr.take(indexer, axis=1)
|
||
|
expected.view(np.int64)[:, [2, 4]] = iNaT
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
result = algos.take_nd(arr, indexer, axis=1, fill_value=datetime(2007, 1, 1))
|
||
|
result2 = np.empty_like(result)
|
||
|
algos.take_nd(
|
||
|
arr, indexer, out=result2, axis=1, fill_value=datetime(2007, 1, 1)
|
||
|
)
|
||
|
tm.assert_almost_equal(result, result2)
|
||
|
|
||
|
expected = arr.take(indexer, axis=1)
|
||
|
expected[:, [2, 4]] = datetime(2007, 1, 1)
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
def test_take_axis_0(self):
|
||
|
arr = np.arange(12).reshape(4, 3)
|
||
|
result = algos.take(arr, [0, -1])
|
||
|
expected = np.array([[0, 1, 2], [9, 10, 11]])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# allow_fill=True
|
||
|
result = algos.take(arr, [0, -1], allow_fill=True, fill_value=0)
|
||
|
expected = np.array([[0, 1, 2], [0, 0, 0]])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_take_axis_1(self):
|
||
|
arr = np.arange(12).reshape(4, 3)
|
||
|
result = algos.take(arr, [0, -1], axis=1)
|
||
|
expected = np.array([[0, 2], [3, 5], [6, 8], [9, 11]])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# allow_fill=True
|
||
|
result = algos.take(arr, [0, -1], axis=1, allow_fill=True, fill_value=0)
|
||
|
expected = np.array([[0, 0], [3, 0], [6, 0], [9, 0]])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# GH#26976 make sure we validate along the correct axis
|
||
|
with pytest.raises(IndexError, match="indices are out-of-bounds"):
|
||
|
algos.take(arr, [0, 3], axis=1, allow_fill=True, fill_value=0)
|
||
|
|
||
|
|
||
|
class TestExtensionTake:
|
||
|
# The take method found in pd.api.extensions
|
||
|
|
||
|
def test_bounds_check_large(self):
|
||
|
arr = np.array([1, 2])
|
||
|
|
||
|
msg = "indices are out-of-bounds"
|
||
|
with pytest.raises(IndexError, match=msg):
|
||
|
algos.take(arr, [2, 3], allow_fill=True)
|
||
|
|
||
|
msg = "index 2 is out of bounds for( axis 0 with)? size 2"
|
||
|
with pytest.raises(IndexError, match=msg):
|
||
|
algos.take(arr, [2, 3], allow_fill=False)
|
||
|
|
||
|
def test_bounds_check_small(self):
|
||
|
arr = np.array([1, 2, 3], dtype=np.int64)
|
||
|
indexer = [0, -1, -2]
|
||
|
|
||
|
msg = r"'indices' contains values less than allowed \(-2 < -1\)"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
algos.take(arr, indexer, allow_fill=True)
|
||
|
|
||
|
result = algos.take(arr, indexer)
|
||
|
expected = np.array([1, 3, 2], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("allow_fill", [True, False])
|
||
|
def test_take_empty(self, allow_fill):
|
||
|
arr = np.array([], dtype=np.int64)
|
||
|
# empty take is ok
|
||
|
result = algos.take(arr, [], allow_fill=allow_fill)
|
||
|
tm.assert_numpy_array_equal(arr, result)
|
||
|
|
||
|
msg = (
|
||
|
"cannot do a non-empty take from an empty axes.|"
|
||
|
"indices are out-of-bounds"
|
||
|
)
|
||
|
with pytest.raises(IndexError, match=msg):
|
||
|
algos.take(arr, [0], allow_fill=allow_fill)
|
||
|
|
||
|
def test_take_na_empty(self):
|
||
|
result = algos.take(np.array([]), [-1, -1], allow_fill=True, fill_value=0.0)
|
||
|
expected = np.array([0.0, 0.0])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_take_coerces_list(self):
|
||
|
arr = [1, 2, 3]
|
||
|
result = algos.take(arr, [0, 0])
|
||
|
expected = np.array([1, 1])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|