mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-12-25 06:54:53 +01:00
plugin controller change
This commit is contained in:
parent
53a82b4249
commit
aeabde8c4a
887 changed files with 34635 additions and 87014 deletions
BIN
.DS_Store
vendored
BIN
.DS_Store
vendored
Binary file not shown.
|
@ -1 +1 @@
|
|||
__version__ = "4.0.0.12"
|
||||
__version__ = "4.0.0.13"
|
|
@ -23,16 +23,16 @@ class CBPiKettleLogic(metaclass=ABCMeta):
|
|||
self.cbpi.log.log_data(self.id, value)
|
||||
|
||||
async def run(self):
|
||||
self.state = True
|
||||
while self.running:
|
||||
print("RUNNING KETTLE")
|
||||
await asyncio.sleep(1)
|
||||
self.state = False
|
||||
|
||||
def get_state(self):
|
||||
|
||||
return dict(state=self.state)
|
||||
return dict(running=self.running)
|
||||
|
||||
async def start(self):
|
||||
|
||||
self.running = True
|
||||
|
||||
async def stop(self):
|
||||
|
|
275
cbpi/cli.py
275
cbpi/cli.py
|
@ -7,19 +7,15 @@ import re
|
|||
import requests
|
||||
import yaml
|
||||
from cbpi.utils.utils import load_config
|
||||
|
||||
from zipfile import ZipFile
|
||||
from cbpi.craftbeerpi import CraftBeerPi
|
||||
import os
|
||||
import pathlib
|
||||
import shutil
|
||||
import yaml
|
||||
import click
|
||||
|
||||
def create_plugin_file():
|
||||
import os.path
|
||||
if os.path.exists(os.path.join(".", 'config', "plugin_list.txt")) is False:
|
||||
srcfile = os.path.join(os.path.dirname(__file__), "config", "plugin_list.txt")
|
||||
destfile = os.path.join(".", 'config')
|
||||
shutil.copy(srcfile, destfile)
|
||||
print("Plugin Folder created")
|
||||
from jinja2 import Template
|
||||
|
||||
def create_config_file():
|
||||
import os.path
|
||||
|
@ -74,9 +70,7 @@ def clear_db():
|
|||
os.remove(os.path.join(".", "craftbeerpi.db"))
|
||||
print("database Cleared")
|
||||
|
||||
|
||||
def check_for_setup():
|
||||
|
||||
if os.path.exists(os.path.join(".", "config", "config.yaml")) is False:
|
||||
print("***************************************************")
|
||||
print("CraftBeerPi Config File not found: %s" % os.path.join(".", "config", "config.yaml"))
|
||||
|
@ -87,137 +81,164 @@ def check_for_setup():
|
|||
return True
|
||||
|
||||
|
||||
def list_plugins():
|
||||
print("***************************************************")
|
||||
print("CraftBeerPi 4.x Plugin List")
|
||||
print("***************************************************")
|
||||
print("")
|
||||
plugins_yaml = "https://raw.githubusercontent.com/Manuel83/craftbeerpi-plugins/master/plugins_v4.yaml"
|
||||
r = requests.get(plugins_yaml)
|
||||
data = yaml.load(r.content, Loader=yaml.FullLoader)
|
||||
for name, value in data.items():
|
||||
print(name)
|
||||
print("")
|
||||
print("***************************************************")
|
||||
|
||||
def add(package_name):
|
||||
|
||||
def plugins_add(package_name):
|
||||
if package_name is None:
|
||||
print("Missing Plugin Name: cbpi add --name=")
|
||||
print("Pleaes provide a plugin Name")
|
||||
return
|
||||
try:
|
||||
with open(os.path.join(".", 'config', "config.yaml"), 'rt') as f:
|
||||
data = yaml.load(f, Loader=yaml.FullLoader)
|
||||
if package_name in data["plugins"]:
|
||||
print("")
|
||||
print("Plugin {} already active".format(package_name))
|
||||
print("")
|
||||
return
|
||||
data["plugins"].append(package_name)
|
||||
with open(os.path.join(".", 'config', "config.yaml"), 'w') as outfile:
|
||||
yaml.dump(data, outfile, default_flow_style=False)
|
||||
print("")
|
||||
print("Plugin {} activated".format(package_name))
|
||||
print("")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
pass
|
||||
|
||||
|
||||
|
||||
def plugin_remove(package_name):
|
||||
if package_name is None:
|
||||
print("Pleaes provide a plugin Name")
|
||||
return
|
||||
try:
|
||||
with open(os.path.join(".", 'config', "config.yaml"), 'rt') as f:
|
||||
data = yaml.load(f, Loader=yaml.FullLoader)
|
||||
|
||||
data["plugins"] = list(filter(lambda k: package_name not in k, data["plugins"]))
|
||||
with open(os.path.join(".", 'config', "config.yaml"), 'w') as outfile:
|
||||
yaml.dump(data, outfile, default_flow_style=False)
|
||||
print("")
|
||||
print("Plugin {} deactivated".format(package_name))
|
||||
print("")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
pass
|
||||
|
||||
def plugins_list():
|
||||
|
||||
print("--------------------------------------")
|
||||
print("List of active pluigins")
|
||||
try:
|
||||
with open(os.path.join(".", 'config', "config.yaml"), 'rt') as f:
|
||||
data = yaml.load(f, Loader=yaml.FullLoader)
|
||||
|
||||
for p in data["plugins"]:
|
||||
print("- {}".format(p))
|
||||
except Exception as e:
|
||||
print(e)
|
||||
pass
|
||||
print("--------------------------------------")
|
||||
|
||||
def plugin_create(name):
|
||||
|
||||
if os.path.exists(os.path.join(".", name)) is True:
|
||||
print("Cant create Plugin. Folder {} already exists ".format(name))
|
||||
return
|
||||
|
||||
data = subprocess.check_output([sys.executable, "-m", "pip", "install", package_name])
|
||||
data = data.decode('UTF-8')
|
||||
url = 'https://github.com/Manuel83/craftbeerpi4-plugin-template/archive/main.zip'
|
||||
r = requests.get(url)
|
||||
with open('temp.zip', 'wb') as f:
|
||||
f.write(r.content)
|
||||
|
||||
patter_already_installed = "Requirement already satisfied: %s" % package_name
|
||||
pattern = "Successfully installed %s-([-0-9a-zA-Z._]*)" % package_name
|
||||
|
||||
match_already_installed = re.search(patter_already_installed, data)
|
||||
match_installed = re.search(pattern, data)
|
||||
|
||||
if match_already_installed is not None:
|
||||
print("Plugin already installed")
|
||||
return False
|
||||
|
||||
if match_installed is None:
|
||||
print(data)
|
||||
print("Faild to install plugin")
|
||||
return False
|
||||
|
||||
version = match_installed.groups()[0]
|
||||
plugins = load_config("./config/plugin_list.txt")
|
||||
if plugins is None:
|
||||
plugins = {}
|
||||
now = datetime.datetime.now()
|
||||
plugins[package_name] = dict(version=version, installation_date=now.strftime("%Y-%m-%d %H:%M:%S"))
|
||||
|
||||
with open('./config/plugin_list.txt', 'w') as outfile:
|
||||
yaml.dump(plugins, outfile, default_flow_style=False)
|
||||
|
||||
print("Plugin %s added" % package_name)
|
||||
return True
|
||||
with ZipFile('temp.zip', 'r') as repo_zip:
|
||||
repo_zip.extractall()
|
||||
|
||||
|
||||
def remove(package_name):
|
||||
if package_name is None:
|
||||
print("Missing Plugin Name: cbpi add --name=")
|
||||
return
|
||||
data = subprocess.check_output([sys.executable, "-m", "pip", "uninstall", "-y", package_name])
|
||||
data = data.decode('UTF-8')
|
||||
os.rename("./craftbeerpi4-plugin-template-main", os.path.join(".", name))
|
||||
os.rename(os.path.join(".", name, "src"), os.path.join(".", name, name))
|
||||
|
||||
pattern = "Successfully uninstalled %s-([-0-9a-zA-Z._]*)" % package_name
|
||||
match_uninstalled = re.search(pattern, data)
|
||||
import jinja2
|
||||
|
||||
if match_uninstalled is None:
|
||||
|
||||
print("Faild to uninstall plugin")
|
||||
return False
|
||||
|
||||
plugins = load_config("./config/plugin_list.txt")
|
||||
if plugins is None:
|
||||
plugins = {}
|
||||
|
||||
if package_name not in plugins:
|
||||
return False
|
||||
|
||||
del plugins[package_name]
|
||||
with open('./config/plugin_list.txt', 'w') as outfile:
|
||||
yaml.dump(plugins, outfile, default_flow_style=False)
|
||||
|
||||
print("Plugin %s removed" % package_name)
|
||||
return True
|
||||
|
||||
def main():
|
||||
templateLoader = jinja2.FileSystemLoader(searchpath=os.path.join(".", name))
|
||||
templateEnv = jinja2.Environment(loader=templateLoader)
|
||||
TEMPLATE_FILE = "setup.py"
|
||||
template = templateEnv.get_template(TEMPLATE_FILE)
|
||||
outputText = template.render(name=name)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Welcome to CraftBeerPi 4')
|
||||
parser.add_argument("action", type=str, help="start,stop,restart,setup,plugins")
|
||||
parser.add_argument('--debug', dest='debug', action='store_true')
|
||||
parser.add_argument("--name", type=str, help="Plugin name")
|
||||
args = parser.parse_args()
|
||||
with open(os.path.join(".", name, "setup.py"), "w") as fh:
|
||||
fh.write(outputText)
|
||||
|
||||
if args.debug is True:
|
||||
level =logging.DEBUG
|
||||
else:
|
||||
level =logging.INFO
|
||||
#logging.basicConfig(level=logging.INFO, filename='./logs/app.log', filemode='a', format='%(asctime)s - %(levelname)s - %(name)s - %(message)s')
|
||||
logging.basicConfig(level=level, format='%(asctime)s - %(levelname)s - %(name)s - %(message)s')
|
||||
TEMPLATE_FILE = "MANIFEST.in"
|
||||
template = templateEnv.get_template(TEMPLATE_FILE)
|
||||
outputText = template.render(name=name)
|
||||
with open(os.path.join(".", name, "MANIFEST.in"), "w") as fh:
|
||||
fh.write(outputText)
|
||||
|
||||
TEMPLATE_FILE = os.path.join("/", name , "config.yaml")
|
||||
template = templateEnv.get_template(TEMPLATE_FILE)
|
||||
outputText = template.render(name=name)
|
||||
|
||||
with open(os.path.join(".", name, name, "config.yaml"), "w") as fh:
|
||||
fh.write(outputText)
|
||||
print("")
|
||||
print("")
|
||||
print("Plugin {} created! See https://craftbeerpi.gitbook.io/craftbeerpi4/development how to run your plugin ".format(name))
|
||||
print("")
|
||||
print("Happy Development! Cheers")
|
||||
print("")
|
||||
print("")
|
||||
|
||||
if args.action == "setup":
|
||||
print("Setting up CBPi")
|
||||
create_home_folder_structure()
|
||||
create_plugin_file()
|
||||
create_config_file()
|
||||
copy_splash()
|
||||
|
||||
|
||||
@click.group()
|
||||
def main():
|
||||
level =logging.INFO
|
||||
logging.basicConfig(level=level, format='%(asctime)s - %(levelname)s - %(name)s - %(message)s')
|
||||
pass
|
||||
|
||||
|
||||
@click.command()
|
||||
def setup():
|
||||
'''Create Config folder'''
|
||||
print("Setting up CraftBeerPi")
|
||||
create_home_folder_structure()
|
||||
create_config_file()
|
||||
|
||||
@click.command()
|
||||
def start():
|
||||
if check_for_setup() is False:
|
||||
return
|
||||
print("START")
|
||||
cbpi = CraftBeerPi()
|
||||
cbpi.start()
|
||||
|
||||
if args.action == "cleardb":
|
||||
clear_db()
|
||||
return
|
||||
|
||||
if args.action == "plugins":
|
||||
list_plugins()
|
||||
return
|
||||
|
||||
|
||||
if args.action == "add":
|
||||
|
||||
add(args.name)
|
||||
return
|
||||
|
||||
if args.action == "remove":
|
||||
remove(args.name)
|
||||
return
|
||||
|
||||
if args.action == "start":
|
||||
if check_for_setup() is False:
|
||||
return
|
||||
|
||||
cbpi = CraftBeerPi()
|
||||
cbpi.start()
|
||||
return
|
||||
|
||||
parser.print_help()
|
||||
@click.command()
|
||||
def plugins():
|
||||
'''List active plugins'''
|
||||
plugins_list()
|
||||
return
|
||||
|
||||
@click.command()
|
||||
@click.argument('name')
|
||||
def add(name):
|
||||
'''Activate Plugin'''
|
||||
plugins_add(name)
|
||||
|
||||
@click.command()
|
||||
@click.argument('name')
|
||||
def remove(name):
|
||||
'''Deactivate Plugin'''
|
||||
plugin_remove(name)
|
||||
|
||||
|
||||
@click.command()
|
||||
@click.argument('name')
|
||||
def create(name):
|
||||
'''Deactivate Plugin'''
|
||||
plugin_create(name)
|
||||
|
||||
main.add_command(setup)
|
||||
main.add_command(start)
|
||||
main.add_command(plugins)
|
||||
main.add_command(add)
|
||||
main.add_command(remove)
|
||||
main.add_command(create)
|
||||
|
|
|
@ -9,3 +9,6 @@ port: 8000
|
|||
username: cbpi
|
||||
password: 123
|
||||
|
||||
plugins:
|
||||
- cbpi4-ui
|
||||
|
||||
|
|
|
@ -37,6 +37,6 @@ class ActorController(BasicController):
|
|||
instance = data.get("instance")
|
||||
state = state=instance.get_state()
|
||||
except Exception as e:
|
||||
logging.error("Faild to crate actor dict {} ".format(e))
|
||||
logging.error("Faild to create actor dict {} ".format(e))
|
||||
state = dict()
|
||||
return dict(name=data.get("name"), id=data.get("id"), type=data.get("type"), state=state,props=data.get("props", []))
|
|
@ -31,13 +31,12 @@ class BasicController:
|
|||
logging.info("{} Load ".format(self.name))
|
||||
with open(self.path) as json_file:
|
||||
data = json.load(json_file)
|
||||
|
||||
self.data = data["data"]
|
||||
|
||||
if self.autostart is True:
|
||||
for d in self.data:
|
||||
logging.info("{} Starting ".format(self.name))
|
||||
await self.start(d.get("id"))
|
||||
await self.push_udpate()
|
||||
|
||||
async def save(self):
|
||||
logging.info("{} Save ".format(self.name))
|
||||
|
@ -76,6 +75,7 @@ class BasicController:
|
|||
instance = item.get("instance")
|
||||
await instance.stop()
|
||||
await instance.task
|
||||
await self.push_udpate()
|
||||
except Exception as e:
|
||||
logging.error("{} Cant stop {} - {}".format(self.name, id, e))
|
||||
|
||||
|
@ -84,20 +84,17 @@ class BasicController:
|
|||
try:
|
||||
item = self.find_by_id(id)
|
||||
instance = item.get("instance")
|
||||
|
||||
if instance is not None and instance.running is True:
|
||||
logging.warning("{} already running {}".format(self.name, id))
|
||||
return
|
||||
|
||||
type = item["type"]
|
||||
|
||||
|
||||
clazz = self.types[type]["class"]
|
||||
item["instance"] = clazz(self.cbpi, item["id"], {})
|
||||
|
||||
await item["instance"].start()
|
||||
item["instance"].task = self._loop.create_task(item["instance"].run())
|
||||
logging.info("Sensor started {}".format(id))
|
||||
logging.info("{} started {}".format(self.name, id))
|
||||
|
||||
except Exception as e:
|
||||
logging.error("{} Cant start {} - {}".format(self.name, id, e))
|
||||
|
||||
|
|
|
@ -13,6 +13,7 @@ class KettleController(BasicController):
|
|||
item = self.find_by_id(id)
|
||||
instance = item.get("instance")
|
||||
await instance.start()
|
||||
await self.push_udpate()
|
||||
except Exception as e:
|
||||
logging.error("Faild to switch on KettleLogic {} {}".format(id, e))
|
||||
|
||||
|
@ -21,6 +22,19 @@ class KettleController(BasicController):
|
|||
item = self.find_by_id(id)
|
||||
instance = item.get("instance")
|
||||
await instance.stop()
|
||||
await self.push_udpate()
|
||||
except Exception as e:
|
||||
logging.error("Faild to switch on KettleLogic {} {}".format(id, e))
|
||||
|
||||
async def toggle(self, id):
|
||||
try:
|
||||
item = self.find_by_id(id)
|
||||
instance = item.get("instance")
|
||||
if instance is None or instance.running == False:
|
||||
await self.start(id)
|
||||
else:
|
||||
await instance.stop()
|
||||
await self.push_udpate()
|
||||
except Exception as e:
|
||||
logging.error("Faild to switch on KettleLogic {} {}".format(id, e))
|
||||
|
||||
|
@ -35,7 +49,7 @@ class KettleController(BasicController):
|
|||
def create_dict(self, data):
|
||||
try:
|
||||
instance = data.get("instance")
|
||||
state = dict(state=instance.get_state())
|
||||
state = instance.get_state()
|
||||
except Exception as e:
|
||||
logging.error("Faild to create KettleLogic dict {} ".format(e))
|
||||
state = dict()
|
||||
|
|
|
@ -18,72 +18,8 @@ class PluginController():
|
|||
|
||||
def __init__(self, cbpi):
|
||||
self.cbpi = cbpi
|
||||
self.plugins = load_config("./config/plugin_list.txt")
|
||||
if self.plugins is None:
|
||||
self.plugins = {}
|
||||
|
||||
|
||||
async def load_plugin_list(self):
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get('http://localhost:2202/list') as resp:
|
||||
if (resp.status == 200):
|
||||
data = yaml.load(await resp.text())
|
||||
self.plugins = data
|
||||
return data
|
||||
|
||||
def installed_plugins(self):
|
||||
return self.plugins
|
||||
|
||||
async def install(self, package_name):
|
||||
async def install(cbpi, plugins, package_name):
|
||||
data = subprocess.check_output(
|
||||
[sys.executable, "-m", "pip", "install", package_name])
|
||||
data = data.decode('UTF-8')
|
||||
if package_name not in self.plugins:
|
||||
now = datetime.datetime.now()
|
||||
self.plugins[package_name] = dict(
|
||||
version="1.0", installation_date=now.strftime("%Y-%m-%d %H:%M:%S"))
|
||||
with open('./config/plugin_list.txt', 'w') as outfile:
|
||||
yaml.dump(self.plugins, outfile, default_flow_style=False)
|
||||
if data.startswith('Requirement already satisfied'):
|
||||
self.cbpi.notify(
|
||||
key="p", message="Plugin already installed ", type="warning")
|
||||
else:
|
||||
|
||||
self.cbpi.notify(
|
||||
key="p", message="Plugin installed ", type="success")
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get('http://localhost:2202/get/%s' % package_name) as resp:
|
||||
|
||||
if (resp.status == 200):
|
||||
data = await resp.json()
|
||||
await self.cbpi.job.start_job(install(self.cbpi, self.plugins, data["package_name"]), data["package_name"], "plugins_install")
|
||||
return True
|
||||
else:
|
||||
self.cbpi.notify(
|
||||
key="p", message="Failed to install Plugin %s " % package_name, type="danger")
|
||||
return False
|
||||
|
||||
async def uninstall(self, package_name):
|
||||
async def uninstall(cbpi, plugins, package_name):
|
||||
print("try to uninstall", package_name)
|
||||
try:
|
||||
data = subprocess.check_output(
|
||||
[sys.executable, "-m", "pip", "uninstall", "-y", package_name])
|
||||
data = data.decode('UTF-8')
|
||||
if data.startswith("Successfully uninstalled"):
|
||||
cbpi.notify(key="p", message="Plugin %s Uninstalled" %
|
||||
package_name, type="success")
|
||||
else:
|
||||
cbpi.notify(key="p", message=data, type="success")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
if package_name in self.plugins:
|
||||
print("Uninstall", self.plugins[package_name])
|
||||
await self.cbpi.job.start_job(uninstall(self.cbpi, self.plugins, package_name), package_name, "plugins_uninstall")
|
||||
|
||||
def load_plugins(self):
|
||||
|
||||
this_directory = os.path.dirname(__file__)
|
||||
|
@ -109,19 +45,22 @@ class PluginController():
|
|||
logger.error(e)
|
||||
|
||||
def load_plugins_from_evn(self):
|
||||
|
||||
for p in self.plugins:
|
||||
logger.debug("Load Plugin %s" % p)
|
||||
|
||||
|
||||
for p in self.cbpi.static_config.get("plugins",[]):
|
||||
|
||||
try:
|
||||
logger.info("Try to load plugin: %s " % p)
|
||||
self.modules[p] = import_module(p)
|
||||
self.modules[p].setup(self.cbpi)
|
||||
|
||||
#logger.info("Plugin %s loaded successfully" % p)
|
||||
logger.info("Plugin %s loaded successfully" % p)
|
||||
except Exception as e:
|
||||
logger.error("FAILED to load plugin %s " % p)
|
||||
logger.error(e)
|
||||
|
||||
|
||||
|
||||
def register(self, name, clazz) -> None:
|
||||
'''
|
||||
Register a new actor type
|
||||
|
@ -171,9 +110,7 @@ class PluginController():
|
|||
parameters.append(self._parse_property_object(p))
|
||||
result["properties"] = parameters
|
||||
for method_name, method in cls.__dict__.items():
|
||||
|
||||
if hasattr(method, "action"):
|
||||
|
||||
key = method.__getattribute__("key")
|
||||
parameters = []
|
||||
for p in method.__getattribute__("parameters"):
|
||||
|
|
|
@ -11,7 +11,7 @@ class SensorController(BasicController):
|
|||
instance = data.get("instance")
|
||||
state = state=instance.get_state()
|
||||
except Exception as e:
|
||||
logging.error("Faild to crate actor dict {} ".format(e))
|
||||
logging.error("Faild to create sensor dict {} ".format(e))
|
||||
state = dict()
|
||||
|
||||
return dict(name=data.get("name"), id=data.get("id"), type=data.get("type"), state=state,props=data.get("props", []))
|
||||
|
|
|
@ -222,8 +222,8 @@ class StepController:
|
|||
return next((i for i, item in enumerate(self.profile) if item["id"] == id), None)
|
||||
|
||||
async def push_udpate(self):
|
||||
await self.cbpi.bus.fire("step/update", data=list(map(lambda x: self.create_dict(x), self.profile)))
|
||||
|
||||
self.cbpi.ws.send(dict(topic="step_update", data=list(map(lambda x: self.create_dict(x), self.profile))))
|
||||
|
||||
async def start_step(self,step):
|
||||
logging.info("Start Step")
|
||||
step.get("instance").start()
|
||||
|
|
|
@ -20,11 +20,7 @@ except Exception:
|
|||
import RPi.GPIO as GPIO
|
||||
|
||||
|
||||
@parameters([Property.Number(label="Param1", configurable=True),
|
||||
Property.Text(label="Param2", configurable=True, default_value="HALLO"),
|
||||
Property.Select(label="Param3", options=[1,2,4]),
|
||||
Property.Sensor(label="Param4"),
|
||||
Property.Actor(label="Param5")])
|
||||
@parameters([])
|
||||
class CustomActor(CBPiActor):
|
||||
my_name = ""
|
||||
|
||||
|
@ -37,7 +33,6 @@ class CustomActor(CBPiActor):
|
|||
|
||||
def init(self):
|
||||
print("INIT")
|
||||
|
||||
self.state = False
|
||||
pass
|
||||
|
||||
|
|
|
@ -2,11 +2,7 @@ import asyncio
|
|||
|
||||
from cbpi.api import *
|
||||
|
||||
@parameters([Property.Number(label="Param1", configurable=True),
|
||||
Property.Text(label="Param2", configurable=True, default_value="HALLO"),
|
||||
Property.Select(label="Param3", options=[1,2,4]),
|
||||
Property.Sensor(label="Param4"),
|
||||
Property.Actor(label="Param5")])
|
||||
@parameters([])
|
||||
class CustomLogic(CBPiKettleLogic):
|
||||
|
||||
pass
|
||||
|
|
|
@ -7,11 +7,7 @@ from aiohttp import web
|
|||
from cbpi.api import *
|
||||
|
||||
|
||||
@parameters([Property.Number(label="Param1", configurable=True),
|
||||
Property.Text(label="Param2", configurable=True, default_value="HALLO"),
|
||||
Property.Select(label="Param3", options=[1,2,4]),
|
||||
Property.Sensor(label="Param4"),
|
||||
Property.Actor(label="Param5")])
|
||||
@parameters([])
|
||||
class CustomSensor(CBPiSensor):
|
||||
|
||||
def __init__(self, cbpi, id, props):
|
||||
|
@ -36,7 +32,7 @@ class CustomSensor(CBPiSensor):
|
|||
while self.running is True:
|
||||
self.value = random.randint(0,50)
|
||||
self.push_update(self.value)
|
||||
await asyncio.sleep(1)
|
||||
await asyncio.sleep(10)
|
||||
|
||||
def get_state(self):
|
||||
return dict(value=self.value)
|
||||
|
|
|
@ -182,6 +182,31 @@ class KettleHttpEndpoints():
|
|||
await self.controller.off(id)
|
||||
return web.Response(status=204)
|
||||
|
||||
@request_mapping(path="/{id}/toggle", method="POST", auth_required=False)
|
||||
async def http_toggle(self, request) -> web.Response:
|
||||
"""
|
||||
|
||||
---
|
||||
description: Switch actor on
|
||||
tags:
|
||||
- Kettle
|
||||
|
||||
parameters:
|
||||
- name: "id"
|
||||
in: "path"
|
||||
description: "Kettle ID"
|
||||
required: true
|
||||
type: "string"
|
||||
|
||||
responses:
|
||||
"204":
|
||||
description: successful operation
|
||||
"405":
|
||||
description: invalid HTTP Met
|
||||
"""
|
||||
id = request.match_info['id']
|
||||
await self.controller.toggle(id)
|
||||
return web.Response(status=204)
|
||||
|
||||
@request_mapping(path="/{id}/action", method="POST", auth_required=auth)
|
||||
async def http_action(self, request) -> web.Response:
|
||||
|
@ -233,11 +258,20 @@ class KettleHttpEndpoints():
|
|||
required: true
|
||||
type: "integer"
|
||||
format: "int64"
|
||||
- in: body
|
||||
name: body
|
||||
description: Update Temp
|
||||
required: true
|
||||
schema:
|
||||
type: object
|
||||
properties:
|
||||
temp:
|
||||
type: integer
|
||||
responses:
|
||||
"204":
|
||||
description: successful operation
|
||||
"""
|
||||
id = request.match_info['id']
|
||||
#data = await request.json()
|
||||
await self.controller.set_target_temp(id,999)
|
||||
data = await request.json()
|
||||
await self.controller.set_target_temp(id,data.get("temp"))
|
||||
return web.Response(status=204)
|
|
@ -15,7 +15,7 @@
|
|||
"id": "Aifjxmw4QdPfU3XbR6iyis",
|
||||
"name": "Pump1",
|
||||
"props": {},
|
||||
"state": false,
|
||||
"state": true,
|
||||
"type": "CustomActor"
|
||||
},
|
||||
{
|
||||
|
@ -24,6 +24,34 @@
|
|||
"props": {},
|
||||
"state": false,
|
||||
"type": "CustomActor"
|
||||
},
|
||||
{
|
||||
"id": "NjammuygecdvMpoGYc3rXt",
|
||||
"name": "Heater Boil",
|
||||
"props": {},
|
||||
"state": false,
|
||||
"type": "CustomActor"
|
||||
},
|
||||
{
|
||||
"id": "j4PnSfuWRhgZDgrQScLN7e",
|
||||
"name": "Vent1",
|
||||
"props": {},
|
||||
"state": true,
|
||||
"type": "CustomActor"
|
||||
},
|
||||
{
|
||||
"id": "ZGJqoybWv3eWrEeGJLopFs",
|
||||
"name": "Water In",
|
||||
"props": {},
|
||||
"state": false,
|
||||
"type": "CustomActor"
|
||||
},
|
||||
{
|
||||
"id": "NfYJEWbTXPUSUQzS83dfAn",
|
||||
"name": "Vent Out",
|
||||
"props": {},
|
||||
"state": false,
|
||||
"type": "CustomActor"
|
||||
}
|
||||
]
|
||||
}
|
|
@ -1,64 +1,425 @@
|
|||
{
|
||||
"elements": [
|
||||
{
|
||||
"id": "6c670263-7b19-426c-8769-19aac8ebb381",
|
||||
"name": "CustomSVG",
|
||||
"id": "1ad5cec3-0f10-4910-b5ba-b4a96207d0ca",
|
||||
"name": "Kettle",
|
||||
"props": {
|
||||
"name": "tank",
|
||||
"width": "200"
|
||||
"heigth": "150",
|
||||
"width": "100"
|
||||
},
|
||||
"type": "CustomSVG",
|
||||
"x": 295,
|
||||
"y": 45
|
||||
"type": "Kettle",
|
||||
"x": 225,
|
||||
"y": 160
|
||||
},
|
||||
{
|
||||
"id": "cbe859ca-b8e8-433f-952c-938a2f8a309b",
|
||||
"id": "ba621aee-a733-4238-b892-0f39100a5d21",
|
||||
"name": "Kettle",
|
||||
"props": {
|
||||
"heigth": "150",
|
||||
"width": "100"
|
||||
},
|
||||
"type": "Kettle",
|
||||
"x": 530,
|
||||
"y": 160
|
||||
},
|
||||
{
|
||||
"id": "b61f57d9-e9ce-42b5-97df-3b2d7deaf18c",
|
||||
"name": "Kettle",
|
||||
"props": {
|
||||
"heigth": "150",
|
||||
"width": "100"
|
||||
},
|
||||
"type": "Kettle",
|
||||
"x": 780,
|
||||
"y": 160
|
||||
},
|
||||
{
|
||||
"id": "f2facefa-5808-4f63-93e7-fd8c3343aa2f",
|
||||
"name": "Pump1",
|
||||
"props": {
|
||||
"actor": "Aifjxmw4QdPfU3XbR6iyis"
|
||||
},
|
||||
"type": "ActorButton",
|
||||
"x": 410,
|
||||
"y": 380
|
||||
},
|
||||
{
|
||||
"id": "6996220e-b314-4c23-82c5-2d0873bcd1bc",
|
||||
"name": "KettleControl",
|
||||
"props": {
|
||||
"kettle": "oHxKz3z5RjbsxfSz6KUgov",
|
||||
"orientation": "vertical"
|
||||
},
|
||||
"type": "KettleControl",
|
||||
"x": 165,
|
||||
"y": 205
|
||||
},
|
||||
{
|
||||
"id": "91547101-86e5-405c-84e4-295d3565adfb",
|
||||
"name": "Vent",
|
||||
"props": {
|
||||
"actor": "j4PnSfuWRhgZDgrQScLN7e"
|
||||
},
|
||||
"type": "ActorButton",
|
||||
"x": 550,
|
||||
"y": 380
|
||||
},
|
||||
{
|
||||
"id": "a7ec6424-0df5-489e-85a6-5b36d039079b",
|
||||
"name": "Pump2",
|
||||
"props": {
|
||||
"actor": "HX2bKdobuANehPggYcynnj"
|
||||
},
|
||||
"type": "ActorButton",
|
||||
"x": 680,
|
||||
"y": 380
|
||||
},
|
||||
{
|
||||
"id": "39bb1a5b-294e-47e6-b472-699ef05aa780",
|
||||
"name": "KettleControl",
|
||||
"props": {
|
||||
"kettle": "a7bWex85Z9Td4atwgazpXW",
|
||||
"orientation": "vertical"
|
||||
},
|
||||
"type": "KettleControl",
|
||||
"x": 720,
|
||||
"y": 205
|
||||
},
|
||||
{
|
||||
"id": "310054aa-729b-45b2-a3a3-2c73196a2444",
|
||||
"name": "HLT",
|
||||
"props": {
|
||||
"color": "#fff",
|
||||
"size": "15"
|
||||
},
|
||||
"type": "Text",
|
||||
"x": 235,
|
||||
"y": 165
|
||||
},
|
||||
{
|
||||
"id": "72a66e4f-f7ce-4ac2-9956-c581590bfb3d",
|
||||
"name": "MashTun",
|
||||
"props": {
|
||||
"color": "#fff",
|
||||
"size": "15"
|
||||
},
|
||||
"type": "Text",
|
||||
"x": 540,
|
||||
"y": 165
|
||||
},
|
||||
{
|
||||
"id": "62f58450-5ce6-45bf-b178-0dde9225ab52",
|
||||
"name": "Boil",
|
||||
"props": {
|
||||
"color": "#fff",
|
||||
"size": "15"
|
||||
},
|
||||
"type": "Text",
|
||||
"x": 820,
|
||||
"y": 165
|
||||
},
|
||||
{
|
||||
"id": "e2b351fa-b66e-416a-a6d6-887ee41b3d7e",
|
||||
"name": "Water",
|
||||
"props": {
|
||||
"actor": "ZGJqoybWv3eWrEeGJLopFs"
|
||||
},
|
||||
"type": "ActorButton",
|
||||
"x": 45,
|
||||
"y": 160
|
||||
},
|
||||
{
|
||||
"id": "9f3f87d4-3c2a-4dcc-9740-8f7efcc553bf",
|
||||
"name": "Sensor Data",
|
||||
"props": {
|
||||
"color": "#fff",
|
||||
"sensor": "8ohkXvFA9UrkHLsxQL38wu",
|
||||
"size": "30",
|
||||
"unit": "\u00b0"
|
||||
},
|
||||
"type": "Sensor",
|
||||
"x": 255,
|
||||
"y": 185
|
||||
},
|
||||
{
|
||||
"id": "8df86373-7ed9-4d49-9d29-3b80e67989ab",
|
||||
"name": "Sensor Data",
|
||||
"props": {
|
||||
"color": "#fff",
|
||||
"sensor": "8ohkXvFA9UrkHLsxQL38wu",
|
||||
"size": "30",
|
||||
"unit": "\u00b0"
|
||||
},
|
||||
"type": "Sensor",
|
||||
"x": 810,
|
||||
"y": 185
|
||||
},
|
||||
{
|
||||
"id": "16a0e88b-09fb-4f32-9d9a-b82d02c48190",
|
||||
"name": "TargetTemp",
|
||||
"props": {
|
||||
"color": "#fff",
|
||||
"kettle": "oHxKz3z5RjbsxfSz6KUgov",
|
||||
"size": "12",
|
||||
"unit": "\u00b0"
|
||||
},
|
||||
"type": "TargetTemp",
|
||||
"x": 260,
|
||||
"y": 225
|
||||
},
|
||||
{
|
||||
"id": "2204b231-ca45-4773-a110-0e4b19dfab89",
|
||||
"name": "TargetTemp",
|
||||
"props": {
|
||||
"color": "#fff",
|
||||
"kettle": "a7bWex85Z9Td4atwgazpXW",
|
||||
"size": "12",
|
||||
"unit": "\u00b0"
|
||||
},
|
||||
"type": "TargetTemp",
|
||||
"x": 820,
|
||||
"y": 225
|
||||
},
|
||||
{
|
||||
"id": "8f3c656c-16b7-4f81-9d6d-8219e90e87d0",
|
||||
"name": "CustomSVG",
|
||||
"props": {
|
||||
"name": "tank",
|
||||
"width": "100"
|
||||
"name": "cbpi_svg",
|
||||
"width": "50"
|
||||
},
|
||||
"type": "CustomSVG",
|
||||
"x": 555,
|
||||
"y": 55
|
||||
"y": 240
|
||||
},
|
||||
{
|
||||
"id": "1f1d5ee6-1ccc-409b-a240-c81d50b71627",
|
||||
"id": "2a8b37f8-c0af-4592-9771-2e6500ef4299",
|
||||
"name": "CustomSVG",
|
||||
"props": {
|
||||
"name": "kettle",
|
||||
"width": "100"
|
||||
"name": "cbpi_svg",
|
||||
"width": "50"
|
||||
},
|
||||
"type": "CustomSVG",
|
||||
"x": 795,
|
||||
"y": 90
|
||||
"x": 245,
|
||||
"y": 240
|
||||
},
|
||||
{
|
||||
"id": "16ec8526-7f2c-4973-bf97-4ab3363e6ca1",
|
||||
"name": "CustomSVG",
|
||||
"props": {
|
||||
"name": "cbpi_svg",
|
||||
"width": "50"
|
||||
},
|
||||
"type": "CustomSVG",
|
||||
"x": 805,
|
||||
"y": 240
|
||||
},
|
||||
{
|
||||
"id": "4fecbb43-53be-4d4a-b24d-2d980777afbe",
|
||||
"name": "CraftBeerPi Brewery",
|
||||
"props": {
|
||||
"color": "#fff",
|
||||
"size": "40"
|
||||
},
|
||||
"type": "Text",
|
||||
"x": 45,
|
||||
"y": 65
|
||||
},
|
||||
{
|
||||
"id": "4996dd17-b047-4d27-8598-0563dfd444ab",
|
||||
"name": "Steps",
|
||||
"props": {
|
||||
"width": "200"
|
||||
},
|
||||
"type": "Steps",
|
||||
"x": 35,
|
||||
"y": 315
|
||||
},
|
||||
{
|
||||
"id": "44014b52-4bf0-4136-88a7-3cb9f1882962",
|
||||
"name": "Out",
|
||||
"props": {
|
||||
"actor": "NfYJEWbTXPUSUQzS83dfAn"
|
||||
},
|
||||
"type": "ActorButton",
|
||||
"x": 985,
|
||||
"y": 265
|
||||
},
|
||||
{
|
||||
"id": "d4a56a0e-f410-47c1-879a-ff41c6422a6e",
|
||||
"name": "Sensor Data",
|
||||
"props": {
|
||||
"color": "red",
|
||||
"sensor": "8ohkXvFA9UrkHLsxQL38wu",
|
||||
"size": "40",
|
||||
"unit": "\u00b0"
|
||||
},
|
||||
"type": "Sensor",
|
||||
"x": 555,
|
||||
"y": 180
|
||||
}
|
||||
],
|
||||
"pathes": [
|
||||
{
|
||||
"condition": [
|
||||
"ZGJqoybWv3eWrEeGJLopFs"
|
||||
],
|
||||
"coordinates": [
|
||||
[
|
||||
305,
|
||||
75
|
||||
225,
|
||||
180
|
||||
],
|
||||
[
|
||||
160,
|
||||
190
|
||||
],
|
||||
[
|
||||
245,
|
||||
460
|
||||
],
|
||||
[
|
||||
525,
|
||||
395
|
||||
],
|
||||
[
|
||||
560,
|
||||
75
|
||||
115,
|
||||
180
|
||||
]
|
||||
],
|
||||
"id": "d22d65d2-c4db-4553-856a-e9239a79e136"
|
||||
"id": "731806be-b2cb-4706-8dd1-00bfc7daa818"
|
||||
},
|
||||
{
|
||||
"condition": [
|
||||
"Aifjxmw4QdPfU3XbR6iyis",
|
||||
"j4PnSfuWRhgZDgrQScLN7e"
|
||||
],
|
||||
"coordinates": [
|
||||
[
|
||||
480,
|
||||
400
|
||||
],
|
||||
[
|
||||
550,
|
||||
400
|
||||
]
|
||||
],
|
||||
"id": "39c646bc-3655-433d-a989-aa25a4a1d3ab"
|
||||
},
|
||||
{
|
||||
"condition": [
|
||||
"Aifjxmw4QdPfU3XbR6iyis",
|
||||
"j4PnSfuWRhgZDgrQScLN7e"
|
||||
],
|
||||
"coordinates": [
|
||||
[
|
||||
320,
|
||||
285
|
||||
],
|
||||
[
|
||||
360,
|
||||
285
|
||||
],
|
||||
[
|
||||
360,
|
||||
400
|
||||
],
|
||||
[
|
||||
410,
|
||||
400
|
||||
]
|
||||
],
|
||||
"id": "3fd4d742-a9b4-4d6f-ab75-9fcfed4f5104"
|
||||
},
|
||||
{
|
||||
"condition": [
|
||||
"Aifjxmw4QdPfU3XbR6iyis",
|
||||
"j4PnSfuWRhgZDgrQScLN7e"
|
||||
],
|
||||
"coordinates": [
|
||||
[
|
||||
535,
|
||||
175
|
||||
],
|
||||
[
|
||||
390,
|
||||
175
|
||||
],
|
||||
[
|
||||
390,
|
||||
215
|
||||
],
|
||||
[
|
||||
325,
|
||||
215
|
||||
]
|
||||
],
|
||||
"id": "91f38257-788c-4255-99cf-f454c69a7d93"
|
||||
},
|
||||
{
|
||||
"condition": [
|
||||
"Aifjxmw4QdPfU3XbR6iyis",
|
||||
"j4PnSfuWRhgZDgrQScLN7e"
|
||||
],
|
||||
"coordinates": [
|
||||
[
|
||||
580,
|
||||
380
|
||||
],
|
||||
[
|
||||
580,
|
||||
305
|
||||
]
|
||||
],
|
||||
"id": "0f9ffe1d-0b0c-4a0e-9dbf-3931ded3d050"
|
||||
},
|
||||
{
|
||||
"coordinates": [
|
||||
[
|
||||
615,
|
||||
400
|
||||
],
|
||||
[
|
||||
680,
|
||||
400
|
||||
]
|
||||
],
|
||||
"id": "fbbd511d-b51c-43a3-95e7-1608f21fdb33"
|
||||
},
|
||||
{
|
||||
"coordinates": [
|
||||
[
|
||||
780,
|
||||
180
|
||||
],
|
||||
[
|
||||
710,
|
||||
180
|
||||
],
|
||||
[
|
||||
710,
|
||||
380
|
||||
]
|
||||
],
|
||||
"id": "e4f7b27e-a0db-48e8-82e2-7a07f1a61dc5"
|
||||
},
|
||||
{
|
||||
"condition": [
|
||||
"NfYJEWbTXPUSUQzS83dfAn"
|
||||
],
|
||||
"coordinates": [
|
||||
[
|
||||
985,
|
||||
285
|
||||
],
|
||||
[
|
||||
880,
|
||||
285
|
||||
]
|
||||
],
|
||||
"id": "0dc28018-7282-4a43-98e6-c1dd198c93d5"
|
||||
},
|
||||
{
|
||||
"condition": [
|
||||
"NfYJEWbTXPUSUQzS83dfAn"
|
||||
],
|
||||
"coordinates": [
|
||||
[
|
||||
1015,
|
||||
375
|
||||
],
|
||||
[
|
||||
1015,
|
||||
300
|
||||
]
|
||||
],
|
||||
"id": "6ca9c0f9-d4a6-45cf-bfdd-b7f6740c4bc1"
|
||||
}
|
||||
]
|
||||
}
|
|
@ -1,14 +1,13 @@
|
|||
|
||||
name: CraftBeerPi
|
||||
version: 4.0
|
||||
|
||||
index_url: /cbpi_ui/static/index.html
|
||||
plugins:
|
||||
- cbpi4-ui
|
||||
|
||||
port: 8080
|
||||
|
||||
# login data
|
||||
username: cbpi
|
||||
password: 123
|
||||
|
||||
ws_push_all: true
|
||||
|
||||
|
|
7
config/dashboard/widgets/brewery.svg
Normal file
7
config/dashboard/widgets/brewery.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 30 KiB |
8
config/dashboard/widgets/cbpi_svg.svg
Normal file
8
config/dashboard/widgets/cbpi_svg.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 13 KiB |
|
@ -1,81 +0,0 @@
|
|||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0" y="0" width="150" height="220" viewBox="0, 0, 150, 220">
|
||||
<defs>
|
||||
<linearGradient id="Gradient_1" gradientUnits="userSpaceOnUse" x1="3.5" y1="110.5" x2="147.5" y2="110.5">
|
||||
<stop offset="0" stop-color="#323232"/>
|
||||
<stop offset="0.357" stop-color="#FFFFFF"/>
|
||||
<stop offset="0.571" stop-color="#919191"/>
|
||||
<stop offset="1" stop-color="#4A4A4A"/>
|
||||
</linearGradient>
|
||||
<linearGradient id="Gradient_2" gradientUnits="userSpaceOnUse" x1="73.868" y1="3.277" x2="77.132" y2="217.723">
|
||||
<stop offset="0" stop-color="#5D5D5D"/>
|
||||
<stop offset="1" stop-color="#000000" stop-opacity="0.959"/>
|
||||
</linearGradient>
|
||||
<linearGradient id="Gradient_3" gradientUnits="userSpaceOnUse" x1="3.5" y1="101.083" x2="147.5" y2="101.083">
|
||||
<stop offset="0" stop-color="#323232"/>
|
||||
<stop offset="0.357" stop-color="#FFFFFF"/>
|
||||
<stop offset="0.571" stop-color="#919191"/>
|
||||
<stop offset="1" stop-color="#4A4A4A"/>
|
||||
</linearGradient>
|
||||
<linearGradient id="Gradient_4" gradientUnits="userSpaceOnUse" x1="2.75" y1="110.5" x2="148.25" y2="110.5">
|
||||
<stop offset="0" stop-color="#232323"/>
|
||||
<stop offset="0.357" stop-color="#5B5B5B"/>
|
||||
<stop offset="0.571" stop-color="#474747"/>
|
||||
<stop offset="1" stop-color="#282828"/>
|
||||
</linearGradient>
|
||||
<linearGradient id="Gradient_5" gradientUnits="userSpaceOnUse" x1="219.5" y1="110" x2="223.5" y2="110">
|
||||
<stop offset="0" stop-color="#232323"/>
|
||||
<stop offset="0.357" stop-color="#5B5B5B"/>
|
||||
<stop offset="0.571" stop-color="#474747"/>
|
||||
<stop offset="1" stop-color="#282828"/>
|
||||
</linearGradient>
|
||||
</defs>
|
||||
<g id="Ebene_1" display="none">
|
||||
<g display="none">
|
||||
<path d="M135.5,3 C141.774,3.18 146.086,7.113 147.348,13.254 L147.5,13.254 L147.5,156.127 L111.5,185.434 C102.435,192.824 93.37,200.214 84.3,207.598 L84.3,218 L66.7,218 L66.7,207.328 C57.672,199.985 48.594,192.701 39.5,185.434 L3.5,156.127 L3.5,13.254 L3.652,13.254 C4.623,7.127 9.57,3.297 15.5,3 L135.5,3 z" fill="url(#Gradient_1)"/>
|
||||
<path d="M135.5,3 C141.774,3.18 146.086,7.113 147.348,13.254 L147.5,13.254 L147.5,156.127 L111.5,185.434 C102.435,192.824 93.37,200.214 84.3,207.598 L84.3,218 L66.7,218 L66.7,207.328 C57.672,199.985 48.594,192.701 39.5,185.434 L3.5,156.127 L3.5,13.254 L3.652,13.254 C4.623,7.127 9.57,3.297 15.5,3 L135.5,3 z" fill-opacity="0" stroke="#272727" stroke-width="1"/>
|
||||
</g>
|
||||
</g>
|
||||
<g id="Ebene_4"/>
|
||||
<g id="Ebene_3">
|
||||
<g display="none">
|
||||
<g display="none">
|
||||
<path d="M2.75,3.25 L148.25,3.25 L148.25,217.75 L2.75,217.75 L2.75,3.25 z" fill="url(#Gradient_2)"/>
|
||||
<path d="M2.75,3.25 L148.25,3.25 L148.25,217.75 L2.75,217.75 L2.75,3.25 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="1"/>
|
||||
</g>
|
||||
<path d="M75.5,189.637 C41.08,189.637 13.177,182.258 13.177,173.156 C13.177,164.053 41.08,156.674 75.5,156.674 C109.92,156.674 137.823,164.053 137.823,173.156 C137.823,182.258 109.92,189.637 75.5,189.637 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="10"/>
|
||||
<path d="M75.5,189.637 C41.08,189.637 13.177,182.258 13.177,173.156 C13.177,164.053 41.08,156.674 75.5,156.674 C109.92,156.674 137.823,164.053 137.823,173.156 C137.823,182.258 109.92,189.637 75.5,189.637 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="8"/>
|
||||
<path d="M75.5,177.357 C41.08,177.357 13.177,169.978 13.177,160.875 C13.177,151.772 41.08,144.393 75.5,144.393 C109.92,144.393 137.822,151.772 137.822,160.875 C137.822,169.978 109.92,177.357 75.5,177.357 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="10"/>
|
||||
<path d="M75.5,177.357 C41.08,177.357 13.177,169.978 13.177,160.875 C13.177,151.772 41.08,144.393 75.5,144.393 C109.92,144.393 137.823,151.772 137.823,160.875 C137.823,169.978 109.92,177.357 75.5,177.357 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="8"/>
|
||||
<path d="M75.5,165.076 C41.08,165.076 13.177,157.697 13.177,148.594 C13.177,139.492 41.08,132.113 75.5,132.113 C109.92,132.113 137.823,139.492 137.823,148.594 C137.823,157.697 109.92,165.076 75.5,165.076 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="10"/>
|
||||
<path d="M75.5,165.076 C41.08,165.076 13.177,157.697 13.177,148.594 C13.177,139.492 41.08,132.113 75.5,132.113 C109.92,132.113 137.823,139.492 137.823,148.594 C137.823,157.697 109.92,165.076 75.5,165.076 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="8"/>
|
||||
</g>
|
||||
<g>
|
||||
<path d="M2.25,159.208 C2.25,163.834 34.821,167.583 75,167.583 C115.179,167.583 147.75,163.834 147.75,159.208 L147.75,208.875 C147.75,213.5 115.179,217.25 75,217.25 C34.821,217.25 2.25,213.5 2.25,208.875 L2.25,159.208 z" fill="#3B2CD5"/>
|
||||
<path d="M75,167.333 C34.821,167.333 2.25,163.584 2.25,158.958 C2.25,154.333 34.821,150.583 75,150.583 C115.179,150.583 147.75,154.333 147.75,158.958 C147.75,163.584 115.179,167.333 75,167.333 z" fill="#2193FF"/>
|
||||
</g>
|
||||
<path d="M75.5,20 C35.321,20 2.75,16.25 2.75,11.625 C2.75,7 35.321,3.25 75.5,3.25 C115.679,3.25 148.25,7 148.25,11.625 C148.25,16.25 115.679,20 75.5,20 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="1"/>
|
||||
<path d="M75.5,217.75 C35.321,217.75 2.75,214 2.75,209.375 C2.75,204.75 35.321,201 75.5,201 C115.679,201 148.25,204.75 148.25,209.375 C148.25,214 115.679,217.75 75.5,217.75 z" fill-opacity="0" stroke="#CDCDCD" stroke-width="1"/>
|
||||
<path d="M2.75,208.604 L2.75,12.396" fill-opacity="0" stroke="#CDCDCD" stroke-width="1"/>
|
||||
<path d="M148.25,209.375 L148.25,11.625" fill-opacity="0" stroke="#CDCDCD" stroke-width="1"/>
|
||||
</g>
|
||||
<g id="Ebene_2">
|
||||
<g display="none">
|
||||
<path d="M75.5,3.333 C115.265,3.333 147.5,14.414 147.5,28.083 L147.5,174.083 C147.5,187.752 115.264,198.833 75.5,198.833 C35.736,198.833 3.5,187.752 3.5,174.083 L3.5,28.083 C3.5,14.414 35.736,3.333 75.5,3.333 z" fill="url(#Gradient_3)"/>
|
||||
<path d="M75.5,3.333 C115.265,3.333 147.5,14.414 147.5,28.083 L147.5,174.083 C147.5,187.752 115.264,198.833 75.5,198.833 C35.736,198.833 3.5,187.752 3.5,174.083 L3.5,28.083 C3.5,14.414 35.736,3.333 75.5,3.333 z" fill-opacity="0" stroke="#272727" stroke-width="1"/>
|
||||
</g>
|
||||
<g display="none">
|
||||
<path d="M2.75,3.25 L148.25,3.25 L148.25,217.75 L2.75,217.75 L2.75,3.25 z" fill="#919191"/>
|
||||
<path d="M2.75,3.25 L148.25,3.25 L148.25,217.75 L2.75,217.75 L2.75,3.25 z" fill-opacity="0" stroke="#000000" stroke-width="1"/>
|
||||
</g>
|
||||
<g>
|
||||
<path d="M2.75,3.25 L148.25,3.25 L148.25,217.75 L2.75,217.75 L2.75,3.25 z" fill="url(#Gradient_4)"/>
|
||||
<path d="M2.75,3.25 L148.25,3.25 L148.25,217.75 L2.75,217.75 L2.75,3.25 z" fill-opacity="0" stroke="#000000" stroke-width="1"/>
|
||||
</g>
|
||||
<g>
|
||||
<path d="M219.5,108.5 L223.5,108.5 L223.5,111.5 L219.5,111.5 L219.5,108.5 z" fill="url(#Gradient_5)"/>
|
||||
<path d="M219.5,108.5 L223.5,108.5 L223.5,111.5 L219.5,111.5 L219.5,108.5 z" fill-opacity="0" stroke="#000000" stroke-width="1"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
Before Width: | Height: | Size: 6.9 KiB |
7
config/dashboard/widgets/kettle2.svg
Normal file
7
config/dashboard/widgets/kettle2.svg
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 9.2 KiB |
|
@ -4,18 +4,20 @@
|
|||
"agitator": "",
|
||||
"heater": "8BLRqagLicCdEBDdc77Sgr",
|
||||
"id": "oHxKz3z5RjbsxfSz6KUgov",
|
||||
"name": "Test1111111",
|
||||
"name": "MashTun",
|
||||
"props": {},
|
||||
"sensor": "",
|
||||
"state": {},
|
||||
"target_temp": null,
|
||||
"sensor": "8ohkXvFA9UrkHLsxQL38wu",
|
||||
"state": {
|
||||
"running": false
|
||||
},
|
||||
"target_temp": 52,
|
||||
"type": "CustomKettleLogic"
|
||||
},
|
||||
{
|
||||
"agitator": "",
|
||||
"heater": "",
|
||||
"id": "WxAkesrkqiHH3Gywc4fMci",
|
||||
"name": "Test",
|
||||
"name": "HLT",
|
||||
"props": {
|
||||
"Param2": "13",
|
||||
"Param3": 1,
|
||||
|
@ -25,43 +27,20 @@
|
|||
"sensor": "",
|
||||
"state": {},
|
||||
"target_temp": null,
|
||||
"type": "CustomKettleLogic"
|
||||
},
|
||||
{
|
||||
"agitator": "",
|
||||
"heater": "8BLRqagLicCdEBDdc77Sgr",
|
||||
"id": "gc9Bwp38jtyxkVWH5oYRNZ",
|
||||
"name": "Test",
|
||||
"props": {
|
||||
"Param3": 1,
|
||||
"Param5": "8BLRqagLicCdEBDdc77Sgr"
|
||||
},
|
||||
"sensor": "",
|
||||
"state": {},
|
||||
"target_temp": null,
|
||||
"type": "CustomKettleLogic"
|
||||
},
|
||||
{
|
||||
"agitator": "",
|
||||
"heater": "",
|
||||
"id": "ZfF2N2UnEHtgExNgZJyF5i",
|
||||
"name": "Test",
|
||||
"props": {},
|
||||
"sensor": "",
|
||||
"state": {},
|
||||
"target_temp": null,
|
||||
"type": "CustomKettleLogic"
|
||||
},
|
||||
{
|
||||
"agitator": "",
|
||||
"heater": "8BLRqagLicCdEBDdc77Sgr",
|
||||
"id": "oTivUB7LueLeUWoZAnLhwp",
|
||||
"name": "",
|
||||
"props": {},
|
||||
"sensor": "",
|
||||
"state": {},
|
||||
"target_temp": null,
|
||||
"type": ""
|
||||
},
|
||||
{
|
||||
"agitator": "",
|
||||
"heater": "NjammuygecdvMpoGYc3rXt",
|
||||
"id": "a7bWex85Z9Td4atwgazpXW",
|
||||
"name": "Boil",
|
||||
"props": {},
|
||||
"sensor": "",
|
||||
"state": {
|
||||
"running": false
|
||||
},
|
||||
"target_temp": 55,
|
||||
"type": "CustomKettleLogic"
|
||||
}
|
||||
]
|
||||
}
|
|
@ -2,10 +2,10 @@
|
|||
"data": [
|
||||
{
|
||||
"id": "8ohkXvFA9UrkHLsxQL38wu",
|
||||
"name": "Test1112222",
|
||||
"name": "Sensor1",
|
||||
"props": {},
|
||||
"state": {
|
||||
"value": 49
|
||||
"value": 0
|
||||
},
|
||||
"type": "CustomSensor"
|
||||
}
|
||||
|
|
|
@ -1,15 +1,43 @@
|
|||
{
|
||||
"basic": {
|
||||
"name": ""
|
||||
"name": "PALE ALE"
|
||||
},
|
||||
"profile": [
|
||||
{
|
||||
"id": "6mdUtsrBaWeDvKgUXJiLqu",
|
||||
"name": "Test",
|
||||
"id": "T2y34Mbex9KjNWXhzfCRby",
|
||||
"name": "MashIn",
|
||||
"props": {
|
||||
"Param1": 123,
|
||||
"Param2": "HALLO",
|
||||
"Param3": 1
|
||||
"Param3": 1,
|
||||
"count": 1,
|
||||
"wohoo": 0
|
||||
},
|
||||
"status": "P",
|
||||
"type": "CustomStep2"
|
||||
},
|
||||
{
|
||||
"id": "RjS8Zb2GGpUtNsqHsES3yF",
|
||||
"name": "Step2",
|
||||
"props": {
|
||||
"Param1": 123,
|
||||
"Param2": "HALLO",
|
||||
"Param3": 1,
|
||||
"count": 0,
|
||||
"wohoo": 0
|
||||
},
|
||||
"status": "I",
|
||||
"type": "CustomStep2"
|
||||
},
|
||||
{
|
||||
"id": "WkZG4fDNxZdtZ7uoTsSHhR",
|
||||
"name": "Mash Step 1",
|
||||
"props": {
|
||||
"Param1": 123,
|
||||
"Param2": "HALLO",
|
||||
"Param3": 1,
|
||||
"count": 0,
|
||||
"wohoo": 0
|
||||
},
|
||||
"status": "I",
|
||||
"type": "CustomStep2"
|
||||
|
|
3
setup.py
3
setup.py
|
@ -28,9 +28,10 @@ setup(name='cbpi',
|
|||
"voluptuous==0.12.1",
|
||||
"pyfiglet==0.8.post1",
|
||||
'pandas==1.1.5',
|
||||
'click==7.1.2',
|
||||
'shortuuid==1.0.1',
|
||||
'tabulate==0.8.7',
|
||||
'cbpi4-ui==0.0.2',
|
||||
'cbpi4-ui==0.0.3',
|
||||
],
|
||||
dependency_links=[
|
||||
'https://testpypi.python.org/pypi'
|
||||
|
|
BIN
temp.zip
Normal file
BIN
temp.zip
Normal file
Binary file not shown.
|
@ -1,2 +1,3 @@
|
|||
/Users/manuelfritsch/Documents/git/cbpi4-ui-plugin
|
||||
/Users/manuelfritsch/Documents/git/cbpi4-ui
|
||||
/Users/manuelfritsch/Documents/git/myplugin/plugin1
|
||||
|
|
|
@ -1,56 +0,0 @@
|
|||
About the Copyright Holders
|
||||
===========================
|
||||
|
||||
* Copyright (c) 2008-2011 AQR Capital Management, LLC
|
||||
|
||||
AQR Capital Management began pandas development in 2008. Development was
|
||||
led by Wes McKinney. AQR released the source under this license in 2009.
|
||||
* Copyright (c) 2011-2012, Lambda Foundry, Inc.
|
||||
|
||||
Wes is now an employee of Lambda Foundry, and remains the pandas project
|
||||
lead.
|
||||
* Copyright (c) 2011-2012, PyData Development Team
|
||||
|
||||
The PyData Development Team is the collection of developers of the PyData
|
||||
project. This includes all of the PyData sub-projects, including pandas. The
|
||||
core team that coordinates development on GitHub can be found here:
|
||||
https://github.com/pydata.
|
||||
|
||||
Full credits for pandas contributors can be found in the documentation.
|
||||
|
||||
Our Copyright Policy
|
||||
====================
|
||||
|
||||
PyData uses a shared copyright model. Each contributor maintains copyright
|
||||
over their contributions to PyData. However, it is important to note that
|
||||
these contributions are typically only changes to the repositories. Thus,
|
||||
the PyData source code, in its entirety, is not the copyright of any single
|
||||
person or institution. Instead, it is the collective copyright of the
|
||||
entire PyData Development Team. If individual contributors want to maintain
|
||||
a record of what changes/contributions they have specific copyright on,
|
||||
they should indicate their copyright in the commit message of the change
|
||||
when they commit the change to one of the PyData repositories.
|
||||
|
||||
With this in mind, the following banner should be used in any source code
|
||||
file to indicate the copyright and license terms:
|
||||
|
||||
```
|
||||
#-----------------------------------------------------------------------------
|
||||
# Copyright (c) 2012, PyData Development Team
|
||||
# All rights reserved.
|
||||
#
|
||||
# Distributed under the terms of the BSD Simplified License.
|
||||
#
|
||||
# The full license is in the LICENSE file, distributed with this software.
|
||||
#-----------------------------------------------------------------------------
|
||||
```
|
||||
|
||||
Other licenses can be found in the LICENSES directory.
|
||||
|
||||
License
|
||||
=======
|
||||
|
||||
pandas is distributed under a 3-clause ("Simplified" or "New") BSD
|
||||
license. Parts of NumPy, SciPy, numpydoc, bottleneck, which all have
|
||||
BSD-compatible licenses, are included. Their licenses follow the pandas
|
||||
license.
|
|
@ -1 +0,0 @@
|
|||
pip
|
|
@ -1,31 +0,0 @@
|
|||
BSD 3-Clause License
|
||||
|
||||
Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
|
||||
All rights reserved.
|
||||
|
||||
Copyright (c) 2011-2020, Open source contributors.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of the copyright holder nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@ -1,95 +0,0 @@
|
|||
Metadata-Version: 2.1
|
||||
Name: pandas
|
||||
Version: 1.2.0
|
||||
Summary: Powerful data structures for data analysis, time series, and statistics
|
||||
Home-page: https://pandas.pydata.org
|
||||
Maintainer: The PyData Development Team
|
||||
Maintainer-email: pydata@googlegroups.com
|
||||
License: BSD
|
||||
Project-URL: Bug Tracker, https://github.com/pandas-dev/pandas/issues
|
||||
Project-URL: Documentation, https://pandas.pydata.org/pandas-docs/stable/
|
||||
Project-URL: Source Code, https://github.com/pandas-dev/pandas
|
||||
Platform: any
|
||||
Classifier: Development Status :: 5 - Production/Stable
|
||||
Classifier: Environment :: Console
|
||||
Classifier: Operating System :: OS Independent
|
||||
Classifier: Intended Audience :: Science/Research
|
||||
Classifier: Programming Language :: Python
|
||||
Classifier: Programming Language :: Python :: 3
|
||||
Classifier: Programming Language :: Python :: 3.7
|
||||
Classifier: Programming Language :: Python :: 3.8
|
||||
Classifier: Programming Language :: Python :: 3.9
|
||||
Classifier: Programming Language :: Cython
|
||||
Classifier: Topic :: Scientific/Engineering
|
||||
Requires-Python: >=3.7.1
|
||||
Requires-Dist: python-dateutil (>=2.7.3)
|
||||
Requires-Dist: pytz (>=2017.3)
|
||||
Requires-Dist: numpy (>=1.16.5)
|
||||
Provides-Extra: test
|
||||
Requires-Dist: pytest (>=5.0.1) ; extra == 'test'
|
||||
Requires-Dist: pytest-xdist ; extra == 'test'
|
||||
Requires-Dist: hypothesis (>=3.58) ; extra == 'test'
|
||||
|
||||
|
||||
**pandas** is a Python package that provides fast, flexible, and expressive data
|
||||
structures designed to make working with structured (tabular, multidimensional,
|
||||
potentially heterogeneous) and time series data both easy and intuitive. It
|
||||
aims to be the fundamental high-level building block for doing practical,
|
||||
**real world** data analysis in Python. Additionally, it has the broader goal
|
||||
of becoming **the most powerful and flexible open source data analysis /
|
||||
manipulation tool available in any language**. It is already well on its way
|
||||
toward this goal.
|
||||
|
||||
pandas is well suited for many different kinds of data:
|
||||
|
||||
- Tabular data with heterogeneously-typed columns, as in an SQL table or
|
||||
Excel spreadsheet
|
||||
- Ordered and unordered (not necessarily fixed-frequency) time series data.
|
||||
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and
|
||||
column labels
|
||||
- Any other form of observational / statistical data sets. The data actually
|
||||
need not be labeled at all to be placed into a pandas data structure
|
||||
|
||||
The two primary data structures of pandas, Series (1-dimensional) and DataFrame
|
||||
(2-dimensional), handle the vast majority of typical use cases in finance,
|
||||
statistics, social science, and many areas of engineering. For R users,
|
||||
DataFrame provides everything that R's ``data.frame`` provides and much
|
||||
more. pandas is built on top of `NumPy <https://www.numpy.org>`__ and is
|
||||
intended to integrate well within a scientific computing environment with many
|
||||
other 3rd party libraries.
|
||||
|
||||
Here are just a few of the things that pandas does well:
|
||||
|
||||
- Easy handling of **missing data** (represented as NaN) in floating point as
|
||||
well as non-floating point data
|
||||
- Size mutability: columns can be **inserted and deleted** from DataFrame and
|
||||
higher dimensional objects
|
||||
- Automatic and explicit **data alignment**: objects can be explicitly
|
||||
aligned to a set of labels, or the user can simply ignore the labels and
|
||||
let `Series`, `DataFrame`, etc. automatically align the data for you in
|
||||
computations
|
||||
- Powerful, flexible **group by** functionality to perform
|
||||
split-apply-combine operations on data sets, for both aggregating and
|
||||
transforming data
|
||||
- Make it **easy to convert** ragged, differently-indexed data in other
|
||||
Python and NumPy data structures into DataFrame objects
|
||||
- Intelligent label-based **slicing**, **fancy indexing**, and **subsetting**
|
||||
of large data sets
|
||||
- Intuitive **merging** and **joining** data sets
|
||||
- Flexible **reshaping** and pivoting of data sets
|
||||
- **Hierarchical** labeling of axes (possible to have multiple labels per
|
||||
tick)
|
||||
- Robust IO tools for loading data from **flat files** (CSV and delimited),
|
||||
Excel files, databases, and saving / loading data from the ultrafast **HDF5
|
||||
format**
|
||||
- **Time series**-specific functionality: date range generation and frequency
|
||||
conversion, moving window statistics, date shifting and lagging.
|
||||
|
||||
Many of these principles are here to address the shortcomings frequently
|
||||
experienced using other languages / scientific research environments. For data
|
||||
scientists, working with data is typically divided into multiple stages:
|
||||
munging and cleaning data, analyzing / modeling it, then organizing the results
|
||||
of the analysis into a form suitable for plotting or tabular display. pandas is
|
||||
the ideal tool for all of these tasks.
|
||||
|
||||
|
File diff suppressed because it is too large
Load diff
|
@ -1,5 +0,0 @@
|
|||
Wheel-Version: 1.0
|
||||
Generator: bdist_wheel (0.36.2)
|
||||
Root-Is-Purelib: false
|
||||
Tag: cp38-cp38-macosx_10_9_x86_64
|
||||
|
|
@ -1,3 +0,0 @@
|
|||
[pandas_plotting_backends]
|
||||
matplotlib = pandas:plotting._matplotlib
|
||||
|
|
@ -1 +0,0 @@
|
|||
pandas
|
|
@ -20,9 +20,10 @@ del hard_dependencies, dependency, missing_dependencies
|
|||
|
||||
# numpy compat
|
||||
from pandas.compat.numpy import (
|
||||
np_version_under1p17 as _np_version_under1p17,
|
||||
np_version_under1p18 as _np_version_under1p18,
|
||||
is_numpy_dev as _is_numpy_dev,
|
||||
_np_version_under1p16,
|
||||
_np_version_under1p17,
|
||||
_np_version_under1p18,
|
||||
_is_numpy_dev,
|
||||
)
|
||||
|
||||
try:
|
||||
|
@ -33,7 +34,7 @@ except ImportError as e: # pragma: no cover
|
|||
raise ImportError(
|
||||
f"C extension: {module} not built. If you want to import "
|
||||
"pandas from the source directory, you may need to run "
|
||||
"'python setup.py build_ext --force' to build the C extensions first."
|
||||
"'python setup.py build_ext --inplace --force' to build the C extensions first."
|
||||
) from e
|
||||
|
||||
from pandas._config import (
|
||||
|
@ -58,8 +59,6 @@ from pandas.core.api import (
|
|||
UInt16Dtype,
|
||||
UInt32Dtype,
|
||||
UInt64Dtype,
|
||||
Float32Dtype,
|
||||
Float64Dtype,
|
||||
CategoricalDtype,
|
||||
PeriodDtype,
|
||||
IntervalDtype,
|
||||
|
@ -102,7 +101,6 @@ from pandas.core.api import (
|
|||
to_datetime,
|
||||
to_timedelta,
|
||||
# misc
|
||||
Flags,
|
||||
Grouper,
|
||||
factorize,
|
||||
unique,
|
||||
|
@ -187,61 +185,181 @@ __version__ = v.get("closest-tag", v["version"])
|
|||
__git_version__ = v.get("full-revisionid")
|
||||
del get_versions, v
|
||||
|
||||
|
||||
# GH 27101
|
||||
def __getattr__(name):
|
||||
import warnings
|
||||
# TODO: remove Panel compat in 1.0
|
||||
if pandas.compat.PY37:
|
||||
|
||||
if name == "datetime":
|
||||
warnings.warn(
|
||||
"The pandas.datetime class is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Import from datetime module instead.",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
def __getattr__(name):
|
||||
import warnings
|
||||
|
||||
if name == "Panel":
|
||||
|
||||
warnings.warn(
|
||||
"The Panel class is removed from pandas. Accessing it "
|
||||
"from the top-level namespace will also be removed in the next version",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
class Panel:
|
||||
pass
|
||||
|
||||
return Panel
|
||||
|
||||
elif name == "datetime":
|
||||
warnings.warn(
|
||||
"The pandas.datetime class is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Import from datetime module instead.",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
from datetime import datetime as dt
|
||||
|
||||
return dt
|
||||
|
||||
elif name == "np":
|
||||
|
||||
warnings.warn(
|
||||
"The pandas.np module is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Import numpy directly instead",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
import numpy as np
|
||||
|
||||
return np
|
||||
|
||||
elif name in {"SparseSeries", "SparseDataFrame"}:
|
||||
warnings.warn(
|
||||
f"The {name} class is removed from pandas. Accessing it from "
|
||||
"the top-level namespace will also be removed in the next version",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
return type(name, (), {})
|
||||
|
||||
elif name == "SparseArray":
|
||||
|
||||
warnings.warn(
|
||||
"The pandas.SparseArray class is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Use pandas.arrays.SparseArray instead.",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
from pandas.core.arrays.sparse import SparseArray as _SparseArray
|
||||
|
||||
return _SparseArray
|
||||
|
||||
raise AttributeError(f"module 'pandas' has no attribute '{name}'")
|
||||
|
||||
|
||||
else:
|
||||
|
||||
class Panel:
|
||||
pass
|
||||
|
||||
class SparseDataFrame:
|
||||
pass
|
||||
|
||||
class SparseSeries:
|
||||
pass
|
||||
|
||||
class __numpy:
|
||||
def __init__(self):
|
||||
import numpy as np
|
||||
import warnings
|
||||
|
||||
self.np = np
|
||||
self.warnings = warnings
|
||||
|
||||
def __getattr__(self, item):
|
||||
self.warnings.warn(
|
||||
"The pandas.np module is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Import numpy directly instead",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
try:
|
||||
return getattr(self.np, item)
|
||||
except AttributeError as err:
|
||||
raise AttributeError(f"module numpy has no attribute {item}") from err
|
||||
|
||||
np = __numpy()
|
||||
|
||||
class __Datetime(type):
|
||||
|
||||
from datetime import datetime as dt
|
||||
|
||||
return dt
|
||||
datetime = dt
|
||||
|
||||
elif name == "np":
|
||||
def __getattr__(cls, item):
|
||||
cls.emit_warning()
|
||||
|
||||
warnings.warn(
|
||||
"The pandas.np module is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Import numpy directly instead",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
import numpy as np
|
||||
try:
|
||||
return getattr(cls.datetime, item)
|
||||
except AttributeError as err:
|
||||
raise AttributeError(
|
||||
f"module datetime has no attribute {item}"
|
||||
) from err
|
||||
|
||||
return np
|
||||
def __instancecheck__(cls, other):
|
||||
return isinstance(other, cls.datetime)
|
||||
|
||||
elif name in {"SparseSeries", "SparseDataFrame"}:
|
||||
warnings.warn(
|
||||
f"The {name} class is removed from pandas. Accessing it from "
|
||||
"the top-level namespace will also be removed in the next version",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
class __DatetimeSub(metaclass=__Datetime):
|
||||
def emit_warning(dummy=0):
|
||||
import warnings
|
||||
|
||||
return type(name, (), {})
|
||||
warnings.warn(
|
||||
"The pandas.datetime class is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Import from datetime instead.",
|
||||
FutureWarning,
|
||||
stacklevel=3,
|
||||
)
|
||||
|
||||
elif name == "SparseArray":
|
||||
def __new__(cls, *args, **kwargs):
|
||||
cls.emit_warning()
|
||||
from datetime import datetime as dt
|
||||
|
||||
warnings.warn(
|
||||
"The pandas.SparseArray class is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Use pandas.arrays.SparseArray instead.",
|
||||
FutureWarning,
|
||||
stacklevel=2,
|
||||
)
|
||||
from pandas.core.arrays.sparse import SparseArray as _SparseArray
|
||||
return dt(*args, **kwargs)
|
||||
|
||||
return _SparseArray
|
||||
datetime = __DatetimeSub
|
||||
|
||||
raise AttributeError(f"module 'pandas' has no attribute '{name}'")
|
||||
class __SparseArray(type):
|
||||
|
||||
from pandas.core.arrays.sparse import SparseArray as sa
|
||||
|
||||
SparseArray = sa
|
||||
|
||||
def __instancecheck__(cls, other):
|
||||
return isinstance(other, cls.SparseArray)
|
||||
|
||||
class __SparseArraySub(metaclass=__SparseArray):
|
||||
def emit_warning(dummy=0):
|
||||
import warnings
|
||||
|
||||
warnings.warn(
|
||||
"The pandas.SparseArray class is deprecated "
|
||||
"and will be removed from pandas in a future version. "
|
||||
"Use pandas.arrays.SparseArray instead.",
|
||||
FutureWarning,
|
||||
stacklevel=3,
|
||||
)
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
cls.emit_warning()
|
||||
from pandas.core.arrays.sparse import SparseArray as sa
|
||||
|
||||
return sa(*args, **kwargs)
|
||||
|
||||
SparseArray = __SparseArraySub
|
||||
|
||||
|
||||
# module level doc-string
|
||||
|
|
|
@ -392,7 +392,7 @@ class option_context(ContextDecorator):
|
|||
"""
|
||||
|
||||
def __init__(self, *args):
|
||||
if len(args) % 2 != 0 or len(args) < 2:
|
||||
if not (len(args) % 2 == 0 and len(args) >= 2):
|
||||
raise ValueError(
|
||||
"Need to invoke as option_context(pat, val, [(pat, val), ...])."
|
||||
)
|
||||
|
@ -460,7 +460,9 @@ def register_option(
|
|||
path = key.split(".")
|
||||
|
||||
for k in path:
|
||||
if not re.match("^" + tokenize.Name + "$", k):
|
||||
# NOTE: tokenize.Name is not a public constant
|
||||
# error: Module has no attribute "Name" [attr-defined]
|
||||
if not re.match("^" + tokenize.Name + "$", k): # type: ignore
|
||||
raise ValueError(f"{k} is not a valid identifier")
|
||||
if keyword.iskeyword(k):
|
||||
raise ValueError(f"{k} is a python keyword")
|
||||
|
@ -648,7 +650,7 @@ def _build_option_description(k: str) -> str:
|
|||
s += f"\n [default: {o.defval}] [currently: {_get_option(k, True)}]"
|
||||
|
||||
if d:
|
||||
rkey = d.rkey or ""
|
||||
rkey = d.rkey if d.rkey else ""
|
||||
s += "\n (Deprecated"
|
||||
s += f", use `{rkey}` instead."
|
||||
s += ")"
|
||||
|
|
|
@ -22,7 +22,7 @@ def detect_console_encoding() -> str:
|
|||
encoding = None
|
||||
try:
|
||||
encoding = sys.stdout.encoding or sys.stdin.encoding
|
||||
except (AttributeError, OSError):
|
||||
except (AttributeError, IOError):
|
||||
pass
|
||||
|
||||
# try again for something better
|
||||
|
|
|
@ -88,18 +88,17 @@ def _valid_locales(locales, normalize):
|
|||
valid_locales : list
|
||||
A list of valid locales.
|
||||
"""
|
||||
return [
|
||||
loc
|
||||
for loc in (
|
||||
locale.normalize(loc.strip()) if normalize else loc.strip()
|
||||
for loc in locales
|
||||
)
|
||||
if can_set_locale(loc)
|
||||
]
|
||||
if normalize:
|
||||
normalizer = lambda x: locale.normalize(x.strip())
|
||||
else:
|
||||
normalizer = lambda x: x.strip()
|
||||
|
||||
return list(filter(can_set_locale, map(normalizer, locales)))
|
||||
|
||||
|
||||
def _default_locale_getter():
|
||||
return subprocess.check_output(["locale -a"], shell=True)
|
||||
raw_locales = subprocess.check_output(["locale -a"], shell=True)
|
||||
return raw_locales
|
||||
|
||||
|
||||
def get_locales(prefix=None, normalize=True, locale_getter=_default_locale_getter):
|
||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -6,7 +6,6 @@ from functools import wraps
|
|||
import gzip
|
||||
import operator
|
||||
import os
|
||||
import re
|
||||
from shutil import rmtree
|
||||
import string
|
||||
import tempfile
|
||||
|
@ -26,7 +25,7 @@ from pandas._config.localization import ( # noqa:F401
|
|||
from pandas._libs.lib import no_default
|
||||
import pandas._libs.testing as _testing
|
||||
from pandas._typing import Dtype, FilePathOrBuffer, FrameOrSeries
|
||||
from pandas.compat import get_lzma_file, import_lzma
|
||||
from pandas.compat import _get_lzma_file, _import_lzma
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
is_bool,
|
||||
|
@ -71,7 +70,7 @@ from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin
|
|||
from pandas.io.common import urlopen
|
||||
from pandas.io.formats.printing import pprint_thing
|
||||
|
||||
lzma = import_lzma()
|
||||
lzma = _import_lzma()
|
||||
|
||||
_N = 30
|
||||
_K = 4
|
||||
|
@ -85,7 +84,6 @@ ALL_INT_DTYPES = UNSIGNED_INT_DTYPES + SIGNED_INT_DTYPES
|
|||
ALL_EA_INT_DTYPES = UNSIGNED_EA_INT_DTYPES + SIGNED_EA_INT_DTYPES
|
||||
|
||||
FLOAT_DTYPES: List[Dtype] = [float, "float32", "float64"]
|
||||
FLOAT_EA_DTYPES: List[Dtype] = ["Float32", "Float64"]
|
||||
COMPLEX_DTYPES: List[Dtype] = [complex, "complex64", "complex128"]
|
||||
STRING_DTYPES: List[Dtype] = [str, "str", "U"]
|
||||
|
||||
|
@ -108,8 +106,6 @@ ALL_NUMPY_DTYPES = (
|
|||
+ BYTES_DTYPES
|
||||
)
|
||||
|
||||
NULL_OBJECTS = [None, np.nan, pd.NaT, float("nan"), pd.NA]
|
||||
|
||||
|
||||
# set testing_mode
|
||||
_testing_mode_warnings = (DeprecationWarning, ResourceWarning)
|
||||
|
@ -119,24 +115,14 @@ def set_testing_mode():
|
|||
# set the testing mode filters
|
||||
testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None")
|
||||
if "deprecate" in testing_mode:
|
||||
# pandas\_testing.py:119: error: Argument 2 to "simplefilter" has
|
||||
# incompatible type "Tuple[Type[DeprecationWarning],
|
||||
# Type[ResourceWarning]]"; expected "Type[Warning]"
|
||||
warnings.simplefilter(
|
||||
"always", _testing_mode_warnings # type: ignore[arg-type]
|
||||
)
|
||||
warnings.simplefilter("always", _testing_mode_warnings)
|
||||
|
||||
|
||||
def reset_testing_mode():
|
||||
# reset the testing mode filters
|
||||
testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None")
|
||||
if "deprecate" in testing_mode:
|
||||
# pandas\_testing.py:126: error: Argument 2 to "simplefilter" has
|
||||
# incompatible type "Tuple[Type[DeprecationWarning],
|
||||
# Type[ResourceWarning]]"; expected "Type[Warning]"
|
||||
warnings.simplefilter(
|
||||
"ignore", _testing_mode_warnings # type: ignore[arg-type]
|
||||
)
|
||||
warnings.simplefilter("ignore", _testing_mode_warnings)
|
||||
|
||||
|
||||
set_testing_mode()
|
||||
|
@ -253,22 +239,16 @@ def decompress_file(path, compression):
|
|||
if compression is None:
|
||||
f = open(path, "rb")
|
||||
elif compression == "gzip":
|
||||
# pandas\_testing.py:243: error: Incompatible types in assignment
|
||||
# (expression has type "IO[Any]", variable has type "BinaryIO")
|
||||
f = gzip.open(path, "rb") # type: ignore[assignment]
|
||||
f = gzip.open(path, "rb")
|
||||
elif compression == "bz2":
|
||||
# pandas\_testing.py:245: error: Incompatible types in assignment
|
||||
# (expression has type "BZ2File", variable has type "BinaryIO")
|
||||
f = bz2.BZ2File(path, "rb") # type: ignore[assignment]
|
||||
f = bz2.BZ2File(path, "rb")
|
||||
elif compression == "xz":
|
||||
f = get_lzma_file(lzma)(path, "rb")
|
||||
f = _get_lzma_file(lzma)(path, "rb")
|
||||
elif compression == "zip":
|
||||
zip_file = zipfile.ZipFile(path)
|
||||
zip_names = zip_file.namelist()
|
||||
if len(zip_names) == 1:
|
||||
# pandas\_testing.py:252: error: Incompatible types in assignment
|
||||
# (expression has type "IO[bytes]", variable has type "BinaryIO")
|
||||
f = zip_file.open(zip_names.pop()) # type: ignore[assignment]
|
||||
f = zip_file.open(zip_names.pop())
|
||||
else:
|
||||
raise ValueError(f"ZIP file {path} error. Only one file per ZIP.")
|
||||
else:
|
||||
|
@ -304,17 +284,11 @@ def write_to_compressed(compression, path, data, dest="test"):
|
|||
if compression == "zip":
|
||||
compress_method = zipfile.ZipFile
|
||||
elif compression == "gzip":
|
||||
# pandas\_testing.py:288: error: Incompatible types in assignment
|
||||
# (expression has type "Type[GzipFile]", variable has type
|
||||
# "Type[ZipFile]")
|
||||
compress_method = gzip.GzipFile # type: ignore[assignment]
|
||||
compress_method = gzip.GzipFile
|
||||
elif compression == "bz2":
|
||||
# pandas\_testing.py:290: error: Incompatible types in assignment
|
||||
# (expression has type "Type[BZ2File]", variable has type
|
||||
# "Type[ZipFile]")
|
||||
compress_method = bz2.BZ2File # type: ignore[assignment]
|
||||
compress_method = bz2.BZ2File
|
||||
elif compression == "xz":
|
||||
compress_method = get_lzma_file(lzma)
|
||||
compress_method = _get_lzma_file(lzma)
|
||||
else:
|
||||
raise ValueError(f"Unrecognized compression type: {compression}")
|
||||
|
||||
|
@ -324,10 +298,7 @@ def write_to_compressed(compression, path, data, dest="test"):
|
|||
method = "writestr"
|
||||
else:
|
||||
mode = "wb"
|
||||
# pandas\_testing.py:302: error: Incompatible types in assignment
|
||||
# (expression has type "Tuple[Any]", variable has type "Tuple[Any,
|
||||
# Any]")
|
||||
args = (data,) # type: ignore[assignment]
|
||||
args = (data,)
|
||||
method = "write"
|
||||
|
||||
with compress_method(path, mode=mode) as f:
|
||||
|
@ -694,7 +665,6 @@ def assert_index_equal(
|
|||
check_less_precise: Union[bool, int] = no_default,
|
||||
check_exact: bool = True,
|
||||
check_categorical: bool = True,
|
||||
check_order: bool = True,
|
||||
rtol: float = 1.0e-5,
|
||||
atol: float = 1.0e-8,
|
||||
obj: str = "Index",
|
||||
|
@ -724,12 +694,6 @@ def assert_index_equal(
|
|||
Whether to compare number exactly.
|
||||
check_categorical : bool, default True
|
||||
Whether to compare internal Categorical exactly.
|
||||
check_order : bool, default True
|
||||
Whether to compare the order of index entries as well as their values.
|
||||
If True, both indexes must contain the same elements, in the same order.
|
||||
If False, both indexes must contain the same elements, but in any order.
|
||||
|
||||
.. versionadded:: 1.2.0
|
||||
rtol : float, default 1e-5
|
||||
Relative tolerance. Only used when check_exact is False.
|
||||
|
||||
|
@ -741,36 +705,30 @@ def assert_index_equal(
|
|||
obj : str, default 'Index'
|
||||
Specify object name being compared, internally used to show appropriate
|
||||
assertion message.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from pandas.testing import assert_index_equal
|
||||
>>> a = pd.Index([1, 2, 3])
|
||||
>>> b = pd.Index([1, 2, 3])
|
||||
>>> assert_index_equal(a, b)
|
||||
"""
|
||||
__tracebackhide__ = True
|
||||
|
||||
def _check_types(left, right, obj="Index"):
|
||||
def _check_types(l, r, obj="Index"):
|
||||
if exact:
|
||||
assert_class_equal(left, right, exact=exact, obj=obj)
|
||||
assert_class_equal(l, r, exact=exact, obj=obj)
|
||||
|
||||
# Skip exact dtype checking when `check_categorical` is False
|
||||
if check_categorical:
|
||||
assert_attr_equal("dtype", left, right, obj=obj)
|
||||
assert_attr_equal("dtype", l, r, obj=obj)
|
||||
|
||||
# allow string-like to have different inferred_types
|
||||
if left.inferred_type in ("string"):
|
||||
assert right.inferred_type in ("string")
|
||||
if l.inferred_type in ("string"):
|
||||
assert r.inferred_type in ("string")
|
||||
else:
|
||||
assert_attr_equal("inferred_type", left, right, obj=obj)
|
||||
assert_attr_equal("inferred_type", l, r, obj=obj)
|
||||
|
||||
def _get_ilevel_values(index, level):
|
||||
# accept level number only
|
||||
unique = index.levels[level]
|
||||
level_codes = index.codes[level]
|
||||
filled = take_1d(unique._values, level_codes, fill_value=unique._na_value)
|
||||
return unique._shallow_copy(filled, name=index.names[level])
|
||||
values = unique._shallow_copy(filled, name=index.names[level])
|
||||
return values
|
||||
|
||||
if check_less_precise is not no_default:
|
||||
warnings.warn(
|
||||
|
@ -802,11 +760,6 @@ def assert_index_equal(
|
|||
msg3 = f"{len(right)}, {right}"
|
||||
raise_assert_detail(obj, msg1, msg2, msg3)
|
||||
|
||||
# If order doesn't matter then sort the index entries
|
||||
if not check_order:
|
||||
left = left.sort_values()
|
||||
right = right.sort_values()
|
||||
|
||||
# MultiIndex special comparison for little-friendly error messages
|
||||
if left.nlevels > 1:
|
||||
left = cast(MultiIndex, left)
|
||||
|
@ -986,7 +939,7 @@ def assert_categorical_equal(
|
|||
if check_category_order:
|
||||
assert_index_equal(left.categories, right.categories, obj=f"{obj}.categories")
|
||||
assert_numpy_array_equal(
|
||||
left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes"
|
||||
left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes",
|
||||
)
|
||||
else:
|
||||
try:
|
||||
|
@ -995,7 +948,9 @@ def assert_categorical_equal(
|
|||
except TypeError:
|
||||
# e.g. '<' not supported between instances of 'int' and 'str'
|
||||
lc, rc = left.categories, right.categories
|
||||
assert_index_equal(lc, rc, obj=f"{obj}.categories")
|
||||
assert_index_equal(
|
||||
lc, rc, obj=f"{obj}.categories",
|
||||
)
|
||||
assert_index_equal(
|
||||
left.categories.take(left.codes),
|
||||
right.categories.take(right.codes),
|
||||
|
@ -1023,14 +978,8 @@ def assert_interval_array_equal(left, right, exact="equiv", obj="IntervalArray")
|
|||
"""
|
||||
_check_isinstance(left, right, IntervalArray)
|
||||
|
||||
kwargs = {}
|
||||
if left._left.dtype.kind in ["m", "M"]:
|
||||
# We have a DatetimeArray or TimedeltaArray
|
||||
kwargs["check_freq"] = False
|
||||
|
||||
assert_equal(left._left, right._left, obj=f"{obj}.left", **kwargs)
|
||||
assert_equal(left._right, right._right, obj=f"{obj}.left", **kwargs)
|
||||
|
||||
assert_index_equal(left.left, right.left, exact=exact, obj=f"{obj}.left")
|
||||
assert_index_equal(left.right, right.right, exact=exact, obj=f"{obj}.left")
|
||||
assert_attr_equal("closed", left, right, obj=obj)
|
||||
|
||||
|
||||
|
@ -1041,22 +990,20 @@ def assert_period_array_equal(left, right, obj="PeriodArray"):
|
|||
assert_attr_equal("freq", left, right, obj=obj)
|
||||
|
||||
|
||||
def assert_datetime_array_equal(left, right, obj="DatetimeArray", check_freq=True):
|
||||
def assert_datetime_array_equal(left, right, obj="DatetimeArray"):
|
||||
__tracebackhide__ = True
|
||||
_check_isinstance(left, right, DatetimeArray)
|
||||
|
||||
assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data")
|
||||
if check_freq:
|
||||
assert_attr_equal("freq", left, right, obj=obj)
|
||||
assert_attr_equal("freq", left, right, obj=obj)
|
||||
assert_attr_equal("tz", left, right, obj=obj)
|
||||
|
||||
|
||||
def assert_timedelta_array_equal(left, right, obj="TimedeltaArray", check_freq=True):
|
||||
def assert_timedelta_array_equal(left, right, obj="TimedeltaArray"):
|
||||
__tracebackhide__ = True
|
||||
_check_isinstance(left, right, TimedeltaArray)
|
||||
assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data")
|
||||
if check_freq:
|
||||
assert_attr_equal("freq", left, right, obj=obj)
|
||||
assert_attr_equal("freq", left, right, obj=obj)
|
||||
|
||||
|
||||
def raise_assert_detail(obj, message, left, right, diff=None, index_values=None):
|
||||
|
@ -1145,13 +1092,13 @@ def assert_numpy_array_equal(
|
|||
if err_msg is None:
|
||||
if left.shape != right.shape:
|
||||
raise_assert_detail(
|
||||
obj, f"{obj} shapes are different", left.shape, right.shape
|
||||
obj, f"{obj} shapes are different", left.shape, right.shape,
|
||||
)
|
||||
|
||||
diff = 0
|
||||
for left_arr, right_arr in zip(left, right):
|
||||
for l, r in zip(left, right):
|
||||
# count up differences
|
||||
if not array_equivalent(left_arr, right_arr, strict_nan=strict_nan):
|
||||
if not array_equivalent(l, r, strict_nan=strict_nan):
|
||||
diff += 1
|
||||
|
||||
diff = diff * 100.0 / left.size
|
||||
|
@ -1214,13 +1161,6 @@ def assert_extension_array_equal(
|
|||
Missing values are checked separately from valid values.
|
||||
A mask of missing values is computed for each and checked to match.
|
||||
The remaining all-valid values are cast to object dtype and checked.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from pandas.testing import assert_extension_array_equal
|
||||
>>> a = pd.Series([1, 2, 3, 4])
|
||||
>>> b, c = a.array, a.array
|
||||
>>> assert_extension_array_equal(b, c)
|
||||
"""
|
||||
if check_less_precise is not no_default:
|
||||
warnings.warn(
|
||||
|
@ -1287,7 +1227,6 @@ def assert_series_equal(
|
|||
check_categorical=True,
|
||||
check_category_order=True,
|
||||
check_freq=True,
|
||||
check_flags=True,
|
||||
rtol=1.0e-5,
|
||||
atol=1.0e-8,
|
||||
obj="Series",
|
||||
|
@ -1334,11 +1273,6 @@ def assert_series_equal(
|
|||
.. versionadded:: 1.0.2
|
||||
check_freq : bool, default True
|
||||
Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex.
|
||||
check_flags : bool, default True
|
||||
Whether to check the `flags` attribute.
|
||||
|
||||
.. versionadded:: 1.2.0
|
||||
|
||||
rtol : float, default 1e-5
|
||||
Relative tolerance. Only used when check_exact is False.
|
||||
|
||||
|
@ -1350,13 +1284,6 @@ def assert_series_equal(
|
|||
obj : str, default 'Series'
|
||||
Specify object name being compared, internally used to show appropriate
|
||||
assertion message.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from pandas.testing import assert_series_equal
|
||||
>>> a = pd.Series([1, 2, 3, 4])
|
||||
>>> b = pd.Series([1, 2, 3, 4])
|
||||
>>> assert_series_equal(a, b)
|
||||
"""
|
||||
__tracebackhide__ = True
|
||||
|
||||
|
@ -1382,9 +1309,6 @@ def assert_series_equal(
|
|||
msg2 = f"{len(right)}, {right.index}"
|
||||
raise_assert_detail(obj, "Series length are different", msg1, msg2)
|
||||
|
||||
if check_flags:
|
||||
assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}"
|
||||
|
||||
# index comparison
|
||||
assert_index_equal(
|
||||
left.index,
|
||||
|
@ -1458,16 +1382,7 @@ def assert_series_equal(
|
|||
check_dtype=check_dtype,
|
||||
index_values=np.asarray(left.index),
|
||||
)
|
||||
elif is_extension_array_dtype_and_needs_i8_conversion(
|
||||
left.dtype, right.dtype
|
||||
) or is_extension_array_dtype_and_needs_i8_conversion(right.dtype, left.dtype):
|
||||
assert_extension_array_equal(
|
||||
left._values,
|
||||
right._values,
|
||||
check_dtype=check_dtype,
|
||||
index_values=np.asarray(left.index),
|
||||
)
|
||||
elif needs_i8_conversion(left.dtype) and needs_i8_conversion(right.dtype):
|
||||
elif needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype):
|
||||
# DatetimeArray or TimedeltaArray
|
||||
assert_extension_array_equal(
|
||||
left._values,
|
||||
|
@ -1516,7 +1431,6 @@ def assert_frame_equal(
|
|||
check_categorical=True,
|
||||
check_like=False,
|
||||
check_freq=True,
|
||||
check_flags=True,
|
||||
rtol=1.0e-5,
|
||||
atol=1.0e-8,
|
||||
obj="DataFrame",
|
||||
|
@ -1578,8 +1492,6 @@ def assert_frame_equal(
|
|||
(same as in columns) - same labels must be with the same data.
|
||||
check_freq : bool, default True
|
||||
Whether to check the `freq` attribute on a DatetimeIndex or TimedeltaIndex.
|
||||
check_flags : bool, default True
|
||||
Whether to check the `flags` attribute.
|
||||
rtol : float, default 1e-5
|
||||
Relative tolerance. Only used when check_exact is False.
|
||||
|
||||
|
@ -1647,11 +1559,11 @@ def assert_frame_equal(
|
|||
# shape comparison
|
||||
if left.shape != right.shape:
|
||||
raise_assert_detail(
|
||||
obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}"
|
||||
obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}",
|
||||
)
|
||||
|
||||
if check_flags:
|
||||
assert left.flags == right.flags, f"{repr(left.flags)} != {repr(right.flags)}"
|
||||
if check_like:
|
||||
left, right = left.reindex_like(right), right
|
||||
|
||||
# index comparison
|
||||
assert_index_equal(
|
||||
|
@ -1661,7 +1573,6 @@ def assert_frame_equal(
|
|||
check_names=check_names,
|
||||
check_exact=check_exact,
|
||||
check_categorical=check_categorical,
|
||||
check_order=not check_like,
|
||||
rtol=rtol,
|
||||
atol=atol,
|
||||
obj=f"{obj}.index",
|
||||
|
@ -1675,15 +1586,11 @@ def assert_frame_equal(
|
|||
check_names=check_names,
|
||||
check_exact=check_exact,
|
||||
check_categorical=check_categorical,
|
||||
check_order=not check_like,
|
||||
rtol=rtol,
|
||||
atol=atol,
|
||||
obj=f"{obj}.columns",
|
||||
)
|
||||
|
||||
if check_like:
|
||||
left, right = left.reindex_like(right), right
|
||||
|
||||
# compare by blocks
|
||||
if by_blocks:
|
||||
rblocks = right._to_dict_of_blocks()
|
||||
|
@ -1779,7 +1686,7 @@ def box_expected(expected, box_cls, transpose=True):
|
|||
elif box_cls is pd.DataFrame:
|
||||
expected = pd.Series(expected).to_frame()
|
||||
if transpose:
|
||||
# for vector operations, we need a DataFrame to be a single-row,
|
||||
# for vector operations, we we need a DataFrame to be a single-row,
|
||||
# not a single-column, in order to operate against non-DataFrame
|
||||
# vectors of the same length.
|
||||
expected = expected.T
|
||||
|
@ -1877,20 +1784,6 @@ def assert_copy(iter1, iter2, **eql_kwargs):
|
|||
assert elem1 is not elem2, msg
|
||||
|
||||
|
||||
def is_extension_array_dtype_and_needs_i8_conversion(left_dtype, right_dtype) -> bool:
|
||||
"""
|
||||
Checks that we have the combination of an ExtensionArraydtype and
|
||||
a dtype that should be converted to int64
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
|
||||
Related to issue #37609
|
||||
"""
|
||||
return is_extension_array_dtype(left_dtype) and needs_i8_conversion(right_dtype)
|
||||
|
||||
|
||||
def getCols(k):
|
||||
return string.ascii_uppercase[:k]
|
||||
|
||||
|
@ -1955,7 +1848,8 @@ def makeTimedeltaIndex(k=10, freq="D", name=None, **kwargs):
|
|||
|
||||
def makePeriodIndex(k=10, name=None, **kwargs):
|
||||
dt = datetime(2000, 1, 1)
|
||||
return pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs)
|
||||
dr = pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs)
|
||||
return dr
|
||||
|
||||
|
||||
def makeMultiIndex(k=10, names=None, **kwargs):
|
||||
|
@ -2053,7 +1947,8 @@ def index_subclass_makers_generator():
|
|||
makeCategoricalIndex,
|
||||
makeMultiIndex,
|
||||
]
|
||||
yield from make_index_funcs
|
||||
for make_index_func in make_index_funcs:
|
||||
yield make_index_func
|
||||
|
||||
|
||||
def all_timeseries_index_generator(k=10):
|
||||
|
@ -2067,8 +1962,7 @@ def all_timeseries_index_generator(k=10):
|
|||
"""
|
||||
make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex]
|
||||
for make_index_func in make_index_funcs:
|
||||
# pandas\_testing.py:1986: error: Cannot call function of unknown type
|
||||
yield make_index_func(k=k) # type: ignore[operator]
|
||||
yield make_index_func(k=k)
|
||||
|
||||
|
||||
# make series
|
||||
|
@ -2192,18 +2086,17 @@ def makeCustomIndex(
|
|||
names = [names]
|
||||
|
||||
# specific 1D index type requested?
|
||||
idx_func = {
|
||||
"i": makeIntIndex,
|
||||
"f": makeFloatIndex,
|
||||
"s": makeStringIndex,
|
||||
"u": makeUnicodeIndex,
|
||||
"dt": makeDateIndex,
|
||||
"td": makeTimedeltaIndex,
|
||||
"p": makePeriodIndex,
|
||||
}.get(idx_type)
|
||||
idx_func = dict(
|
||||
i=makeIntIndex,
|
||||
f=makeFloatIndex,
|
||||
s=makeStringIndex,
|
||||
u=makeUnicodeIndex,
|
||||
dt=makeDateIndex,
|
||||
td=makeTimedeltaIndex,
|
||||
p=makePeriodIndex,
|
||||
).get(idx_type)
|
||||
if idx_func:
|
||||
# pandas\_testing.py:2120: error: Cannot call function of unknown type
|
||||
idx = idx_func(nentries) # type: ignore[operator]
|
||||
idx = idx_func(nentries)
|
||||
# but we need to fill in the name
|
||||
if names:
|
||||
idx.name = names[0]
|
||||
|
@ -2231,8 +2124,7 @@ def makeCustomIndex(
|
|||
|
||||
# build a list of lists to create the index from
|
||||
div_factor = nentries // ndupe_l[i] + 1
|
||||
# pandas\_testing.py:2148: error: Need type annotation for 'cnt'
|
||||
cnt = Counter() # type: ignore[var-annotated]
|
||||
cnt = Counter()
|
||||
for j in range(div_factor):
|
||||
label = f"{prefix}_l{i}_g{j}"
|
||||
cnt[label] = ndupe_l[i]
|
||||
|
@ -2390,14 +2282,7 @@ def _create_missing_idx(nrows, ncols, density, random_state=None):
|
|||
|
||||
def makeMissingDataframe(density=0.9, random_state=None):
|
||||
df = makeDataFrame()
|
||||
# pandas\_testing.py:2306: error: "_create_missing_idx" gets multiple
|
||||
# values for keyword argument "density" [misc]
|
||||
|
||||
# pandas\_testing.py:2306: error: "_create_missing_idx" gets multiple
|
||||
# values for keyword argument "random_state" [misc]
|
||||
i, j = _create_missing_idx( # type: ignore[misc]
|
||||
*df.shape, density=density, random_state=random_state
|
||||
)
|
||||
i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state)
|
||||
df.values[i, j] = np.nan
|
||||
return df
|
||||
|
||||
|
@ -2422,10 +2307,7 @@ def optional_args(decorator):
|
|||
is_decorating = not kwargs and len(args) == 1 and callable(args[0])
|
||||
if is_decorating:
|
||||
f = args[0]
|
||||
# pandas\_testing.py:2331: error: Incompatible types in assignment
|
||||
# (expression has type "List[<nothing>]", variable has type
|
||||
# "Tuple[Any, ...]")
|
||||
args = [] # type: ignore[assignment]
|
||||
args = []
|
||||
return dec(f)
|
||||
else:
|
||||
return dec
|
||||
|
@ -2509,7 +2391,7 @@ def can_connect(url, error_classes=None):
|
|||
@optional_args
|
||||
def network(
|
||||
t,
|
||||
url="https://www.google.com",
|
||||
url="http://www.google.com",
|
||||
raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT,
|
||||
check_before_test=False,
|
||||
error_classes=None,
|
||||
|
@ -2533,7 +2415,7 @@ def network(
|
|||
The test requiring network connectivity.
|
||||
url : path
|
||||
The url to test via ``pandas.io.common.urlopen`` to check
|
||||
for connectivity. Defaults to 'https://www.google.com'.
|
||||
for connectivity. Defaults to 'http://www.google.com'.
|
||||
raise_on_error : bool
|
||||
If True, never catches errors.
|
||||
check_before_test : bool
|
||||
|
@ -2577,7 +2459,7 @@ def network(
|
|||
|
||||
You can specify alternative URLs::
|
||||
|
||||
>>> @network("https://www.yahoo.com")
|
||||
>>> @network("http://www.yahoo.com")
|
||||
... def test_something_with_yahoo():
|
||||
... raise IOError("Failure Message")
|
||||
>>> test_something_with_yahoo()
|
||||
|
@ -2607,20 +2489,15 @@ def network(
|
|||
|
||||
@wraps(t)
|
||||
def wrapper(*args, **kwargs):
|
||||
if (
|
||||
check_before_test
|
||||
and not raise_on_error
|
||||
and not can_connect(url, error_classes)
|
||||
):
|
||||
skip()
|
||||
if check_before_test and not raise_on_error:
|
||||
if not can_connect(url, error_classes):
|
||||
skip()
|
||||
try:
|
||||
return t(*args, **kwargs)
|
||||
except Exception as err:
|
||||
errno = getattr(err, "errno", None)
|
||||
if not errno and hasattr(errno, "reason"):
|
||||
# pandas\_testing.py:2521: error: "Exception" has no attribute
|
||||
# "reason"
|
||||
errno = getattr(err.reason, "errno", None) # type: ignore[attr-defined]
|
||||
errno = getattr(err.reason, "errno", None)
|
||||
|
||||
if errno in skip_errnos:
|
||||
skip(f"Skipping test due to known errno and error {err}")
|
||||
|
@ -2648,11 +2525,10 @@ with_connectivity_check = network
|
|||
|
||||
@contextmanager
|
||||
def assert_produces_warning(
|
||||
expected_warning: Optional[Union[Type[Warning], bool]] = Warning,
|
||||
expected_warning=Warning,
|
||||
filter_level="always",
|
||||
check_stacklevel: bool = True,
|
||||
raise_on_extra_warnings: bool = True,
|
||||
match: Optional[str] = None,
|
||||
check_stacklevel=True,
|
||||
raise_on_extra_warnings=True,
|
||||
):
|
||||
"""
|
||||
Context manager for running code expected to either raise a specific
|
||||
|
@ -2687,8 +2563,6 @@ def assert_produces_warning(
|
|||
raise_on_extra_warnings : bool, default True
|
||||
Whether extra warnings not of the type `expected_warning` should
|
||||
cause the test to fail.
|
||||
match : str, optional
|
||||
Match warning message.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
@ -2715,28 +2589,28 @@ def assert_produces_warning(
|
|||
with warnings.catch_warnings(record=True) as w:
|
||||
|
||||
saw_warning = False
|
||||
matched_message = False
|
||||
|
||||
warnings.simplefilter(filter_level)
|
||||
yield w
|
||||
extra_warnings = []
|
||||
|
||||
for actual_warning in w:
|
||||
if not expected_warning:
|
||||
continue
|
||||
|
||||
expected_warning = cast(Type[Warning], expected_warning)
|
||||
if issubclass(actual_warning.category, expected_warning):
|
||||
if expected_warning and issubclass(
|
||||
actual_warning.category, expected_warning
|
||||
):
|
||||
saw_warning = True
|
||||
|
||||
if check_stacklevel and issubclass(
|
||||
actual_warning.category, (FutureWarning, DeprecationWarning)
|
||||
):
|
||||
_assert_raised_with_correct_stacklevel(actual_warning)
|
||||
|
||||
if match is not None and re.search(match, str(actual_warning.message)):
|
||||
matched_message = True
|
||||
from inspect import getframeinfo, stack
|
||||
|
||||
caller = getframeinfo(stack()[2][0])
|
||||
msg = (
|
||||
"Warning not set with correct stacklevel. "
|
||||
f"File where warning is raised: {actual_warning.filename} != "
|
||||
f"{caller.filename}. Warning message: {actual_warning.message}"
|
||||
)
|
||||
assert actual_warning.filename == caller.filename, msg
|
||||
else:
|
||||
extra_warnings.append(
|
||||
(
|
||||
|
@ -2746,41 +2620,18 @@ def assert_produces_warning(
|
|||
actual_warning.lineno,
|
||||
)
|
||||
)
|
||||
|
||||
if expected_warning:
|
||||
expected_warning = cast(Type[Warning], expected_warning)
|
||||
if not saw_warning:
|
||||
raise AssertionError(
|
||||
f"Did not see expected warning of class "
|
||||
f"{repr(expected_warning.__name__)}"
|
||||
)
|
||||
|
||||
if match and not matched_message:
|
||||
raise AssertionError(
|
||||
f"Did not see warning {repr(expected_warning.__name__)} "
|
||||
f"matching {match}"
|
||||
)
|
||||
|
||||
msg = (
|
||||
f"Did not see expected warning of class "
|
||||
f"{repr(expected_warning.__name__)}"
|
||||
)
|
||||
assert saw_warning, msg
|
||||
if raise_on_extra_warnings and extra_warnings:
|
||||
raise AssertionError(
|
||||
f"Caused unexpected warning(s): {repr(extra_warnings)}"
|
||||
)
|
||||
|
||||
|
||||
def _assert_raised_with_correct_stacklevel(
|
||||
actual_warning: warnings.WarningMessage,
|
||||
) -> None:
|
||||
from inspect import getframeinfo, stack
|
||||
|
||||
caller = getframeinfo(stack()[3][0])
|
||||
msg = (
|
||||
"Warning not set with correct stacklevel. "
|
||||
f"File where warning is raised: {actual_warning.filename} != "
|
||||
f"{caller.filename}. Warning message: {actual_warning.message}"
|
||||
)
|
||||
assert actual_warning.filename == caller.filename, msg
|
||||
|
||||
|
||||
class RNGContext:
|
||||
"""
|
||||
Context manager to set the numpy random number generator speed. Returns
|
||||
|
@ -2849,7 +2700,7 @@ def use_numexpr(use, min_elements=None):
|
|||
if min_elements is None:
|
||||
min_elements = expr._MIN_ELEMENTS
|
||||
|
||||
olduse = expr.USE_NUMEXPR
|
||||
olduse = expr._USE_NUMEXPR
|
||||
oldmin = expr._MIN_ELEMENTS
|
||||
expr.set_use_numexpr(use)
|
||||
expr._MIN_ELEMENTS = min_elements
|
||||
|
@ -3029,10 +2880,11 @@ def convert_rows_list_to_csv_str(rows_list: List[str]):
|
|||
Expected output of to_csv() in current OS.
|
||||
"""
|
||||
sep = os.linesep
|
||||
return sep.join(rows_list) + sep
|
||||
expected = sep.join(rows_list) + sep
|
||||
return expected
|
||||
|
||||
|
||||
def external_error_raised(expected_exception: Type[Exception]) -> ContextManager:
|
||||
def external_error_raised(expected_exception: Type[Exception],) -> ContextManager:
|
||||
"""
|
||||
Helper function to mark pytest.raises that have an external error message.
|
||||
|
||||
|
|
|
@ -1,7 +1,5 @@
|
|||
from datetime import datetime, timedelta, tzinfo
|
||||
from io import BufferedIOBase, RawIOBase, TextIOBase, TextIOWrapper
|
||||
from mmap import mmap
|
||||
from os import PathLike
|
||||
from pathlib import Path
|
||||
from typing import (
|
||||
IO,
|
||||
TYPE_CHECKING,
|
||||
|
@ -14,8 +12,6 @@ from typing import (
|
|||
List,
|
||||
Mapping,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Type,
|
||||
TypeVar,
|
||||
Union,
|
||||
|
@ -27,27 +23,16 @@ import numpy as np
|
|||
# and use a string literal forward reference to it in subsequent types
|
||||
# https://mypy.readthedocs.io/en/latest/common_issues.html#import-cycles
|
||||
if TYPE_CHECKING:
|
||||
from typing import final
|
||||
from pandas._libs import Period, Timedelta, Timestamp # noqa: F401
|
||||
|
||||
from pandas._libs import Period, Timedelta, Timestamp
|
||||
from pandas.core.dtypes.dtypes import ExtensionDtype # noqa: F401
|
||||
|
||||
from pandas.core.dtypes.dtypes import ExtensionDtype
|
||||
|
||||
from pandas import Interval
|
||||
from pandas import Interval # noqa: F401
|
||||
from pandas.core.arrays.base import ExtensionArray # noqa: F401
|
||||
from pandas.core.frame import DataFrame
|
||||
from pandas.core.frame import DataFrame # noqa: F401
|
||||
from pandas.core.generic import NDFrame # noqa: F401
|
||||
from pandas.core.groupby.generic import DataFrameGroupBy, SeriesGroupBy
|
||||
from pandas.core.indexes.base import Index
|
||||
from pandas.core.resample import Resampler
|
||||
from pandas.core.series import Series
|
||||
from pandas.core.window.rolling import BaseWindow
|
||||
|
||||
from pandas.io.formats.format import EngFormatter
|
||||
else:
|
||||
# typing.final does not exist until py38
|
||||
final = lambda x: x
|
||||
|
||||
from pandas.core.indexes.base import Index # noqa: F401
|
||||
from pandas.core.series import Series # noqa: F401
|
||||
|
||||
# array-like
|
||||
|
||||
|
@ -74,9 +59,10 @@ Timezone = Union[str, tzinfo]
|
|||
# other
|
||||
|
||||
Dtype = Union[
|
||||
"ExtensionDtype", str, np.dtype, Type[Union[str, float, int, complex, bool, object]]
|
||||
"ExtensionDtype", str, np.dtype, Type[Union[str, float, int, complex, bool]]
|
||||
]
|
||||
DtypeObj = Union[np.dtype, "ExtensionDtype"]
|
||||
FilePathOrBuffer = Union[str, Path, IO[AnyStr]]
|
||||
|
||||
# FrameOrSeriesUnion means either a DataFrame or a Series. E.g.
|
||||
# `def func(a: FrameOrSeriesUnion) -> FrameOrSeriesUnion: ...` means that if a Series
|
||||
|
@ -92,9 +78,7 @@ FrameOrSeries = TypeVar("FrameOrSeries", bound="NDFrame")
|
|||
|
||||
Axis = Union[str, int]
|
||||
Label = Optional[Hashable]
|
||||
IndexLabel = Union[Label, Sequence[Label]]
|
||||
Level = Union[Label, int]
|
||||
Shape = Tuple[int, ...]
|
||||
Ordered = Optional[bool]
|
||||
JSONSerializable = Optional[Union[PythonScalar, List, Dict]]
|
||||
Axes = Collection
|
||||
|
@ -117,34 +101,8 @@ IndexKeyFunc = Optional[Callable[["Index"], Union["Index", AnyArrayLike]]]
|
|||
|
||||
# types of `func` kwarg for DataFrame.aggregate and Series.aggregate
|
||||
AggFuncTypeBase = Union[Callable, str]
|
||||
AggFuncTypeDict = Dict[Label, Union[AggFuncTypeBase, List[AggFuncTypeBase]]]
|
||||
AggFuncType = Union[
|
||||
AggFuncTypeBase,
|
||||
List[AggFuncTypeBase],
|
||||
AggFuncTypeDict,
|
||||
Dict[Label, Union[AggFuncTypeBase, List[AggFuncTypeBase]]],
|
||||
]
|
||||
AggObjType = Union[
|
||||
"Series",
|
||||
"DataFrame",
|
||||
"SeriesGroupBy",
|
||||
"DataFrameGroupBy",
|
||||
"BaseWindow",
|
||||
"Resampler",
|
||||
]
|
||||
|
||||
# filenames and file-like-objects
|
||||
Buffer = Union[IO[AnyStr], RawIOBase, BufferedIOBase, TextIOBase, TextIOWrapper, mmap]
|
||||
FileOrBuffer = Union[str, Buffer[T]]
|
||||
FilePathOrBuffer = Union["PathLike[str]", FileOrBuffer[T]]
|
||||
|
||||
# for arbitrary kwargs passed during reading/writing files
|
||||
StorageOptions = Optional[Dict[str, Any]]
|
||||
|
||||
|
||||
# compression keywords and compression
|
||||
CompressionDict = Dict[str, Any]
|
||||
CompressionOptions = Optional[Union[str, CompressionDict]]
|
||||
|
||||
|
||||
# type of float formatter in DataFrameFormatter
|
||||
FloatFormatType = Union[str, Callable, "EngFormatter"]
|
||||
|
|
|
@ -1,18 +1,20 @@
|
|||
|
||||
# This file was generated by 'versioneer.py' (0.19) from
|
||||
# This file was generated by 'versioneer.py' (0.15) from
|
||||
# revision-control system data, or from the parent directory name of an
|
||||
# unpacked source archive. Distribution tarballs contain a pre-generated copy
|
||||
# of this file.
|
||||
|
||||
import json
|
||||
from warnings import catch_warnings
|
||||
with catch_warnings(record=True):
|
||||
import json
|
||||
import sys
|
||||
|
||||
version_json = '''
|
||||
{
|
||||
"date": "2020-12-26T13:47:00+0000",
|
||||
"dirty": false,
|
||||
"error": null,
|
||||
"full-revisionid": "3e89b4c4b1580aa890023fc550774e63d499da25",
|
||||
"version": "1.2.0"
|
||||
"full-revisionid": "b5958ee1999e9aead1938c0bba2b674378807b3d",
|
||||
"version": "1.1.5"
|
||||
}
|
||||
''' # END VERSION_JSON
|
||||
|
||||
|
|
|
@ -4,7 +4,7 @@ Public toolkit API.
|
|||
|
||||
from pandas._libs.lib import infer_dtype
|
||||
|
||||
from pandas.core.dtypes.api import * # noqa: F401, F403
|
||||
from pandas.core.dtypes.api import * # noqa: F403, F401
|
||||
from pandas.core.dtypes.concat import union_categoricals
|
||||
from pandas.core.dtypes.dtypes import (
|
||||
CategoricalDtype,
|
||||
|
|
|
@ -7,7 +7,6 @@ from pandas.core.arrays import (
|
|||
BooleanArray,
|
||||
Categorical,
|
||||
DatetimeArray,
|
||||
FloatingArray,
|
||||
IntegerArray,
|
||||
IntervalArray,
|
||||
PandasArray,
|
||||
|
@ -21,7 +20,6 @@ __all__ = [
|
|||
"BooleanArray",
|
||||
"Categorical",
|
||||
"DatetimeArray",
|
||||
"FloatingArray",
|
||||
"IntegerArray",
|
||||
"IntervalArray",
|
||||
"PandasArray",
|
||||
|
|
|
@ -8,17 +8,27 @@ Other items:
|
|||
* platform checker
|
||||
"""
|
||||
import platform
|
||||
import struct
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
from pandas._typing import F
|
||||
|
||||
PY37 = sys.version_info >= (3, 7)
|
||||
PY38 = sys.version_info >= (3, 8)
|
||||
PY39 = sys.version_info >= (3, 9)
|
||||
PYPY = platform.python_implementation() == "PyPy"
|
||||
IS64 = sys.maxsize > 2 ** 32
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------
|
||||
# functions largely based / taken from the six module
|
||||
|
||||
# Much of the code in this module comes from Benjamin Peterson's six library.
|
||||
# The license for this library can be found in LICENSES/SIX and the code can be
|
||||
# found at https://bitbucket.org/gutworth/six
|
||||
|
||||
|
||||
def set_function_name(f: F, name: str, cls) -> F:
|
||||
"""
|
||||
Bind the name/qualname attributes of the function.
|
||||
|
@ -29,6 +39,7 @@ def set_function_name(f: F, name: str, cls) -> F:
|
|||
return f
|
||||
|
||||
|
||||
# https://github.com/pandas-dev/pandas/pull/9123
|
||||
def is_platform_little_endian() -> bool:
|
||||
"""
|
||||
Checking if the running platform is little endian.
|
||||
|
@ -50,7 +61,7 @@ def is_platform_windows() -> bool:
|
|||
bool
|
||||
True if the running platform is windows.
|
||||
"""
|
||||
return sys.platform in ["win32", "cygwin"]
|
||||
return sys.platform == "win32" or sys.platform == "cygwin"
|
||||
|
||||
|
||||
def is_platform_linux() -> bool:
|
||||
|
@ -62,7 +73,7 @@ def is_platform_linux() -> bool:
|
|||
bool
|
||||
True if the running platform is linux.
|
||||
"""
|
||||
return sys.platform == "linux"
|
||||
return sys.platform == "linux2"
|
||||
|
||||
|
||||
def is_platform_mac() -> bool:
|
||||
|
@ -77,7 +88,19 @@ def is_platform_mac() -> bool:
|
|||
return sys.platform == "darwin"
|
||||
|
||||
|
||||
def import_lzma():
|
||||
def is_platform_32bit() -> bool:
|
||||
"""
|
||||
Checking if the running platform is 32-bit.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
True if the running platform is 32-bit.
|
||||
"""
|
||||
return struct.calcsize("P") * 8 < 64
|
||||
|
||||
|
||||
def _import_lzma():
|
||||
"""
|
||||
Importing the `lzma` module.
|
||||
|
||||
|
@ -97,7 +120,7 @@ def import_lzma():
|
|||
warnings.warn(msg)
|
||||
|
||||
|
||||
def get_lzma_file(lzma):
|
||||
def _get_lzma_file(lzma):
|
||||
"""
|
||||
Importing the `LZMAFile` class from the `lzma` module.
|
||||
|
||||
|
|
|
@ -11,24 +11,25 @@ VERSIONS = {
|
|||
"fsspec": "0.7.4",
|
||||
"fastparquet": "0.3.2",
|
||||
"gcsfs": "0.6.0",
|
||||
"lxml.etree": "4.3.0",
|
||||
"matplotlib": "2.2.3",
|
||||
"numexpr": "2.6.8",
|
||||
"lxml.etree": "3.8.0",
|
||||
"matplotlib": "2.2.2",
|
||||
"numexpr": "2.6.2",
|
||||
"odfpy": "1.3.0",
|
||||
"openpyxl": "2.5.7",
|
||||
"pandas_gbq": "0.12.0",
|
||||
"pyarrow": "0.15.0",
|
||||
"pyarrow": "0.13.0",
|
||||
"pytables": "3.4.3",
|
||||
"pytest": "5.0.1",
|
||||
"pyxlsb": "1.0.6",
|
||||
"s3fs": "0.4.0",
|
||||
"scipy": "1.2.0",
|
||||
"sqlalchemy": "1.2.8",
|
||||
"tables": "3.5.1",
|
||||
"sqlalchemy": "1.1.4",
|
||||
"tables": "3.4.3",
|
||||
"tabulate": "0.8.3",
|
||||
"xarray": "0.12.3",
|
||||
"xlrd": "1.2.0",
|
||||
"xlwt": "1.3.0",
|
||||
"xlsxwriter": "1.0.2",
|
||||
"xarray": "0.8.2",
|
||||
"xlrd": "1.1.0",
|
||||
"xlwt": "1.2.0",
|
||||
"xlsxwriter": "0.9.8",
|
||||
"numba": "0.46.0",
|
||||
}
|
||||
|
||||
|
|
|
@ -8,19 +8,19 @@ import numpy as np
|
|||
# numpy versioning
|
||||
_np_version = np.__version__
|
||||
_nlv = LooseVersion(_np_version)
|
||||
np_version_under1p17 = _nlv < LooseVersion("1.17")
|
||||
np_version_under1p18 = _nlv < LooseVersion("1.18")
|
||||
_np_version_under1p16 = _nlv < LooseVersion("1.16")
|
||||
_np_version_under1p17 = _nlv < LooseVersion("1.17")
|
||||
_np_version_under1p18 = _nlv < LooseVersion("1.18")
|
||||
_np_version_under1p19 = _nlv < LooseVersion("1.19")
|
||||
_np_version_under1p20 = _nlv < LooseVersion("1.20")
|
||||
is_numpy_dev = ".dev" in str(_nlv)
|
||||
_min_numpy_ver = "1.16.5"
|
||||
_is_numpy_dev = ".dev" in str(_nlv)
|
||||
|
||||
|
||||
if _nlv < _min_numpy_ver:
|
||||
if _nlv < "1.15.4":
|
||||
raise ImportError(
|
||||
f"this version of pandas is incompatible with numpy < {_min_numpy_ver}\n"
|
||||
"this version of pandas is incompatible with numpy < 1.15.4\n"
|
||||
f"your numpy version is {_np_version}.\n"
|
||||
f"Please upgrade numpy to >= {_min_numpy_ver} to use this pandas version"
|
||||
"Please upgrade numpy to >= 1.15.4 to use this pandas version"
|
||||
)
|
||||
|
||||
|
||||
|
@ -65,6 +65,7 @@ def np_array_datetime64_compat(arr, *args, **kwargs):
|
|||
__all__ = [
|
||||
"np",
|
||||
"_np_version",
|
||||
"np_version_under1p17",
|
||||
"is_numpy_dev",
|
||||
"_np_version_under1p16",
|
||||
"_np_version_under1p17",
|
||||
"_is_numpy_dev",
|
||||
]
|
||||
|
|
|
@ -1,24 +1,27 @@
|
|||
"""
|
||||
For compatibility with numpy libraries, pandas functions or methods have to
|
||||
accept '*args' and '**kwargs' parameters to accommodate numpy arguments that
|
||||
are not actually used or respected in the pandas implementation.
|
||||
For compatibility with numpy libraries, pandas functions or
|
||||
methods have to accept '*args' and '**kwargs' parameters to
|
||||
accommodate numpy arguments that are not actually used or
|
||||
respected in the pandas implementation.
|
||||
|
||||
To ensure that users do not abuse these parameters, validation is performed in
|
||||
'validators.py' to make sure that any extra parameters passed correspond ONLY
|
||||
to those in the numpy signature. Part of that validation includes whether or
|
||||
not the user attempted to pass in non-default values for these extraneous
|
||||
parameters. As we want to discourage users from relying on these parameters
|
||||
when calling the pandas implementation, we want them only to pass in the
|
||||
default values for these parameters.
|
||||
To ensure that users do not abuse these parameters, validation
|
||||
is performed in 'validators.py' to make sure that any extra
|
||||
parameters passed correspond ONLY to those in the numpy signature.
|
||||
Part of that validation includes whether or not the user attempted
|
||||
to pass in non-default values for these extraneous parameters. As we
|
||||
want to discourage users from relying on these parameters when calling
|
||||
the pandas implementation, we want them only to pass in the default values
|
||||
for these parameters.
|
||||
|
||||
This module provides a set of commonly used default arguments for functions and
|
||||
methods that are spread throughout the codebase. This module will make it
|
||||
This module provides a set of commonly used default arguments for functions
|
||||
and methods that are spread throughout the codebase. This module will make it
|
||||
easier to adjust to future upstream changes in the analogous numpy signatures.
|
||||
"""
|
||||
from collections import OrderedDict
|
||||
from distutils.version import LooseVersion
|
||||
from typing import Any, Dict, Optional, Union
|
||||
|
||||
from numpy import __version__, ndarray
|
||||
from numpy import __version__ as _np_version, ndarray
|
||||
|
||||
from pandas._libs.lib import is_bool, is_integer
|
||||
from pandas.errors import UnsupportedFunctionCall
|
||||
|
@ -71,7 +74,7 @@ class CompatValidator:
|
|||
raise ValueError(f"invalid validation method '{method}'")
|
||||
|
||||
|
||||
ARGMINMAX_DEFAULTS = {"out": None}
|
||||
ARGMINMAX_DEFAULTS = dict(out=None)
|
||||
validate_argmin = CompatValidator(
|
||||
ARGMINMAX_DEFAULTS, fname="argmin", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
@ -90,10 +93,11 @@ def process_skipna(skipna, args):
|
|||
|
||||
def validate_argmin_with_skipna(skipna, args, kwargs):
|
||||
"""
|
||||
If 'Series.argmin' is called via the 'numpy' library, the third parameter
|
||||
in its signature is 'out', which takes either an ndarray or 'None', so
|
||||
check if the 'skipna' parameter is either an instance of ndarray or is
|
||||
None, since 'skipna' itself should be a boolean
|
||||
If 'Series.argmin' is called via the 'numpy' library,
|
||||
the third parameter in its signature is 'out', which
|
||||
takes either an ndarray or 'None', so check if the
|
||||
'skipna' parameter is either an instance of ndarray or
|
||||
is None, since 'skipna' itself should be a boolean
|
||||
"""
|
||||
skipna, args = process_skipna(skipna, args)
|
||||
validate_argmin(args, kwargs)
|
||||
|
@ -102,22 +106,23 @@ def validate_argmin_with_skipna(skipna, args, kwargs):
|
|||
|
||||
def validate_argmax_with_skipna(skipna, args, kwargs):
|
||||
"""
|
||||
If 'Series.argmax' is called via the 'numpy' library, the third parameter
|
||||
in its signature is 'out', which takes either an ndarray or 'None', so
|
||||
check if the 'skipna' parameter is either an instance of ndarray or is
|
||||
None, since 'skipna' itself should be a boolean
|
||||
If 'Series.argmax' is called via the 'numpy' library,
|
||||
the third parameter in its signature is 'out', which
|
||||
takes either an ndarray or 'None', so check if the
|
||||
'skipna' parameter is either an instance of ndarray or
|
||||
is None, since 'skipna' itself should be a boolean
|
||||
"""
|
||||
skipna, args = process_skipna(skipna, args)
|
||||
validate_argmax(args, kwargs)
|
||||
return skipna
|
||||
|
||||
|
||||
ARGSORT_DEFAULTS: Dict[str, Optional[Union[int, str]]] = {}
|
||||
ARGSORT_DEFAULTS: "OrderedDict[str, Optional[Union[int, str]]]" = OrderedDict()
|
||||
ARGSORT_DEFAULTS["axis"] = -1
|
||||
ARGSORT_DEFAULTS["kind"] = "quicksort"
|
||||
ARGSORT_DEFAULTS["order"] = None
|
||||
|
||||
if LooseVersion(__version__) >= LooseVersion("1.17.0"):
|
||||
if LooseVersion(_np_version) >= LooseVersion("1.17.0"):
|
||||
# GH-26361. NumPy added radix sort and changed default to None.
|
||||
ARGSORT_DEFAULTS["kind"] = None
|
||||
|
||||
|
@ -126,9 +131,9 @@ validate_argsort = CompatValidator(
|
|||
ARGSORT_DEFAULTS, fname="argsort", max_fname_arg_count=0, method="both"
|
||||
)
|
||||
|
||||
# two different signatures of argsort, this second validation for when the
|
||||
# `kind` param is supported
|
||||
ARGSORT_DEFAULTS_KIND: Dict[str, Optional[int]] = {}
|
||||
# two different signatures of argsort, this second validation
|
||||
# for when the `kind` param is supported
|
||||
ARGSORT_DEFAULTS_KIND: "OrderedDict[str, Optional[int]]" = OrderedDict()
|
||||
ARGSORT_DEFAULTS_KIND["axis"] = -1
|
||||
ARGSORT_DEFAULTS_KIND["order"] = None
|
||||
validate_argsort_kind = CompatValidator(
|
||||
|
@ -138,10 +143,11 @@ validate_argsort_kind = CompatValidator(
|
|||
|
||||
def validate_argsort_with_ascending(ascending, args, kwargs):
|
||||
"""
|
||||
If 'Categorical.argsort' is called via the 'numpy' library, the first
|
||||
parameter in its signature is 'axis', which takes either an integer or
|
||||
'None', so check if the 'ascending' parameter has either integer type or is
|
||||
None, since 'ascending' itself should be a boolean
|
||||
If 'Categorical.argsort' is called via the 'numpy' library, the
|
||||
first parameter in its signature is 'axis', which takes either
|
||||
an integer or 'None', so check if the 'ascending' parameter has
|
||||
either integer type or is None, since 'ascending' itself should
|
||||
be a boolean
|
||||
"""
|
||||
if is_integer(ascending) or ascending is None:
|
||||
args = (ascending,) + args
|
||||
|
@ -151,7 +157,7 @@ def validate_argsort_with_ascending(ascending, args, kwargs):
|
|||
return ascending
|
||||
|
||||
|
||||
CLIP_DEFAULTS: Dict[str, Any] = {"out": None}
|
||||
CLIP_DEFAULTS: Dict[str, Any] = dict(out=None)
|
||||
validate_clip = CompatValidator(
|
||||
CLIP_DEFAULTS, fname="clip", method="both", max_fname_arg_count=3
|
||||
)
|
||||
|
@ -159,10 +165,10 @@ validate_clip = CompatValidator(
|
|||
|
||||
def validate_clip_with_axis(axis, args, kwargs):
|
||||
"""
|
||||
If 'NDFrame.clip' is called via the numpy library, the third parameter in
|
||||
its signature is 'out', which can takes an ndarray, so check if the 'axis'
|
||||
parameter is an instance of ndarray, since 'axis' itself should either be
|
||||
an integer or None
|
||||
If 'NDFrame.clip' is called via the numpy library, the third
|
||||
parameter in its signature is 'out', which can takes an ndarray,
|
||||
so check if the 'axis' parameter is an instance of ndarray, since
|
||||
'axis' itself should either be an integer or None
|
||||
"""
|
||||
if isinstance(axis, ndarray):
|
||||
args = (axis,) + args
|
||||
|
@ -172,7 +178,7 @@ def validate_clip_with_axis(axis, args, kwargs):
|
|||
return axis
|
||||
|
||||
|
||||
CUM_FUNC_DEFAULTS: Dict[str, Any] = {}
|
||||
CUM_FUNC_DEFAULTS: "OrderedDict[str, Any]" = OrderedDict()
|
||||
CUM_FUNC_DEFAULTS["dtype"] = None
|
||||
CUM_FUNC_DEFAULTS["out"] = None
|
||||
validate_cum_func = CompatValidator(
|
||||
|
@ -185,9 +191,10 @@ validate_cumsum = CompatValidator(
|
|||
|
||||
def validate_cum_func_with_skipna(skipna, args, kwargs, name):
|
||||
"""
|
||||
If this function is called via the 'numpy' library, the third parameter in
|
||||
its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so
|
||||
check if the 'skipna' parameter is a boolean or not
|
||||
If this function is called via the 'numpy' library, the third
|
||||
parameter in its signature is 'dtype', which takes either a
|
||||
'numpy' dtype or 'None', so check if the 'skipna' parameter is
|
||||
a boolean or not
|
||||
"""
|
||||
if not is_bool(skipna):
|
||||
args = (skipna,) + args
|
||||
|
@ -197,7 +204,7 @@ def validate_cum_func_with_skipna(skipna, args, kwargs, name):
|
|||
return skipna
|
||||
|
||||
|
||||
ALLANY_DEFAULTS: Dict[str, Optional[bool]] = {}
|
||||
ALLANY_DEFAULTS: "OrderedDict[str, Optional[bool]]" = OrderedDict()
|
||||
ALLANY_DEFAULTS["dtype"] = None
|
||||
ALLANY_DEFAULTS["out"] = None
|
||||
ALLANY_DEFAULTS["keepdims"] = False
|
||||
|
@ -208,10 +215,10 @@ validate_any = CompatValidator(
|
|||
ALLANY_DEFAULTS, fname="any", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
LOGICAL_FUNC_DEFAULTS = {"out": None, "keepdims": False}
|
||||
LOGICAL_FUNC_DEFAULTS = dict(out=None, keepdims=False)
|
||||
validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method="kwargs")
|
||||
|
||||
MINMAX_DEFAULTS = {"axis": None, "out": None, "keepdims": False}
|
||||
MINMAX_DEFAULTS = dict(axis=None, out=None, keepdims=False)
|
||||
validate_min = CompatValidator(
|
||||
MINMAX_DEFAULTS, fname="min", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
@ -219,28 +226,28 @@ validate_max = CompatValidator(
|
|||
MINMAX_DEFAULTS, fname="max", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
RESHAPE_DEFAULTS: Dict[str, str] = {"order": "C"}
|
||||
RESHAPE_DEFAULTS: Dict[str, str] = dict(order="C")
|
||||
validate_reshape = CompatValidator(
|
||||
RESHAPE_DEFAULTS, fname="reshape", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
REPEAT_DEFAULTS: Dict[str, Any] = {"axis": None}
|
||||
REPEAT_DEFAULTS: Dict[str, Any] = dict(axis=None)
|
||||
validate_repeat = CompatValidator(
|
||||
REPEAT_DEFAULTS, fname="repeat", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
ROUND_DEFAULTS: Dict[str, Any] = {"out": None}
|
||||
ROUND_DEFAULTS: Dict[str, Any] = dict(out=None)
|
||||
validate_round = CompatValidator(
|
||||
ROUND_DEFAULTS, fname="round", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
SORT_DEFAULTS: Dict[str, Optional[Union[int, str]]] = {}
|
||||
SORT_DEFAULTS: "OrderedDict[str, Optional[Union[int, str]]]" = OrderedDict()
|
||||
SORT_DEFAULTS["axis"] = -1
|
||||
SORT_DEFAULTS["kind"] = "quicksort"
|
||||
SORT_DEFAULTS["order"] = None
|
||||
validate_sort = CompatValidator(SORT_DEFAULTS, fname="sort", method="kwargs")
|
||||
|
||||
STAT_FUNC_DEFAULTS: Dict[str, Optional[Any]] = {}
|
||||
STAT_FUNC_DEFAULTS: "OrderedDict[str, Optional[Any]]" = OrderedDict()
|
||||
STAT_FUNC_DEFAULTS["dtype"] = None
|
||||
STAT_FUNC_DEFAULTS["out"] = None
|
||||
|
||||
|
@ -274,13 +281,13 @@ validate_median = CompatValidator(
|
|||
MEDIAN_DEFAULTS, fname="median", method="both", max_fname_arg_count=1
|
||||
)
|
||||
|
||||
STAT_DDOF_FUNC_DEFAULTS: Dict[str, Optional[bool]] = {}
|
||||
STAT_DDOF_FUNC_DEFAULTS: "OrderedDict[str, Optional[bool]]" = OrderedDict()
|
||||
STAT_DDOF_FUNC_DEFAULTS["dtype"] = None
|
||||
STAT_DDOF_FUNC_DEFAULTS["out"] = None
|
||||
STAT_DDOF_FUNC_DEFAULTS["keepdims"] = False
|
||||
validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method="kwargs")
|
||||
|
||||
TAKE_DEFAULTS: Dict[str, Optional[str]] = {}
|
||||
TAKE_DEFAULTS: "OrderedDict[str, Optional[str]]" = OrderedDict()
|
||||
TAKE_DEFAULTS["out"] = None
|
||||
TAKE_DEFAULTS["mode"] = "raise"
|
||||
validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
|
||||
|
@ -288,9 +295,10 @@ validate_take = CompatValidator(TAKE_DEFAULTS, fname="take", method="kwargs")
|
|||
|
||||
def validate_take_with_convert(convert, args, kwargs):
|
||||
"""
|
||||
If this function is called via the 'numpy' library, the third parameter in
|
||||
its signature is 'axis', which takes either an ndarray or 'None', so check
|
||||
if the 'convert' parameter is either an instance of ndarray or is None
|
||||
If this function is called via the 'numpy' library, the third
|
||||
parameter in its signature is 'axis', which takes either an
|
||||
ndarray or 'None', so check if the 'convert' parameter is either
|
||||
an instance of ndarray or is None
|
||||
"""
|
||||
if isinstance(convert, ndarray) or convert is None:
|
||||
args = (convert,) + args
|
||||
|
@ -300,7 +308,7 @@ def validate_take_with_convert(convert, args, kwargs):
|
|||
return convert
|
||||
|
||||
|
||||
TRANSPOSE_DEFAULTS = {"axes": None}
|
||||
TRANSPOSE_DEFAULTS = dict(axes=None)
|
||||
validate_transpose = CompatValidator(
|
||||
TRANSPOSE_DEFAULTS, fname="transpose", method="both", max_fname_arg_count=0
|
||||
)
|
||||
|
@ -353,9 +361,10 @@ def validate_expanding_func(name, args, kwargs) -> None:
|
|||
|
||||
def validate_groupby_func(name, args, kwargs, allowed=None) -> None:
|
||||
"""
|
||||
'args' and 'kwargs' should be empty, except for allowed kwargs because all
|
||||
of their necessary parameters are explicitly listed in the function
|
||||
signature
|
||||
'args' and 'kwargs' should be empty, except for allowed
|
||||
kwargs because all of
|
||||
their necessary parameters are explicitly listed in
|
||||
the function signature
|
||||
"""
|
||||
if allowed is None:
|
||||
allowed = []
|
||||
|
@ -374,8 +383,9 @@ RESAMPLER_NUMPY_OPS = ("min", "max", "sum", "prod", "mean", "std", "var")
|
|||
|
||||
def validate_resampler_func(method: str, args, kwargs) -> None:
|
||||
"""
|
||||
'args' and 'kwargs' should be empty because all of their necessary
|
||||
parameters are explicitly listed in the function signature
|
||||
'args' and 'kwargs' should be empty because all of
|
||||
their necessary parameters are explicitly listed in
|
||||
the function signature
|
||||
"""
|
||||
if len(args) + len(kwargs) > 0:
|
||||
if method in RESAMPLER_NUMPY_OPS:
|
||||
|
@ -387,20 +397,20 @@ def validate_resampler_func(method: str, args, kwargs) -> None:
|
|||
raise TypeError("too many arguments passed in")
|
||||
|
||||
|
||||
def validate_minmax_axis(axis: Optional[int], ndim: int = 1) -> None:
|
||||
def validate_minmax_axis(axis: Optional[int]) -> None:
|
||||
"""
|
||||
Ensure that the axis argument passed to min, max, argmin, or argmax is zero
|
||||
or None, as otherwise it will be incorrectly ignored.
|
||||
Ensure that the axis argument passed to min, max, argmin, or argmax is
|
||||
zero or None, as otherwise it will be incorrectly ignored.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
axis : int or None
|
||||
ndim : int, default 1
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
"""
|
||||
ndim = 1 # hard-coded for Index
|
||||
if axis is None:
|
||||
return
|
||||
if axis >= ndim or (axis < 0 and ndim + axis < 0):
|
||||
|
|
|
@ -64,7 +64,7 @@ class _LoadSparseSeries:
|
|||
# https://github.com/python/mypy/issues/1020
|
||||
# error: Incompatible return type for "__new__" (returns "Series", but must return
|
||||
# a subtype of "_LoadSparseSeries")
|
||||
def __new__(cls) -> "Series": # type: ignore[misc]
|
||||
def __new__(cls) -> "Series": # type: ignore
|
||||
from pandas import Series
|
||||
|
||||
warnings.warn(
|
||||
|
@ -82,7 +82,7 @@ class _LoadSparseFrame:
|
|||
# https://github.com/python/mypy/issues/1020
|
||||
# error: Incompatible return type for "__new__" (returns "DataFrame", but must
|
||||
# return a subtype of "_LoadSparseFrame")
|
||||
def __new__(cls) -> "DataFrame": # type: ignore[misc]
|
||||
def __new__(cls) -> "DataFrame": # type: ignore
|
||||
from pandas import DataFrame
|
||||
|
||||
warnings.warn(
|
||||
|
@ -181,7 +181,7 @@ _class_locations_map = {
|
|||
# functions for compat and uses a non-public class of the pickle module.
|
||||
|
||||
# error: Name 'pkl._Unpickler' is not defined
|
||||
class Unpickler(pkl._Unpickler): # type: ignore[name-defined]
|
||||
class Unpickler(pkl._Unpickler): # type: ignore
|
||||
def find_class(self, module, name):
|
||||
# override superclass
|
||||
key = (module, name)
|
||||
|
@ -274,7 +274,7 @@ def patch_pickle():
|
|||
"""
|
||||
orig_loads = pkl.loads
|
||||
try:
|
||||
setattr(pkl, "loads", loads)
|
||||
pkl.loads = loads
|
||||
yield
|
||||
finally:
|
||||
setattr(pkl, "loads", orig_loads)
|
||||
pkl.loads = orig_loads
|
||||
|
|
|
@ -33,10 +33,8 @@ from pytz import FixedOffset, utc
|
|||
|
||||
import pandas.util._test_decorators as td
|
||||
|
||||
from pandas.core.dtypes.dtypes import DatetimeTZDtype, IntervalDtype
|
||||
|
||||
import pandas as pd
|
||||
from pandas import DataFrame, Interval, Period, Series, Timedelta, Timestamp
|
||||
from pandas import DataFrame
|
||||
import pandas._testing as tm
|
||||
from pandas.core import ops
|
||||
from pandas.core.indexes.api import Index, MultiIndex
|
||||
|
@ -57,9 +55,6 @@ def pytest_configure(config):
|
|||
)
|
||||
config.addinivalue_line("markers", "high_memory: mark a test as a high-memory only")
|
||||
config.addinivalue_line("markers", "clipboard: mark a pd.read_clipboard test")
|
||||
config.addinivalue_line(
|
||||
"markers", "arm_slow: mark a test as slow for arm64 architecture"
|
||||
)
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
|
@ -176,6 +171,14 @@ def axis(request):
|
|||
axis_frame = axis
|
||||
|
||||
|
||||
@pytest.fixture(params=[0, "index"], ids=lambda x: f"axis {repr(x)}")
|
||||
def axis_series(request):
|
||||
"""
|
||||
Fixture for returning the axis numbers of a Series.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[True, False, None])
|
||||
def observed(request):
|
||||
"""
|
||||
|
@ -266,7 +269,7 @@ def nselect_method(request):
|
|||
# ----------------------------------------------------------------
|
||||
# Missing values & co.
|
||||
# ----------------------------------------------------------------
|
||||
@pytest.fixture(params=tm.NULL_OBJECTS, ids=str)
|
||||
@pytest.fixture(params=[None, np.nan, pd.NaT, float("nan"), pd.NA], ids=str)
|
||||
def nulls_fixture(request):
|
||||
"""
|
||||
Fixture for each null type in pandas.
|
||||
|
@ -288,22 +291,11 @@ def unique_nulls_fixture(request):
|
|||
# Generate cartesian product of unique_nulls_fixture:
|
||||
unique_nulls_fixture2 = unique_nulls_fixture
|
||||
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# Classes
|
||||
# ----------------------------------------------------------------
|
||||
|
||||
|
||||
@pytest.fixture(params=[pd.DataFrame, pd.Series])
|
||||
def frame_or_series(request):
|
||||
"""
|
||||
Fixture to parametrize over DataFrame and Series.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[pd.Index, pd.Series], ids=["index", "series"] # type: ignore[list-item]
|
||||
)
|
||||
@pytest.fixture(params=[pd.Index, pd.Series], ids=["index", "series"])
|
||||
def index_or_series(request):
|
||||
"""
|
||||
Fixture to parametrize over Index and Series, made necessary by a mypy
|
||||
|
@ -320,16 +312,6 @@ def index_or_series(request):
|
|||
index_or_series2 = index_or_series
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[pd.Index, pd.Series, pd.array], ids=["index", "series", "array"]
|
||||
)
|
||||
def index_or_series_or_array(request):
|
||||
"""
|
||||
Fixture to parametrize over Index, Series, and ExtensionArray
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def dict_subclass():
|
||||
"""
|
||||
|
@ -377,24 +359,11 @@ def multiindex_year_month_day_dataframe_random_data():
|
|||
tdf = tm.makeTimeDataFrame(100)
|
||||
ymd = tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum()
|
||||
# use Int64Index, to make sure things work
|
||||
ymd.index = ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels])
|
||||
ymd.index.set_levels([lev.astype("i8") for lev in ymd.index.levels], inplace=True)
|
||||
ymd.index.set_names(["year", "month", "day"], inplace=True)
|
||||
return ymd
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def multiindex_dataframe_random_data():
|
||||
"""DataFrame with 2 level MultiIndex with random data"""
|
||||
index = MultiIndex(
|
||||
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
|
||||
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
|
||||
names=["first", "second"],
|
||||
)
|
||||
return DataFrame(
|
||||
np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp")
|
||||
)
|
||||
|
||||
|
||||
def _create_multiindex():
|
||||
"""
|
||||
MultiIndex used to test the general functionality of this object
|
||||
|
@ -407,12 +376,13 @@ def _create_multiindex():
|
|||
major_codes = np.array([0, 0, 1, 2, 3, 3])
|
||||
minor_codes = np.array([0, 1, 0, 1, 0, 1])
|
||||
index_names = ["first", "second"]
|
||||
return MultiIndex(
|
||||
mi = MultiIndex(
|
||||
levels=[major_axis, minor_axis],
|
||||
codes=[major_codes, minor_codes],
|
||||
names=index_names,
|
||||
verify_integrity=False,
|
||||
)
|
||||
return mi
|
||||
|
||||
|
||||
def _create_mi_with_dt64tz_level():
|
||||
|
@ -467,29 +437,6 @@ def index(request):
|
|||
index_fixture2 = index
|
||||
|
||||
|
||||
@pytest.fixture(params=indices_dict.keys())
|
||||
def index_with_missing(request):
|
||||
"""
|
||||
Fixture for indices with missing values
|
||||
"""
|
||||
if request.param in ["int", "uint", "range", "empty", "repeats"]:
|
||||
pytest.xfail("missing values not supported")
|
||||
# GH 35538. Use deep copy to avoid illusive bug on np-dev
|
||||
# Azure pipeline that writes into indices_dict despite copy
|
||||
ind = indices_dict[request.param].copy(deep=True)
|
||||
vals = ind.values
|
||||
if request.param in ["tuples", "mi-with-dt64tz-level", "multi"]:
|
||||
# For setting missing values in the top level of MultiIndex
|
||||
vals = ind.tolist()
|
||||
vals[0] = (None,) + vals[0][1:]
|
||||
vals[-1] = (None,) + vals[-1][1:]
|
||||
return MultiIndex.from_tuples(vals)
|
||||
else:
|
||||
vals[0] = None
|
||||
vals[-1] = None
|
||||
return type(ind)(vals)
|
||||
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# Series'
|
||||
# ----------------------------------------------------------------
|
||||
|
@ -549,23 +496,6 @@ def series_with_simple_index(index):
|
|||
return _create_series(index)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def series_with_multilevel_index():
|
||||
"""
|
||||
Fixture with a Series with a 2-level MultiIndex.
|
||||
"""
|
||||
arrays = [
|
||||
["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
|
||||
["one", "two", "one", "two", "one", "two", "one", "two"],
|
||||
]
|
||||
tuples = zip(*arrays)
|
||||
index = MultiIndex.from_tuples(tuples)
|
||||
data = np.random.randn(8)
|
||||
ser = Series(data, index=index)
|
||||
ser[3] = np.NaN
|
||||
return ser
|
||||
|
||||
|
||||
_narrow_dtypes = [
|
||||
np.float16,
|
||||
np.float32,
|
||||
|
@ -698,26 +628,6 @@ def float_frame():
|
|||
return DataFrame(tm.getSeriesData())
|
||||
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# Scalars
|
||||
# ----------------------------------------------------------------
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
(Interval(left=0, right=5), IntervalDtype("int64")),
|
||||
(Interval(left=0.1, right=0.5), IntervalDtype("float64")),
|
||||
(Period("2012-01", freq="M"), "period[M]"),
|
||||
(Period("2012-02-01", freq="D"), "period[D]"),
|
||||
(
|
||||
Timestamp("2011-01-01", tz="US/Eastern"),
|
||||
DatetimeTZDtype(tz="US/Eastern"),
|
||||
),
|
||||
(Timedelta(seconds=500), "timedelta64[ns]"),
|
||||
]
|
||||
)
|
||||
def ea_scalar_and_dtype(request):
|
||||
return request.param
|
||||
|
||||
|
||||
# ----------------------------------------------------------------
|
||||
# Operators & Operations
|
||||
# ----------------------------------------------------------------
|
||||
|
@ -747,43 +657,6 @@ def all_arithmetic_operators(request):
|
|||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
operator.add,
|
||||
ops.radd,
|
||||
operator.sub,
|
||||
ops.rsub,
|
||||
operator.mul,
|
||||
ops.rmul,
|
||||
operator.truediv,
|
||||
ops.rtruediv,
|
||||
operator.floordiv,
|
||||
ops.rfloordiv,
|
||||
operator.mod,
|
||||
ops.rmod,
|
||||
operator.pow,
|
||||
ops.rpow,
|
||||
operator.eq,
|
||||
operator.ne,
|
||||
operator.lt,
|
||||
operator.le,
|
||||
operator.gt,
|
||||
operator.ge,
|
||||
operator.and_,
|
||||
ops.rand_,
|
||||
operator.xor,
|
||||
ops.rxor,
|
||||
operator.or_,
|
||||
ops.ror_,
|
||||
]
|
||||
)
|
||||
def all_binary_operators(request):
|
||||
"""
|
||||
Fixture for operator and roperator arithmetic, comparison, and logical ops.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
operator.add,
|
||||
|
@ -964,10 +837,6 @@ TIMEZONES = [
|
|||
"Asia/Tokyo",
|
||||
"dateutil/US/Pacific",
|
||||
"dateutil/Asia/Singapore",
|
||||
"+01:15",
|
||||
"-02:15",
|
||||
"UTC+01:15",
|
||||
"UTC-02:15",
|
||||
tzutc(),
|
||||
tzlocal(),
|
||||
FixedOffset(300),
|
||||
|
@ -1089,31 +958,6 @@ def float_dtype(request):
|
|||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=tm.FLOAT_EA_DTYPES)
|
||||
def float_ea_dtype(request):
|
||||
"""
|
||||
Parameterized fixture for float dtypes.
|
||||
|
||||
* 'Float32'
|
||||
* 'Float64'
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=tm.FLOAT_DTYPES + tm.FLOAT_EA_DTYPES)
|
||||
def any_float_allowed_nullable_dtype(request):
|
||||
"""
|
||||
Parameterized fixture for float dtypes.
|
||||
|
||||
* float
|
||||
* 'float32'
|
||||
* 'float64'
|
||||
* 'Float32'
|
||||
* 'Float64'
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=tm.COMPLEX_DTYPES)
|
||||
def complex_dtype(request):
|
||||
"""
|
||||
|
@ -1188,26 +1032,6 @@ def any_nullable_int_dtype(request):
|
|||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=tm.ALL_EA_INT_DTYPES + tm.FLOAT_EA_DTYPES)
|
||||
def any_numeric_dtype(request):
|
||||
"""
|
||||
Parameterized fixture for any nullable integer dtype and
|
||||
any float ea dtypes.
|
||||
|
||||
* 'UInt8'
|
||||
* 'Int8'
|
||||
* 'UInt16'
|
||||
* 'Int16'
|
||||
* 'UInt32'
|
||||
* 'Int32'
|
||||
* 'UInt64'
|
||||
* 'Int64'
|
||||
* 'Float32'
|
||||
* 'Float64'
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=tm.SIGNED_EA_INT_DTYPES)
|
||||
def any_signed_nullable_int_dtype(request):
|
||||
"""
|
||||
|
@ -1370,13 +1194,7 @@ def ip():
|
|||
pytest.importorskip("IPython", minversion="6.0.0")
|
||||
from IPython.core.interactiveshell import InteractiveShell
|
||||
|
||||
# GH#35711 make sure sqlite history file handle is not leaked
|
||||
from traitlets.config import Config # isort:skip
|
||||
|
||||
c = Config()
|
||||
c.HistoryManager.hist_file = ":memory:"
|
||||
|
||||
return InteractiveShell(config=c)
|
||||
return InteractiveShell()
|
||||
|
||||
|
||||
@pytest.fixture(params=["bsr", "coo", "csc", "csr", "dia", "dok", "lil"])
|
||||
|
@ -1389,6 +1207,15 @@ def spmatrix(request):
|
|||
return getattr(sparse, request.param + "_matrix")
|
||||
|
||||
|
||||
@pytest.fixture(params=list(tm.cython_table))
|
||||
def cython_table_items(request):
|
||||
"""
|
||||
Yields a tuple of a function and its corresponding name. Correspond to
|
||||
the list of aggregator "Cython functions" used on selected table items.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
getattr(pd.offsets, o)
|
||||
|
@ -1410,39 +1237,3 @@ def sort_by_key(request):
|
|||
Tests None (no key) and the identity key.
|
||||
"""
|
||||
return request.param
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def fsspectest():
|
||||
pytest.importorskip("fsspec")
|
||||
from fsspec import register_implementation
|
||||
from fsspec.implementations.memory import MemoryFileSystem
|
||||
from fsspec.registry import _registry as registry
|
||||
|
||||
class TestMemoryFS(MemoryFileSystem):
|
||||
protocol = "testmem"
|
||||
test = [None]
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.test[0] = kwargs.pop("test", None)
|
||||
super().__init__(**kwargs)
|
||||
|
||||
register_implementation("testmem", TestMemoryFS, clobber=True)
|
||||
yield TestMemoryFS()
|
||||
registry.pop("testmem", None)
|
||||
TestMemoryFS.test[0] = None
|
||||
TestMemoryFS.store.clear()
|
||||
|
||||
|
||||
@pytest.fixture(
|
||||
params=[
|
||||
("foo", None, None),
|
||||
("Egon", "Venkman", None),
|
||||
("NCC1701D", "NCC1701D", "NCC1701D"),
|
||||
]
|
||||
)
|
||||
def names(request):
|
||||
"""
|
||||
A 3-tuple of names, the first two for operands, the last for a result.
|
||||
"""
|
||||
return request.param
|
||||
|
|
|
@ -4,7 +4,7 @@ accessor.py contains base classes for implementing accessor properties
|
|||
that can be mixed into or pinned onto other pandas classes.
|
||||
|
||||
"""
|
||||
from typing import FrozenSet, List, Set
|
||||
from typing import FrozenSet, Set
|
||||
import warnings
|
||||
|
||||
from pandas.util._decorators import doc
|
||||
|
@ -12,21 +12,28 @@ from pandas.util._decorators import doc
|
|||
|
||||
class DirNamesMixin:
|
||||
_accessors: Set[str] = set()
|
||||
_hidden_attrs: FrozenSet[str] = frozenset()
|
||||
_deprecations: FrozenSet[str] = frozenset()
|
||||
|
||||
def _dir_deletions(self) -> Set[str]:
|
||||
def _dir_deletions(self):
|
||||
"""
|
||||
Delete unwanted __dir__ for this object.
|
||||
"""
|
||||
return self._accessors | self._hidden_attrs
|
||||
return self._accessors | self._deprecations
|
||||
|
||||
def _dir_additions(self) -> Set[str]:
|
||||
def _dir_additions(self):
|
||||
"""
|
||||
Add additional __dir__ for this object.
|
||||
"""
|
||||
return {accessor for accessor in self._accessors if hasattr(self, accessor)}
|
||||
rv = set()
|
||||
for accessor in self._accessors:
|
||||
try:
|
||||
getattr(self, accessor)
|
||||
rv.add(accessor)
|
||||
except AttributeError:
|
||||
pass
|
||||
return rv
|
||||
|
||||
def __dir__(self) -> List[str]:
|
||||
def __dir__(self):
|
||||
"""
|
||||
Provide method name lookup and completion.
|
||||
|
||||
|
@ -34,7 +41,7 @@ class DirNamesMixin:
|
|||
-----
|
||||
Only provide 'public' methods.
|
||||
"""
|
||||
rv = set(super().__dir__())
|
||||
rv = set(dir(type(self)))
|
||||
rv = (rv - self._dir_deletions()) | self._dir_additions()
|
||||
return sorted(rv)
|
||||
|
||||
|
|
|
@ -6,46 +6,32 @@ kwarg aggregations in groupby and DataFrame/Series aggregation
|
|||
from collections import defaultdict
|
||||
from functools import partial
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Callable,
|
||||
DefaultDict,
|
||||
Dict,
|
||||
Iterable,
|
||||
List,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
from pandas._typing import (
|
||||
AggFuncType,
|
||||
AggFuncTypeBase,
|
||||
AggFuncTypeDict,
|
||||
AggObjType,
|
||||
Axis,
|
||||
FrameOrSeries,
|
||||
FrameOrSeriesUnion,
|
||||
Label,
|
||||
)
|
||||
from pandas._typing import AggFuncType, Label
|
||||
|
||||
from pandas.core.dtypes.cast import is_nested_object
|
||||
from pandas.core.dtypes.common import is_dict_like, is_list_like
|
||||
from pandas.core.dtypes.generic import ABCDataFrame, ABCNDFrame, ABCSeries
|
||||
|
||||
from pandas.core.base import DataError, SpecificationError
|
||||
from pandas.core.base import SpecificationError
|
||||
import pandas.core.common as com
|
||||
from pandas.core.indexes.api import Index
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas.core.series import Series
|
||||
from pandas.core.series import FrameOrSeriesUnion, Series
|
||||
|
||||
|
||||
def reconstruct_func(
|
||||
func: Optional[AggFuncType], **kwargs
|
||||
) -> Tuple[bool, Optional[AggFuncType], Optional[List[str]], Optional[List[int]]]:
|
||||
func: Optional[AggFuncType], **kwargs,
|
||||
) -> Tuple[
|
||||
bool, Optional[AggFuncType], Optional[List[str]], Optional[List[int]],
|
||||
]:
|
||||
"""
|
||||
This is the internal function to reconstruct func given if there is relabeling
|
||||
or not and also normalize the keyword to get new order of columns.
|
||||
|
@ -291,13 +277,12 @@ def maybe_mangle_lambdas(agg_spec: Any) -> Any:
|
|||
|
||||
|
||||
def relabel_result(
|
||||
result: FrameOrSeries,
|
||||
result: FrameOrSeriesUnion,
|
||||
func: Dict[str, List[Union[Callable, str]]],
|
||||
columns: Iterable[Label],
|
||||
order: Iterable[int],
|
||||
) -> Dict[Label, "Series"]:
|
||||
"""
|
||||
Internal function to reorder result if relabelling is True for
|
||||
columns: Tuple,
|
||||
order: List[int],
|
||||
) -> Dict[Label, Series]:
|
||||
"""Internal function to reorder result if relabelling is True for
|
||||
dataframe.agg, and return the reordered result in dict.
|
||||
|
||||
Parameters:
|
||||
|
@ -322,10 +307,10 @@ def relabel_result(
|
|||
reordered_indexes = [
|
||||
pair[0] for pair in sorted(zip(columns, order), key=lambda t: t[1])
|
||||
]
|
||||
reordered_result_in_dict: Dict[Label, "Series"] = {}
|
||||
reordered_result_in_dict: Dict[Label, Series] = {}
|
||||
idx = 0
|
||||
|
||||
reorder_mask = not isinstance(result, ABCSeries) and len(result.columns) > 1
|
||||
reorder_mask = not isinstance(result, Series) and len(result.columns) > 1
|
||||
for col, fun in func.items():
|
||||
s = result[col].dropna()
|
||||
|
||||
|
@ -388,7 +373,7 @@ def validate_func_kwargs(
|
|||
(['one', 'two'], ['min', 'max'])
|
||||
"""
|
||||
no_arg_message = "Must provide 'func' or named aggregation **kwargs."
|
||||
tuple_given_message = "func is expected but received {} in **kwargs."
|
||||
tuple_given_message = "func is expected but recieved {} in **kwargs."
|
||||
columns = list(kwargs)
|
||||
func = []
|
||||
for col_func in kwargs.values():
|
||||
|
@ -398,390 +383,3 @@ def validate_func_kwargs(
|
|||
if not columns:
|
||||
raise TypeError(no_arg_message)
|
||||
return columns, func
|
||||
|
||||
|
||||
def transform(
|
||||
obj: FrameOrSeries, func: AggFuncType, axis: Axis, *args, **kwargs
|
||||
) -> FrameOrSeriesUnion:
|
||||
"""
|
||||
Transform a DataFrame or Series
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : DataFrame or Series
|
||||
Object to compute the transform on.
|
||||
func : string, function, list, or dictionary
|
||||
Function(s) to compute the transform with.
|
||||
axis : {0 or 'index', 1 or 'columns'}
|
||||
Axis along which the function is applied:
|
||||
|
||||
* 0 or 'index': apply function to each column.
|
||||
* 1 or 'columns': apply function to each row.
|
||||
|
||||
Returns
|
||||
-------
|
||||
DataFrame or Series
|
||||
Result of applying ``func`` along the given axis of the
|
||||
Series or DataFrame.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the transform function fails or does not transform.
|
||||
"""
|
||||
is_series = obj.ndim == 1
|
||||
|
||||
if obj._get_axis_number(axis) == 1:
|
||||
assert not is_series
|
||||
return transform(obj.T, func, 0, *args, **kwargs).T
|
||||
|
||||
if is_list_like(func) and not is_dict_like(func):
|
||||
func = cast(List[AggFuncTypeBase], func)
|
||||
# Convert func equivalent dict
|
||||
if is_series:
|
||||
func = {com.get_callable_name(v) or v: v for v in func}
|
||||
else:
|
||||
func = {col: func for col in obj}
|
||||
|
||||
if is_dict_like(func):
|
||||
func = cast(AggFuncTypeDict, func)
|
||||
return transform_dict_like(obj, func, *args, **kwargs)
|
||||
|
||||
# func is either str or callable
|
||||
func = cast(AggFuncTypeBase, func)
|
||||
try:
|
||||
result = transform_str_or_callable(obj, func, *args, **kwargs)
|
||||
except Exception:
|
||||
raise ValueError("Transform function failed")
|
||||
|
||||
# Functions that transform may return empty Series/DataFrame
|
||||
# when the dtype is not appropriate
|
||||
if isinstance(result, (ABCSeries, ABCDataFrame)) and result.empty:
|
||||
raise ValueError("Transform function failed")
|
||||
if not isinstance(result, (ABCSeries, ABCDataFrame)) or not result.index.equals(
|
||||
obj.index
|
||||
):
|
||||
raise ValueError("Function did not transform")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def transform_dict_like(
|
||||
obj: FrameOrSeries,
|
||||
func: AggFuncTypeDict,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Compute transform in the case of a dict-like func
|
||||
"""
|
||||
from pandas.core.reshape.concat import concat
|
||||
|
||||
if len(func) == 0:
|
||||
raise ValueError("No transform functions were provided")
|
||||
|
||||
if obj.ndim != 1:
|
||||
# Check for missing columns on a frame
|
||||
cols = sorted(set(func.keys()) - set(obj.columns))
|
||||
if len(cols) > 0:
|
||||
raise SpecificationError(f"Column(s) {cols} do not exist")
|
||||
|
||||
# Can't use func.values(); wouldn't work for a Series
|
||||
if any(is_dict_like(v) for _, v in func.items()):
|
||||
# GH 15931 - deprecation of renaming keys
|
||||
raise SpecificationError("nested renamer is not supported")
|
||||
|
||||
results: Dict[Label, FrameOrSeriesUnion] = {}
|
||||
for name, how in func.items():
|
||||
colg = obj._gotitem(name, ndim=1)
|
||||
try:
|
||||
results[name] = transform(colg, how, 0, *args, **kwargs)
|
||||
except Exception as err:
|
||||
if (
|
||||
str(err) == "Function did not transform"
|
||||
or str(err) == "No transform functions were provided"
|
||||
):
|
||||
raise err
|
||||
|
||||
# combine results
|
||||
if len(results) == 0:
|
||||
raise ValueError("Transform function failed")
|
||||
return concat(results, axis=1)
|
||||
|
||||
|
||||
def transform_str_or_callable(
|
||||
obj: FrameOrSeries, func: AggFuncTypeBase, *args, **kwargs
|
||||
) -> FrameOrSeriesUnion:
|
||||
"""
|
||||
Compute transform in the case of a string or callable func
|
||||
"""
|
||||
if isinstance(func, str):
|
||||
return obj._try_aggregate_string_function(func, *args, **kwargs)
|
||||
|
||||
if not args and not kwargs:
|
||||
f = obj._get_cython_func(func)
|
||||
if f:
|
||||
return getattr(obj, f)()
|
||||
|
||||
# Two possible ways to use a UDF - apply or call directly
|
||||
try:
|
||||
return obj.apply(func, args=args, **kwargs)
|
||||
except Exception:
|
||||
return func(obj, *args, **kwargs)
|
||||
|
||||
|
||||
def aggregate(
|
||||
obj: AggObjType,
|
||||
arg: AggFuncType,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Provide an implementation for the aggregators.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : Pandas object to compute aggregation on.
|
||||
arg : string, dict, function.
|
||||
*args : args to pass on to the function.
|
||||
**kwargs : kwargs to pass on to the function.
|
||||
|
||||
Returns
|
||||
-------
|
||||
tuple of result, how.
|
||||
|
||||
Notes
|
||||
-----
|
||||
how can be a string describe the required post-processing, or
|
||||
None if not required.
|
||||
"""
|
||||
_axis = kwargs.pop("_axis", None)
|
||||
if _axis is None:
|
||||
_axis = getattr(obj, "axis", 0)
|
||||
|
||||
if isinstance(arg, str):
|
||||
return obj._try_aggregate_string_function(arg, *args, **kwargs), None
|
||||
elif is_dict_like(arg):
|
||||
arg = cast(AggFuncTypeDict, arg)
|
||||
return agg_dict_like(obj, arg, _axis), True
|
||||
elif is_list_like(arg):
|
||||
# we require a list, but not an 'str'
|
||||
arg = cast(List[AggFuncTypeBase], arg)
|
||||
return agg_list_like(obj, arg, _axis=_axis), None
|
||||
else:
|
||||
result = None
|
||||
|
||||
if callable(arg):
|
||||
f = obj._get_cython_func(arg)
|
||||
if f and not args and not kwargs:
|
||||
return getattr(obj, f)(), None
|
||||
|
||||
# caller can react
|
||||
return result, True
|
||||
|
||||
|
||||
def agg_list_like(
|
||||
obj: AggObjType,
|
||||
arg: List[AggFuncTypeBase],
|
||||
_axis: int,
|
||||
) -> FrameOrSeriesUnion:
|
||||
"""
|
||||
Compute aggregation in the case of a list-like argument.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : Pandas object to compute aggregation on.
|
||||
arg : list
|
||||
Aggregations to compute.
|
||||
_axis : int, 0 or 1
|
||||
Axis to compute aggregation on.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Result of aggregation.
|
||||
"""
|
||||
from pandas.core.reshape.concat import concat
|
||||
|
||||
if _axis != 0:
|
||||
raise NotImplementedError("axis other than 0 is not supported")
|
||||
|
||||
if obj._selected_obj.ndim == 1:
|
||||
selected_obj = obj._selected_obj
|
||||
else:
|
||||
selected_obj = obj._obj_with_exclusions
|
||||
|
||||
results = []
|
||||
keys = []
|
||||
|
||||
# degenerate case
|
||||
if selected_obj.ndim == 1:
|
||||
for a in arg:
|
||||
colg = obj._gotitem(selected_obj.name, ndim=1, subset=selected_obj)
|
||||
try:
|
||||
new_res = colg.aggregate(a)
|
||||
|
||||
except TypeError:
|
||||
pass
|
||||
else:
|
||||
results.append(new_res)
|
||||
|
||||
# make sure we find a good name
|
||||
name = com.get_callable_name(a) or a
|
||||
keys.append(name)
|
||||
|
||||
# multiples
|
||||
else:
|
||||
for index, col in enumerate(selected_obj):
|
||||
colg = obj._gotitem(col, ndim=1, subset=selected_obj.iloc[:, index])
|
||||
try:
|
||||
new_res = colg.aggregate(arg)
|
||||
except (TypeError, DataError):
|
||||
pass
|
||||
except ValueError as err:
|
||||
# cannot aggregate
|
||||
if "Must produce aggregated value" in str(err):
|
||||
# raised directly in _aggregate_named
|
||||
pass
|
||||
elif "no results" in str(err):
|
||||
# raised directly in _aggregate_multiple_funcs
|
||||
pass
|
||||
else:
|
||||
raise
|
||||
else:
|
||||
results.append(new_res)
|
||||
keys.append(col)
|
||||
|
||||
# if we are empty
|
||||
if not len(results):
|
||||
raise ValueError("no results")
|
||||
|
||||
try:
|
||||
return concat(results, keys=keys, axis=1, sort=False)
|
||||
except TypeError as err:
|
||||
|
||||
# we are concatting non-NDFrame objects,
|
||||
# e.g. a list of scalars
|
||||
|
||||
from pandas import Series
|
||||
|
||||
result = Series(results, index=keys, name=obj.name)
|
||||
if is_nested_object(result):
|
||||
raise ValueError(
|
||||
"cannot combine transform and aggregation operations"
|
||||
) from err
|
||||
return result
|
||||
|
||||
|
||||
def agg_dict_like(
|
||||
obj: AggObjType,
|
||||
arg: AggFuncTypeDict,
|
||||
_axis: int,
|
||||
) -> FrameOrSeriesUnion:
|
||||
"""
|
||||
Compute aggregation in the case of a dict-like argument.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
obj : Pandas object to compute aggregation on.
|
||||
arg : dict
|
||||
label-aggregation pairs to compute.
|
||||
_axis : int, 0 or 1
|
||||
Axis to compute aggregation on.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Result of aggregation.
|
||||
"""
|
||||
is_aggregator = lambda x: isinstance(x, (list, tuple, dict))
|
||||
|
||||
if _axis != 0: # pragma: no cover
|
||||
raise ValueError("Can only pass dict with axis=0")
|
||||
|
||||
selected_obj = obj._selected_obj
|
||||
|
||||
# if we have a dict of any non-scalars
|
||||
# eg. {'A' : ['mean']}, normalize all to
|
||||
# be list-likes
|
||||
if any(is_aggregator(x) for x in arg.values()):
|
||||
new_arg: AggFuncTypeDict = {}
|
||||
for k, v in arg.items():
|
||||
if not isinstance(v, (tuple, list, dict)):
|
||||
new_arg[k] = [v]
|
||||
else:
|
||||
new_arg[k] = v
|
||||
|
||||
# the keys must be in the columns
|
||||
# for ndim=2, or renamers for ndim=1
|
||||
|
||||
# ok for now, but deprecated
|
||||
# {'A': { 'ra': 'mean' }}
|
||||
# {'A': { 'ra': ['mean'] }}
|
||||
# {'ra': ['mean']}
|
||||
|
||||
# not ok
|
||||
# {'ra' : { 'A' : 'mean' }}
|
||||
if isinstance(v, dict):
|
||||
raise SpecificationError("nested renamer is not supported")
|
||||
elif isinstance(selected_obj, ABCSeries):
|
||||
raise SpecificationError("nested renamer is not supported")
|
||||
elif (
|
||||
isinstance(selected_obj, ABCDataFrame) and k not in selected_obj.columns
|
||||
):
|
||||
raise KeyError(f"Column '{k}' does not exist!")
|
||||
|
||||
arg = new_arg
|
||||
|
||||
else:
|
||||
# deprecation of renaming keys
|
||||
# GH 15931
|
||||
keys = list(arg.keys())
|
||||
if isinstance(selected_obj, ABCDataFrame) and len(
|
||||
selected_obj.columns.intersection(keys)
|
||||
) != len(keys):
|
||||
cols = sorted(set(keys) - set(selected_obj.columns.intersection(keys)))
|
||||
raise SpecificationError(f"Column(s) {cols} do not exist")
|
||||
|
||||
from pandas.core.reshape.concat import concat
|
||||
|
||||
if selected_obj.ndim == 1:
|
||||
# key only used for output
|
||||
colg = obj._gotitem(obj._selection, ndim=1)
|
||||
results = {key: colg.agg(how) for key, how in arg.items()}
|
||||
else:
|
||||
# key used for column selection and output
|
||||
results = {key: obj._gotitem(key, ndim=1).agg(how) for key, how in arg.items()}
|
||||
|
||||
# set the final keys
|
||||
keys = list(arg.keys())
|
||||
|
||||
# Avoid making two isinstance calls in all and any below
|
||||
is_ndframe = [isinstance(r, ABCNDFrame) for r in results.values()]
|
||||
|
||||
# combine results
|
||||
if all(is_ndframe):
|
||||
keys_to_use = [k for k in keys if not results[k].empty]
|
||||
# Have to check, if at least one DataFrame is not empty.
|
||||
keys_to_use = keys_to_use if keys_to_use != [] else keys
|
||||
axis = 0 if isinstance(obj, ABCSeries) else 1
|
||||
result = concat({k: results[k] for k in keys_to_use}, axis=axis)
|
||||
elif any(is_ndframe):
|
||||
# There is a mix of NDFrames and scalars
|
||||
raise ValueError(
|
||||
"cannot perform both aggregation "
|
||||
"and transformation operations "
|
||||
"simultaneously"
|
||||
)
|
||||
else:
|
||||
from pandas import Series
|
||||
|
||||
# we have a dict of scalars
|
||||
# GH 36212 use name only if obj is a series
|
||||
if obj.ndim == 1:
|
||||
obj = cast("Series", obj)
|
||||
name = obj.name
|
||||
else:
|
||||
name = None
|
||||
|
||||
result = Series(results, name=name)
|
||||
|
||||
return result
|
||||
|
|
|
@ -2,17 +2,15 @@
|
|||
Generic data algorithms. This module is experimental at the moment and not
|
||||
intended for public consumption
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
import operator
|
||||
from textwrap import dedent
|
||||
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union, cast
|
||||
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
|
||||
from warnings import catch_warnings, simplefilter, warn
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._libs import Timestamp, algos, hashtable as htable, iNaT, lib
|
||||
from pandas._typing import AnyArrayLike, ArrayLike, DtypeObj, FrameOrSeriesUnion
|
||||
from pandas._typing import AnyArrayLike, ArrayLike, DtypeObj
|
||||
from pandas.util._decorators import doc
|
||||
|
||||
from pandas.core.dtypes.cast import (
|
||||
|
@ -50,9 +48,9 @@ from pandas.core.dtypes.common import (
|
|||
from pandas.core.dtypes.generic import (
|
||||
ABCDatetimeArray,
|
||||
ABCExtensionArray,
|
||||
ABCIndex,
|
||||
ABCIndexClass,
|
||||
ABCMultiIndex,
|
||||
ABCRangeIndex,
|
||||
ABCSeries,
|
||||
ABCTimedeltaArray,
|
||||
)
|
||||
|
@ -62,7 +60,7 @@ from pandas.core.construction import array, extract_array
|
|||
from pandas.core.indexers import validate_indices
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from pandas import Categorical, DataFrame, Index, Series
|
||||
from pandas import Series
|
||||
|
||||
_shared_docs: Dict[str, str] = {}
|
||||
|
||||
|
@ -71,7 +69,7 @@ _shared_docs: Dict[str, str] = {}
|
|||
# dtype access #
|
||||
# --------------- #
|
||||
def _ensure_data(
|
||||
values: ArrayLike, dtype: Optional[DtypeObj] = None
|
||||
values, dtype: Optional[DtypeObj] = None
|
||||
) -> Tuple[np.ndarray, DtypeObj]:
|
||||
"""
|
||||
routine to ensure that our data is of the correct
|
||||
|
@ -97,12 +95,6 @@ def _ensure_data(
|
|||
pandas_dtype : np.dtype or ExtensionDtype
|
||||
"""
|
||||
|
||||
if dtype is not None:
|
||||
# We only have non-None dtype when called from `isin`, and
|
||||
# both Datetimelike and Categorical dispatch before getting here.
|
||||
assert not needs_i8_conversion(dtype)
|
||||
assert not is_categorical_dtype(dtype)
|
||||
|
||||
if not isinstance(values, ABCMultiIndex):
|
||||
# extract_array would raise
|
||||
values = extract_array(values, extract_numpy=True)
|
||||
|
@ -139,20 +131,21 @@ def _ensure_data(
|
|||
return ensure_object(values), np.dtype("object")
|
||||
|
||||
# datetimelike
|
||||
if needs_i8_conversion(values.dtype) or needs_i8_conversion(dtype):
|
||||
if is_period_dtype(values.dtype) or is_period_dtype(dtype):
|
||||
vals_dtype = getattr(values, "dtype", None)
|
||||
if needs_i8_conversion(vals_dtype) or needs_i8_conversion(dtype):
|
||||
if is_period_dtype(vals_dtype) or is_period_dtype(dtype):
|
||||
from pandas import PeriodIndex
|
||||
|
||||
values = PeriodIndex(values)._data
|
||||
values = PeriodIndex(values)
|
||||
dtype = values.dtype
|
||||
elif is_timedelta64_dtype(values.dtype) or is_timedelta64_dtype(dtype):
|
||||
elif is_timedelta64_dtype(vals_dtype) or is_timedelta64_dtype(dtype):
|
||||
from pandas import TimedeltaIndex
|
||||
|
||||
values = TimedeltaIndex(values)._data
|
||||
values = TimedeltaIndex(values)
|
||||
dtype = values.dtype
|
||||
else:
|
||||
# Datetime
|
||||
if values.ndim > 1 and is_datetime64_ns_dtype(values.dtype):
|
||||
if values.ndim > 1 and is_datetime64_ns_dtype(vals_dtype):
|
||||
# Avoid calling the DatetimeIndex constructor as it is 1D only
|
||||
# Note: this is reached by DataFrame.rank calls GH#27027
|
||||
# TODO(EA2D): special case not needed with 2D EAs
|
||||
|
@ -162,15 +155,14 @@ def _ensure_data(
|
|||
|
||||
from pandas import DatetimeIndex
|
||||
|
||||
values = DatetimeIndex(values)._data
|
||||
values = DatetimeIndex(values)
|
||||
dtype = values.dtype
|
||||
|
||||
return values.asi8, dtype
|
||||
|
||||
elif is_categorical_dtype(values.dtype) and (
|
||||
elif is_categorical_dtype(vals_dtype) and (
|
||||
is_categorical_dtype(dtype) or dtype is None
|
||||
):
|
||||
values = cast("Categorical", values)
|
||||
values = values.codes
|
||||
dtype = pandas_dtype("category")
|
||||
|
||||
|
@ -234,8 +226,7 @@ def _ensure_arraylike(values):
|
|||
"""
|
||||
if not is_array_like(values):
|
||||
inferred = lib.infer_dtype(values, skipna=False)
|
||||
if inferred in ["mixed", "string", "mixed-integer"]:
|
||||
# "mixed-integer" to ensure we do not cast ["ss", 42] to str GH#22160
|
||||
if inferred in ["mixed", "string"]:
|
||||
if isinstance(values, tuple):
|
||||
values = list(values)
|
||||
values = construct_1d_object_array_from_listlike(values)
|
||||
|
@ -253,11 +244,11 @@ _hashtables = {
|
|||
}
|
||||
|
||||
|
||||
def _get_hashtable_algo(values: np.ndarray):
|
||||
def _get_hashtable_algo(values):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
values : np.ndarray
|
||||
values : arraylike
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -271,15 +262,15 @@ def _get_hashtable_algo(values: np.ndarray):
|
|||
return htable, values
|
||||
|
||||
|
||||
def _get_values_for_rank(values: ArrayLike):
|
||||
def _get_values_for_rank(values):
|
||||
if is_categorical_dtype(values):
|
||||
values = cast("Categorical", values)._values_for_rank()
|
||||
values = values._values_for_rank()
|
||||
|
||||
values, _ = _ensure_data(values)
|
||||
return values
|
||||
|
||||
|
||||
def get_data_algo(values: ArrayLike):
|
||||
def _get_data_algo(values):
|
||||
values = _get_values_for_rank(values)
|
||||
|
||||
ndtype = _check_object_for_strings(values)
|
||||
|
@ -295,6 +286,7 @@ def _check_object_for_strings(values) -> str:
|
|||
Parameters
|
||||
----------
|
||||
values : ndarray
|
||||
ndtype : str
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
@ -437,64 +429,54 @@ def isin(comps: AnyArrayLike, values: AnyArrayLike) -> np.ndarray:
|
|||
f"to isin(), you passed a [{type(values).__name__}]"
|
||||
)
|
||||
|
||||
if not isinstance(
|
||||
values, (ABCIndexClass, ABCSeries, ABCExtensionArray, np.ndarray)
|
||||
):
|
||||
values = _ensure_arraylike(list(values))
|
||||
elif isinstance(values, ABCMultiIndex):
|
||||
# Avoid raising in extract_array
|
||||
values = np.array(values)
|
||||
else:
|
||||
values = extract_array(values, extract_numpy=True)
|
||||
if not isinstance(values, (ABCIndex, ABCSeries, ABCExtensionArray, np.ndarray)):
|
||||
values = construct_1d_object_array_from_listlike(list(values))
|
||||
# TODO: could use ensure_arraylike here
|
||||
|
||||
comps = _ensure_arraylike(comps)
|
||||
comps = extract_array(comps, extract_numpy=True)
|
||||
if is_categorical_dtype(comps.dtype):
|
||||
if is_categorical_dtype(comps):
|
||||
# TODO(extension)
|
||||
# handle categoricals
|
||||
return cast("Categorical", comps).isin(values)
|
||||
return comps.isin(values) # type: ignore
|
||||
|
||||
if needs_i8_conversion(comps.dtype):
|
||||
# Dispatch to DatetimeLikeArrayMixin.isin
|
||||
return array(comps).isin(values)
|
||||
elif needs_i8_conversion(values.dtype) and not is_object_dtype(comps.dtype):
|
||||
# e.g. comps are integers and values are datetime64s
|
||||
return np.zeros(comps.shape, dtype=bool)
|
||||
# TODO: not quite right ... Sparse/Categorical
|
||||
elif needs_i8_conversion(values.dtype):
|
||||
return isin(comps, values.astype(object))
|
||||
comps, dtype = _ensure_data(comps)
|
||||
values, _ = _ensure_data(values, dtype=dtype)
|
||||
|
||||
elif is_extension_array_dtype(comps.dtype) or is_extension_array_dtype(
|
||||
values.dtype
|
||||
):
|
||||
return isin(np.asarray(comps), np.asarray(values))
|
||||
# faster for larger cases to use np.in1d
|
||||
f = htable.ismember_object
|
||||
|
||||
# GH16012
|
||||
# Ensure np.in1d doesn't get object types or it *may* throw an exception
|
||||
# Albeit hashmap has O(1) look-up (vs. O(logn) in sorted array),
|
||||
# in1d is faster for small sizes
|
||||
if len(comps) > 1_000_000 and len(values) <= 26 and not is_object_dtype(comps):
|
||||
# If the values include nan we need to check for nan explicitly
|
||||
if len(comps) > 1_000_000 and not is_object_dtype(comps):
|
||||
# If the the values include nan we need to check for nan explicitly
|
||||
# since np.nan it not equal to np.nan
|
||||
if isna(values).any():
|
||||
f = lambda c, v: np.logical_or(np.in1d(c, v), np.isnan(c))
|
||||
else:
|
||||
f = np.in1d
|
||||
elif is_integer_dtype(comps):
|
||||
try:
|
||||
values = values.astype("int64", copy=False)
|
||||
comps = comps.astype("int64", copy=False)
|
||||
f = htable.ismember_int64
|
||||
except (TypeError, ValueError, OverflowError):
|
||||
values = values.astype(object)
|
||||
comps = comps.astype(object)
|
||||
|
||||
else:
|
||||
common = np.find_common_type([values.dtype, comps.dtype], [])
|
||||
values = values.astype(common, copy=False)
|
||||
comps = comps.astype(common, copy=False)
|
||||
name = common.name
|
||||
if name == "bool":
|
||||
name = "uint8"
|
||||
f = getattr(htable, f"ismember_{name}")
|
||||
elif is_float_dtype(comps):
|
||||
try:
|
||||
values = values.astype("float64", copy=False)
|
||||
comps = comps.astype("float64", copy=False)
|
||||
f = htable.ismember_float64
|
||||
except (TypeError, ValueError):
|
||||
values = values.astype(object)
|
||||
comps = comps.astype(object)
|
||||
|
||||
return f(comps, values)
|
||||
|
||||
|
||||
def factorize_array(
|
||||
values: np.ndarray, na_sentinel: int = -1, size_hint=None, na_value=None, mask=None
|
||||
def _factorize_array(
|
||||
values, na_sentinel: int = -1, size_hint=None, na_value=None, mask=None,
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Factorize an array-like to codes and uniques.
|
||||
|
@ -522,7 +504,7 @@ def factorize_array(
|
|||
codes : ndarray
|
||||
uniques : ndarray
|
||||
"""
|
||||
hash_klass, values = get_data_algo(values)
|
||||
hash_klass, values = _get_data_algo(values)
|
||||
|
||||
table = hash_klass(size_hint or len(values))
|
||||
uniques, codes = table.factorize(
|
||||
|
@ -560,7 +542,7 @@ def factorize(
|
|||
sort: bool = False,
|
||||
na_sentinel: Optional[int] = -1,
|
||||
size_hint: Optional[int] = None,
|
||||
) -> Tuple[np.ndarray, Union[np.ndarray, "Index"]]:
|
||||
) -> Tuple[np.ndarray, Union[np.ndarray, ABCIndex]]:
|
||||
"""
|
||||
Encode the object as an enumerated type or categorical variable.
|
||||
|
||||
|
@ -680,9 +662,6 @@ def factorize(
|
|||
# responsible only for factorization. All data coercion, sorting and boxing
|
||||
# should happen here.
|
||||
|
||||
if isinstance(values, ABCRangeIndex):
|
||||
return values.factorize(sort=sort)
|
||||
|
||||
values = _ensure_arraylike(values)
|
||||
original = values
|
||||
if not isinstance(values, ABCMultiIndex):
|
||||
|
@ -719,7 +698,7 @@ def factorize(
|
|||
else:
|
||||
na_value = None
|
||||
|
||||
codes, uniques = factorize_array(
|
||||
codes, uniques = _factorize_array(
|
||||
values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value
|
||||
)
|
||||
|
||||
|
@ -740,8 +719,6 @@ def factorize(
|
|||
|
||||
# return original tenor
|
||||
if isinstance(original, ABCIndexClass):
|
||||
if original.dtype.kind in ["m", "M"] and isinstance(uniques, np.ndarray):
|
||||
uniques = type(original._data)._simple_new(uniques, dtype=original.dtype)
|
||||
uniques = original._shallow_copy(uniques, name=None)
|
||||
elif isinstance(original, ABCSeries):
|
||||
from pandas import Index
|
||||
|
@ -758,7 +735,7 @@ def value_counts(
|
|||
normalize: bool = False,
|
||||
bins=None,
|
||||
dropna: bool = True,
|
||||
) -> Series:
|
||||
) -> "Series":
|
||||
"""
|
||||
Compute a histogram of the counts of non-null values.
|
||||
|
||||
|
@ -817,7 +794,7 @@ def value_counts(
|
|||
counts = result._values
|
||||
|
||||
else:
|
||||
keys, counts = value_counts_arraylike(values, dropna)
|
||||
keys, counts = _value_counts_arraylike(values, dropna)
|
||||
|
||||
result = Series(counts, index=keys, name=name)
|
||||
|
||||
|
@ -830,8 +807,8 @@ def value_counts(
|
|||
return result
|
||||
|
||||
|
||||
# Called once from SparseArray, otherwise could be private
|
||||
def value_counts_arraylike(values, dropna: bool):
|
||||
# Called once from SparseArray
|
||||
def _value_counts_arraylike(values, dropna: bool):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
|
@ -875,7 +852,7 @@ def value_counts_arraylike(values, dropna: bool):
|
|||
return keys, counts
|
||||
|
||||
|
||||
def duplicated(values: ArrayLike, keep: str = "first") -> np.ndarray:
|
||||
def duplicated(values, keep="first") -> np.ndarray:
|
||||
"""
|
||||
Return boolean ndarray denoting duplicate values.
|
||||
|
||||
|
@ -900,7 +877,7 @@ def duplicated(values: ArrayLike, keep: str = "first") -> np.ndarray:
|
|||
return f(values, keep=keep)
|
||||
|
||||
|
||||
def mode(values, dropna: bool = True) -> Series:
|
||||
def mode(values, dropna: bool = True) -> "Series":
|
||||
"""
|
||||
Returns the mode(s) of an array.
|
||||
|
||||
|
@ -1068,10 +1045,11 @@ def checked_add_with_arr(arr, b, arr_mask=None, b_mask=None):
|
|||
to_raise = ((np.iinfo(np.int64).max - b2 < arr) & not_nan).any()
|
||||
else:
|
||||
to_raise = (
|
||||
(np.iinfo(np.int64).max - b2[mask1] < arr[mask1]) & not_nan[mask1]
|
||||
).any() or (
|
||||
(np.iinfo(np.int64).min - b2[mask2] > arr[mask2]) & not_nan[mask2]
|
||||
).any()
|
||||
((np.iinfo(np.int64).max - b2[mask1] < arr[mask1]) & not_nan[mask1]).any()
|
||||
or (
|
||||
(np.iinfo(np.int64).min - b2[mask2] > arr[mask2]) & not_nan[mask2]
|
||||
).any()
|
||||
)
|
||||
|
||||
if to_raise:
|
||||
raise OverflowError("Overflow in int64 addition")
|
||||
|
@ -1176,9 +1154,6 @@ class SelectN:
|
|||
if self.keep not in ("first", "last", "all"):
|
||||
raise ValueError('keep must be either "first", "last" or "all"')
|
||||
|
||||
def compute(self, method: str) -> FrameOrSeriesUnion:
|
||||
raise NotImplementedError
|
||||
|
||||
def nlargest(self):
|
||||
return self.compute("nlargest")
|
||||
|
||||
|
@ -1211,7 +1186,7 @@ class SelectNSeries(SelectN):
|
|||
nordered : Series
|
||||
"""
|
||||
|
||||
def compute(self, method: str) -> Series:
|
||||
def compute(self, method):
|
||||
|
||||
n = self.n
|
||||
dtype = self.obj.dtype
|
||||
|
@ -1225,8 +1200,10 @@ class SelectNSeries(SelectN):
|
|||
|
||||
# slow method
|
||||
if n >= len(self.obj):
|
||||
reverse_it = self.keep == "last" or method == "nlargest"
|
||||
ascending = method == "nsmallest"
|
||||
return dropped.sort_values(ascending=ascending).head(n)
|
||||
slc = np.s_[::-1] if reverse_it else np.s_[:]
|
||||
return dropped[slc].sort_values(ascending=ascending).head(n)
|
||||
|
||||
# fast method
|
||||
arr, pandas_dtype = _ensure_data(dropped.values)
|
||||
|
@ -1283,7 +1260,7 @@ class SelectNFrame(SelectN):
|
|||
columns = list(columns)
|
||||
self.columns = columns
|
||||
|
||||
def compute(self, method: str) -> DataFrame:
|
||||
def compute(self, method):
|
||||
|
||||
from pandas import Int64Index
|
||||
|
||||
|
@ -1571,6 +1548,8 @@ def take(arr, indices, axis: int = 0, allow_fill: bool = False, fill_value=None)
|
|||
"""
|
||||
Take elements from an array.
|
||||
|
||||
.. versionadded:: 0.23.0
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : sequence
|
||||
|
@ -1588,7 +1567,7 @@ def take(arr, indices, axis: int = 0, allow_fill: bool = False, fill_value=None)
|
|||
|
||||
* True: negative values in `indices` indicate
|
||||
missing values. These values are set to `fill_value`. Any other
|
||||
negative values raise a ``ValueError``.
|
||||
other negative values raise a ``ValueError``.
|
||||
|
||||
fill_value : any, optional
|
||||
Fill value to use for NA-indices when `allow_fill` is True.
|
||||
|
@ -1694,8 +1673,7 @@ def take_nd(
|
|||
"""
|
||||
mask_info = None
|
||||
|
||||
if isinstance(arr, ABCExtensionArray):
|
||||
# Check for EA to catch DatetimeArray, TimedeltaArray
|
||||
if is_extension_array_dtype(arr):
|
||||
return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill)
|
||||
|
||||
arr = extract_array(arr)
|
||||
|
@ -1826,7 +1804,7 @@ def take_2d_multi(arr, indexer, fill_value=np.nan):
|
|||
# ------------ #
|
||||
|
||||
|
||||
def searchsorted(arr, value, side="left", sorter=None) -> np.ndarray:
|
||||
def searchsorted(arr, value, side="left", sorter=None):
|
||||
"""
|
||||
Find indices where elements should be inserted to maintain order.
|
||||
|
||||
|
@ -1875,7 +1853,7 @@ def searchsorted(arr, value, side="left", sorter=None) -> np.ndarray:
|
|||
|
||||
if (
|
||||
isinstance(arr, np.ndarray)
|
||||
and is_integer_dtype(arr.dtype)
|
||||
and is_integer_dtype(arr)
|
||||
and (is_integer(value) or is_integer_dtype(value))
|
||||
):
|
||||
# if `arr` and `value` have different dtypes, `arr` would be
|
||||
|
@ -1953,8 +1931,6 @@ def diff(arr, n: int, axis: int = 0, stacklevel=3):
|
|||
|
||||
if is_extension_array_dtype(dtype):
|
||||
if hasattr(arr, f"__{op.__name__}__"):
|
||||
if axis != 0:
|
||||
raise ValueError(f"cannot diff {type(arr).__name__} on axis={axis}")
|
||||
return op(arr, arr.shift(n))
|
||||
else:
|
||||
warn(
|
||||
|
@ -1969,26 +1945,18 @@ def diff(arr, n: int, axis: int = 0, stacklevel=3):
|
|||
is_timedelta = False
|
||||
is_bool = False
|
||||
if needs_i8_conversion(arr.dtype):
|
||||
dtype = np.int64
|
||||
dtype = np.float64
|
||||
arr = arr.view("i8")
|
||||
na = iNaT
|
||||
is_timedelta = True
|
||||
|
||||
elif is_bool_dtype(dtype):
|
||||
# We have to cast in order to be able to hold np.nan
|
||||
dtype = np.object_
|
||||
is_bool = True
|
||||
|
||||
elif is_integer_dtype(dtype):
|
||||
# We have to cast in order to be able to hold np.nan
|
||||
dtype = np.float64
|
||||
|
||||
orig_ndim = arr.ndim
|
||||
if orig_ndim == 1:
|
||||
# reshape so we can always use algos.diff_2d
|
||||
arr = arr.reshape(-1, 1)
|
||||
# TODO: require axis == 0
|
||||
|
||||
dtype = np.dtype(dtype)
|
||||
out_arr = np.empty(arr.shape, dtype=dtype)
|
||||
|
||||
|
@ -1999,7 +1967,7 @@ def diff(arr, n: int, axis: int = 0, stacklevel=3):
|
|||
if arr.ndim == 2 and arr.dtype.name in _diff_special:
|
||||
# TODO: can diff_2d dtype specialization troubles be fixed by defining
|
||||
# out_arr inside diff_2d?
|
||||
algos.diff_2d(arr, out_arr, n, axis, datetimelike=is_timedelta)
|
||||
algos.diff_2d(arr, out_arr, n, axis)
|
||||
else:
|
||||
# To keep mypy happy, _res_indexer is a list while res_indexer is
|
||||
# a tuple, ditto for lag_indexer.
|
||||
|
@ -2033,10 +2001,8 @@ def diff(arr, n: int, axis: int = 0, stacklevel=3):
|
|||
out_arr[res_indexer] = arr[res_indexer] - arr[lag_indexer]
|
||||
|
||||
if is_timedelta:
|
||||
out_arr = out_arr.view("timedelta64[ns]")
|
||||
out_arr = out_arr.astype("int64").view("timedelta64[ns]")
|
||||
|
||||
if orig_ndim == 1:
|
||||
out_arr = out_arr[:, 0]
|
||||
return out_arr
|
||||
|
||||
|
||||
|
@ -2100,30 +2066,32 @@ def safe_sort(
|
|||
"Only list-like objects are allowed to be passed to safe_sort as values"
|
||||
)
|
||||
|
||||
if not isinstance(values, (np.ndarray, ABCExtensionArray)):
|
||||
if not isinstance(values, np.ndarray) and not is_extension_array_dtype(values):
|
||||
# don't convert to string types
|
||||
dtype, _ = infer_dtype_from_array(values)
|
||||
values = np.asarray(values, dtype=dtype)
|
||||
|
||||
sorter = None
|
||||
def sort_mixed(values):
|
||||
# order ints before strings, safe in py3
|
||||
str_pos = np.array([isinstance(x, str) for x in values], dtype=bool)
|
||||
nums = np.sort(values[~str_pos])
|
||||
strs = np.sort(values[str_pos])
|
||||
return np.concatenate([nums, np.asarray(strs, dtype=object)])
|
||||
|
||||
sorter = None
|
||||
if (
|
||||
not is_extension_array_dtype(values)
|
||||
and lib.infer_dtype(values, skipna=False) == "mixed-integer"
|
||||
):
|
||||
ordered = _sort_mixed(values)
|
||||
# unorderable in py3 if mixed str/int
|
||||
ordered = sort_mixed(values)
|
||||
else:
|
||||
try:
|
||||
sorter = values.argsort()
|
||||
ordered = values.take(sorter)
|
||||
except TypeError:
|
||||
# Previous sorters failed or were not applicable, try `_sort_mixed`
|
||||
# which would work, but which fails for special case of 1d arrays
|
||||
# with tuples.
|
||||
if values.size and isinstance(values[0], tuple):
|
||||
ordered = _sort_tuples(values)
|
||||
else:
|
||||
ordered = _sort_mixed(values)
|
||||
# try this anyway
|
||||
ordered = sort_mixed(values)
|
||||
|
||||
# codes:
|
||||
|
||||
|
@ -2142,7 +2110,7 @@ def safe_sort(
|
|||
|
||||
if sorter is None:
|
||||
# mixed types
|
||||
hash_klass, values = get_data_algo(values)
|
||||
hash_klass, values = _get_data_algo(values)
|
||||
t = hash_klass(len(values))
|
||||
t.map_locations(values)
|
||||
sorter = ensure_platform_int(t.lookup(ordered))
|
||||
|
@ -2170,26 +2138,3 @@ def safe_sort(
|
|||
np.putmask(new_codes, mask, na_sentinel)
|
||||
|
||||
return ordered, ensure_platform_int(new_codes)
|
||||
|
||||
|
||||
def _sort_mixed(values):
|
||||
""" order ints before strings in 1d arrays, safe in py3 """
|
||||
str_pos = np.array([isinstance(x, str) for x in values], dtype=bool)
|
||||
nums = np.sort(values[~str_pos])
|
||||
strs = np.sort(values[str_pos])
|
||||
return np.concatenate([nums, np.asarray(strs, dtype=object)])
|
||||
|
||||
|
||||
def _sort_tuples(values: np.ndarray[tuple]):
|
||||
"""
|
||||
Convert array of tuples (1d) to array or array (2d).
|
||||
We need to keep the columns separately as they contain different types and
|
||||
nans (can't use `np.sort` as it may fail when str and nan are mixed in a
|
||||
column as types cannot be compared).
|
||||
"""
|
||||
from pandas.core.internals.construction import to_arrays
|
||||
from pandas.core.sorting import lexsort_indexer
|
||||
|
||||
arrays, _ = to_arrays(values, None)
|
||||
indexer = lexsort_indexer(arrays, orders=True)
|
||||
return values[indexer]
|
||||
|
|
|
@ -14,7 +14,6 @@ from pandas.core.dtypes.missing import isna, isnull, notna, notnull
|
|||
from pandas.core.algorithms import factorize, unique, value_counts
|
||||
from pandas.core.arrays import Categorical
|
||||
from pandas.core.arrays.boolean import BooleanDtype
|
||||
from pandas.core.arrays.floating import Float32Dtype, Float64Dtype
|
||||
from pandas.core.arrays.integer import (
|
||||
Int8Dtype,
|
||||
Int16Dtype,
|
||||
|
@ -27,7 +26,6 @@ from pandas.core.arrays.integer import (
|
|||
)
|
||||
from pandas.core.arrays.string_ import StringDtype
|
||||
from pandas.core.construction import array
|
||||
from pandas.core.flags import Flags
|
||||
from pandas.core.groupby import Grouper, NamedAgg
|
||||
from pandas.core.indexes.api import (
|
||||
CategoricalIndex,
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
import abc
|
||||
import inspect
|
||||
from typing import TYPE_CHECKING, Any, Dict, Iterator, Optional, Tuple, Type
|
||||
from typing import TYPE_CHECKING, Any, Dict, Iterator, Optional, Tuple, Type, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._config import option_context
|
||||
|
||||
from pandas._typing import Axis, FrameOrSeriesUnion
|
||||
from pandas._typing import Axis
|
||||
from pandas.util._decorators import cache_readonly
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
|
@ -31,6 +31,7 @@ def frame_apply(
|
|||
axis: Axis = 0,
|
||||
raw: bool = False,
|
||||
result_type: Optional[str] = None,
|
||||
ignore_failures: bool = False,
|
||||
args=None,
|
||||
kwds=None,
|
||||
):
|
||||
|
@ -47,6 +48,7 @@ def frame_apply(
|
|||
func,
|
||||
raw=raw,
|
||||
result_type=result_type,
|
||||
ignore_failures=ignore_failures,
|
||||
args=args,
|
||||
kwds=kwds,
|
||||
)
|
||||
|
@ -76,7 +78,7 @@ class FrameApply(metaclass=abc.ABCMeta):
|
|||
@abc.abstractmethod
|
||||
def wrap_results_for_axis(
|
||||
self, results: ResType, res_index: "Index"
|
||||
) -> FrameOrSeriesUnion:
|
||||
) -> Union["Series", "DataFrame"]:
|
||||
pass
|
||||
|
||||
# ---------------------------------------------------------------
|
||||
|
@ -87,11 +89,13 @@ class FrameApply(metaclass=abc.ABCMeta):
|
|||
func,
|
||||
raw: bool,
|
||||
result_type: Optional[str],
|
||||
ignore_failures: bool,
|
||||
args,
|
||||
kwds,
|
||||
):
|
||||
self.obj = obj
|
||||
self.raw = raw
|
||||
self.ignore_failures = ignore_failures
|
||||
self.args = args or ()
|
||||
self.kwds = kwds or {}
|
||||
|
||||
|
@ -142,11 +146,7 @@ class FrameApply(metaclass=abc.ABCMeta):
|
|||
""" compute the results """
|
||||
# dispatch to agg
|
||||
if is_list_like(self.f) or is_dict_like(self.f):
|
||||
# pandas\core\apply.py:144: error: "aggregate" of "DataFrame" gets
|
||||
# multiple values for keyword argument "axis"
|
||||
return self.obj.aggregate( # type: ignore[misc]
|
||||
self.f, axis=self.axis, *self.args, **self.kwds
|
||||
)
|
||||
return self.obj.aggregate(self.f, axis=self.axis, *self.args, **self.kwds)
|
||||
|
||||
# all empty
|
||||
if len(self.columns) == 0 and len(self.index) == 0:
|
||||
|
@ -284,18 +284,35 @@ class FrameApply(metaclass=abc.ABCMeta):
|
|||
|
||||
results = {}
|
||||
|
||||
with option_context("mode.chained_assignment", None):
|
||||
if self.ignore_failures:
|
||||
successes = []
|
||||
for i, v in enumerate(series_gen):
|
||||
# ignore SettingWithCopy here in case the user mutates
|
||||
results[i] = self.f(v)
|
||||
if isinstance(results[i], ABCSeries):
|
||||
# If we have a view on v, we need to make a copy because
|
||||
# series_generator will swap out the underlying data
|
||||
results[i] = results[i].copy(deep=False)
|
||||
try:
|
||||
results[i] = self.f(v)
|
||||
except Exception:
|
||||
pass
|
||||
else:
|
||||
successes.append(i)
|
||||
|
||||
# so will work with MultiIndex
|
||||
if len(successes) < len(res_index):
|
||||
res_index = res_index.take(successes)
|
||||
|
||||
else:
|
||||
with option_context("mode.chained_assignment", None):
|
||||
for i, v in enumerate(series_gen):
|
||||
# ignore SettingWithCopy here in case the user mutates
|
||||
results[i] = self.f(v)
|
||||
if isinstance(results[i], ABCSeries):
|
||||
# If we have a view on v, we need to make a copy because
|
||||
# series_generator will swap out the underlying data
|
||||
results[i] = results[i].copy(deep=False)
|
||||
|
||||
return results, res_index
|
||||
|
||||
def wrap_results(self, results: ResType, res_index: "Index") -> FrameOrSeriesUnion:
|
||||
def wrap_results(
|
||||
self, results: ResType, res_index: "Index"
|
||||
) -> Union["Series", "DataFrame"]:
|
||||
from pandas import Series
|
||||
|
||||
# see if we can infer the results
|
||||
|
@ -339,7 +356,7 @@ class FrameRowApply(FrameApply):
|
|||
|
||||
def wrap_results_for_axis(
|
||||
self, results: ResType, res_index: "Index"
|
||||
) -> FrameOrSeriesUnion:
|
||||
) -> Union["Series", "DataFrame"]:
|
||||
""" return the results for the rows """
|
||||
|
||||
if self.result_type == "reduce":
|
||||
|
@ -352,10 +369,8 @@ class FrameRowApply(FrameApply):
|
|||
isinstance(x, dict) for x in results.values()
|
||||
):
|
||||
# Our operation was a to_dict op e.g.
|
||||
# test_apply_dict GH#8735, test_apply_reduce_to_dict GH#25196 #37544
|
||||
res = self.obj._constructor_sliced(results)
|
||||
res.index = res_index
|
||||
return res
|
||||
# test_apply_dict GH#8735, test_apply_reduce_rows_to_dict GH#25196
|
||||
return self.obj._constructor_sliced(results)
|
||||
|
||||
try:
|
||||
result = self.obj._constructor(data=results)
|
||||
|
@ -422,9 +437,9 @@ class FrameColumnApply(FrameApply):
|
|||
|
||||
def wrap_results_for_axis(
|
||||
self, results: ResType, res_index: "Index"
|
||||
) -> FrameOrSeriesUnion:
|
||||
) -> Union["Series", "DataFrame"]:
|
||||
""" return the results for the columns """
|
||||
result: FrameOrSeriesUnion
|
||||
result: Union["Series", "DataFrame"]
|
||||
|
||||
# we have requested to expand
|
||||
if self.result_type == "expand":
|
||||
|
|
|
@ -8,7 +8,7 @@ from typing import Callable
|
|||
import numpy as np
|
||||
|
||||
from pandas._libs import missing as libmissing
|
||||
from pandas.compat.numpy import np_version_under1p17
|
||||
from pandas.compat.numpy import _np_version_under1p17
|
||||
|
||||
from pandas.core.nanops import check_below_min_count
|
||||
|
||||
|
@ -17,7 +17,6 @@ def _sumprod(
|
|||
func: Callable,
|
||||
values: np.ndarray,
|
||||
mask: np.ndarray,
|
||||
*,
|
||||
skipna: bool = True,
|
||||
min_count: int = 0,
|
||||
):
|
||||
|
@ -47,31 +46,25 @@ def _sumprod(
|
|||
if check_below_min_count(values.shape, mask, min_count):
|
||||
return libmissing.NA
|
||||
|
||||
if np_version_under1p17:
|
||||
if _np_version_under1p17:
|
||||
return func(values[~mask])
|
||||
else:
|
||||
return func(values, where=~mask)
|
||||
|
||||
|
||||
def sum(
|
||||
values: np.ndarray, mask: np.ndarray, *, skipna: bool = True, min_count: int = 0
|
||||
):
|
||||
def sum(values: np.ndarray, mask: np.ndarray, skipna: bool = True, min_count: int = 0):
|
||||
return _sumprod(
|
||||
np.sum, values=values, mask=mask, skipna=skipna, min_count=min_count
|
||||
)
|
||||
|
||||
|
||||
def prod(
|
||||
values: np.ndarray, mask: np.ndarray, *, skipna: bool = True, min_count: int = 0
|
||||
):
|
||||
def prod(values: np.ndarray, mask: np.ndarray, skipna: bool = True, min_count: int = 0):
|
||||
return _sumprod(
|
||||
np.prod, values=values, mask=mask, skipna=skipna, min_count=min_count
|
||||
)
|
||||
|
||||
|
||||
def _minmax(
|
||||
func: Callable, values: np.ndarray, mask: np.ndarray, *, skipna: bool = True
|
||||
):
|
||||
def _minmax(func: Callable, values: np.ndarray, mask: np.ndarray, skipna: bool = True):
|
||||
"""
|
||||
Reduction for 1D masked array.
|
||||
|
||||
|
@ -101,9 +94,9 @@ def _minmax(
|
|||
return libmissing.NA
|
||||
|
||||
|
||||
def min(values: np.ndarray, mask: np.ndarray, *, skipna: bool = True):
|
||||
def min(values: np.ndarray, mask: np.ndarray, skipna: bool = True):
|
||||
return _minmax(np.min, values=values, mask=mask, skipna=skipna)
|
||||
|
||||
|
||||
def max(values: np.ndarray, mask: np.ndarray, *, skipna: bool = True):
|
||||
def max(values: np.ndarray, mask: np.ndarray, skipna: bool = True):
|
||||
return _minmax(np.max, values=values, mask=mask, skipna=skipna)
|
||||
|
|
|
@ -1,133 +0,0 @@
|
|||
"""
|
||||
Methods used by Block.replace and related methods.
|
||||
"""
|
||||
import operator
|
||||
import re
|
||||
from typing import Optional, Pattern, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._typing import ArrayLike, Scalar
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
is_datetimelike_v_numeric,
|
||||
is_numeric_v_string_like,
|
||||
is_re,
|
||||
is_scalar,
|
||||
)
|
||||
from pandas.core.dtypes.missing import isna
|
||||
|
||||
|
||||
def compare_or_regex_search(
|
||||
a: ArrayLike, b: Union[Scalar, Pattern], regex: bool, mask: ArrayLike
|
||||
) -> Union[ArrayLike, bool]:
|
||||
"""
|
||||
Compare two array_like inputs of the same shape or two scalar values
|
||||
|
||||
Calls operator.eq or re.search, depending on regex argument. If regex is
|
||||
True, perform an element-wise regex matching.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
b : scalar or regex pattern
|
||||
regex : bool
|
||||
mask : array_like
|
||||
|
||||
Returns
|
||||
-------
|
||||
mask : array_like of bool
|
||||
"""
|
||||
|
||||
def _check_comparison_types(
|
||||
result: Union[ArrayLike, bool], a: ArrayLike, b: Union[Scalar, Pattern]
|
||||
):
|
||||
"""
|
||||
Raises an error if the two arrays (a,b) cannot be compared.
|
||||
Otherwise, returns the comparison result as expected.
|
||||
"""
|
||||
if is_scalar(result) and isinstance(a, np.ndarray):
|
||||
type_names = [type(a).__name__, type(b).__name__]
|
||||
|
||||
if isinstance(a, np.ndarray):
|
||||
type_names[0] = f"ndarray(dtype={a.dtype})"
|
||||
|
||||
raise TypeError(
|
||||
f"Cannot compare types {repr(type_names[0])} and {repr(type_names[1])}"
|
||||
)
|
||||
|
||||
if not regex:
|
||||
op = lambda x: operator.eq(x, b)
|
||||
else:
|
||||
op = np.vectorize(
|
||||
lambda x: bool(re.search(b, x))
|
||||
if isinstance(x, str) and isinstance(b, (str, Pattern))
|
||||
else False
|
||||
)
|
||||
|
||||
# GH#32621 use mask to avoid comparing to NAs
|
||||
if isinstance(a, np.ndarray):
|
||||
a = a[mask]
|
||||
|
||||
if is_numeric_v_string_like(a, b):
|
||||
# GH#29553 avoid deprecation warnings from numpy
|
||||
return np.zeros(a.shape, dtype=bool)
|
||||
|
||||
elif is_datetimelike_v_numeric(a, b):
|
||||
# GH#29553 avoid deprecation warnings from numpy
|
||||
_check_comparison_types(False, a, b)
|
||||
return False
|
||||
|
||||
result = op(a)
|
||||
|
||||
if isinstance(result, np.ndarray) and mask is not None:
|
||||
# The shape of the mask can differ to that of the result
|
||||
# since we may compare only a subset of a's or b's elements
|
||||
tmp = np.zeros(mask.shape, dtype=np.bool_)
|
||||
tmp[mask] = result
|
||||
result = tmp
|
||||
|
||||
_check_comparison_types(result, a, b)
|
||||
return result
|
||||
|
||||
|
||||
def replace_regex(values: ArrayLike, rx: re.Pattern, value, mask: Optional[np.ndarray]):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
values : ArrayLike
|
||||
Object dtype.
|
||||
rx : re.Pattern
|
||||
value : Any
|
||||
mask : np.ndarray[bool], optional
|
||||
|
||||
Notes
|
||||
-----
|
||||
Alters values in-place.
|
||||
"""
|
||||
|
||||
# deal with replacing values with objects (strings) that match but
|
||||
# whose replacement is not a string (numeric, nan, object)
|
||||
if isna(value) or not isinstance(value, str):
|
||||
|
||||
def re_replacer(s):
|
||||
if is_re(rx) and isinstance(s, str):
|
||||
return value if rx.search(s) is not None else s
|
||||
else:
|
||||
return s
|
||||
|
||||
else:
|
||||
# value is guaranteed to be a string here, s can be either a string
|
||||
# or null if it's null it gets returned
|
||||
def re_replacer(s):
|
||||
if is_re(rx) and isinstance(s, str):
|
||||
return rx.sub(value, s)
|
||||
else:
|
||||
return s
|
||||
|
||||
f = np.vectorize(re_replacer, otypes=[values.dtype])
|
||||
|
||||
if mask is None:
|
||||
values[:] = f(values)
|
||||
else:
|
||||
values[mask] = f(values[mask])
|
|
@ -1,284 +0,0 @@
|
|||
"""
|
||||
Methods that can be shared by many array-like classes or subclasses:
|
||||
Series
|
||||
Index
|
||||
ExtensionArray
|
||||
"""
|
||||
import operator
|
||||
from typing import Any, Callable
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas._libs import lib
|
||||
|
||||
from pandas.core.construction import extract_array
|
||||
from pandas.core.ops import maybe_dispatch_ufunc_to_dunder_op, roperator
|
||||
from pandas.core.ops.common import unpack_zerodim_and_defer
|
||||
|
||||
|
||||
class OpsMixin:
|
||||
# -------------------------------------------------------------
|
||||
# Comparisons
|
||||
|
||||
def _cmp_method(self, other, op):
|
||||
return NotImplemented
|
||||
|
||||
@unpack_zerodim_and_defer("__eq__")
|
||||
def __eq__(self, other):
|
||||
return self._cmp_method(other, operator.eq)
|
||||
|
||||
@unpack_zerodim_and_defer("__ne__")
|
||||
def __ne__(self, other):
|
||||
return self._cmp_method(other, operator.ne)
|
||||
|
||||
@unpack_zerodim_and_defer("__lt__")
|
||||
def __lt__(self, other):
|
||||
return self._cmp_method(other, operator.lt)
|
||||
|
||||
@unpack_zerodim_and_defer("__le__")
|
||||
def __le__(self, other):
|
||||
return self._cmp_method(other, operator.le)
|
||||
|
||||
@unpack_zerodim_and_defer("__gt__")
|
||||
def __gt__(self, other):
|
||||
return self._cmp_method(other, operator.gt)
|
||||
|
||||
@unpack_zerodim_and_defer("__ge__")
|
||||
def __ge__(self, other):
|
||||
return self._cmp_method(other, operator.ge)
|
||||
|
||||
# -------------------------------------------------------------
|
||||
# Logical Methods
|
||||
|
||||
def _logical_method(self, other, op):
|
||||
return NotImplemented
|
||||
|
||||
@unpack_zerodim_and_defer("__and__")
|
||||
def __and__(self, other):
|
||||
return self._logical_method(other, operator.and_)
|
||||
|
||||
@unpack_zerodim_and_defer("__rand__")
|
||||
def __rand__(self, other):
|
||||
return self._logical_method(other, roperator.rand_)
|
||||
|
||||
@unpack_zerodim_and_defer("__or__")
|
||||
def __or__(self, other):
|
||||
return self._logical_method(other, operator.or_)
|
||||
|
||||
@unpack_zerodim_and_defer("__ror__")
|
||||
def __ror__(self, other):
|
||||
return self._logical_method(other, roperator.ror_)
|
||||
|
||||
@unpack_zerodim_and_defer("__xor__")
|
||||
def __xor__(self, other):
|
||||
return self._logical_method(other, operator.xor)
|
||||
|
||||
@unpack_zerodim_and_defer("__rxor__")
|
||||
def __rxor__(self, other):
|
||||
return self._logical_method(other, roperator.rxor)
|
||||
|
||||
# -------------------------------------------------------------
|
||||
# Arithmetic Methods
|
||||
|
||||
def _arith_method(self, other, op):
|
||||
return NotImplemented
|
||||
|
||||
@unpack_zerodim_and_defer("__add__")
|
||||
def __add__(self, other):
|
||||
return self._arith_method(other, operator.add)
|
||||
|
||||
@unpack_zerodim_and_defer("__radd__")
|
||||
def __radd__(self, other):
|
||||
return self._arith_method(other, roperator.radd)
|
||||
|
||||
@unpack_zerodim_and_defer("__sub__")
|
||||
def __sub__(self, other):
|
||||
return self._arith_method(other, operator.sub)
|
||||
|
||||
@unpack_zerodim_and_defer("__rsub__")
|
||||
def __rsub__(self, other):
|
||||
return self._arith_method(other, roperator.rsub)
|
||||
|
||||
@unpack_zerodim_and_defer("__mul__")
|
||||
def __mul__(self, other):
|
||||
return self._arith_method(other, operator.mul)
|
||||
|
||||
@unpack_zerodim_and_defer("__rmul__")
|
||||
def __rmul__(self, other):
|
||||
return self._arith_method(other, roperator.rmul)
|
||||
|
||||
@unpack_zerodim_and_defer("__truediv__")
|
||||
def __truediv__(self, other):
|
||||
return self._arith_method(other, operator.truediv)
|
||||
|
||||
@unpack_zerodim_and_defer("__rtruediv__")
|
||||
def __rtruediv__(self, other):
|
||||
return self._arith_method(other, roperator.rtruediv)
|
||||
|
||||
@unpack_zerodim_and_defer("__floordiv__")
|
||||
def __floordiv__(self, other):
|
||||
return self._arith_method(other, operator.floordiv)
|
||||
|
||||
@unpack_zerodim_and_defer("__rfloordiv")
|
||||
def __rfloordiv__(self, other):
|
||||
return self._arith_method(other, roperator.rfloordiv)
|
||||
|
||||
@unpack_zerodim_and_defer("__mod__")
|
||||
def __mod__(self, other):
|
||||
return self._arith_method(other, operator.mod)
|
||||
|
||||
@unpack_zerodim_and_defer("__rmod__")
|
||||
def __rmod__(self, other):
|
||||
return self._arith_method(other, roperator.rmod)
|
||||
|
||||
@unpack_zerodim_and_defer("__divmod__")
|
||||
def __divmod__(self, other):
|
||||
return self._arith_method(other, divmod)
|
||||
|
||||
@unpack_zerodim_and_defer("__rdivmod__")
|
||||
def __rdivmod__(self, other):
|
||||
return self._arith_method(other, roperator.rdivmod)
|
||||
|
||||
@unpack_zerodim_and_defer("__pow__")
|
||||
def __pow__(self, other):
|
||||
return self._arith_method(other, operator.pow)
|
||||
|
||||
@unpack_zerodim_and_defer("__rpow__")
|
||||
def __rpow__(self, other):
|
||||
return self._arith_method(other, roperator.rpow)
|
||||
|
||||
|
||||
def array_ufunc(self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any):
|
||||
"""
|
||||
Compatibility with numpy ufuncs.
|
||||
|
||||
See also
|
||||
--------
|
||||
numpy.org/doc/stable/reference/arrays.classes.html#numpy.class.__array_ufunc__
|
||||
"""
|
||||
from pandas.core.generic import NDFrame
|
||||
from pandas.core.internals import BlockManager
|
||||
|
||||
cls = type(self)
|
||||
|
||||
# for binary ops, use our custom dunder methods
|
||||
result = maybe_dispatch_ufunc_to_dunder_op(self, ufunc, method, *inputs, **kwargs)
|
||||
if result is not NotImplemented:
|
||||
return result
|
||||
|
||||
# Determine if we should defer.
|
||||
no_defer = (np.ndarray.__array_ufunc__, cls.__array_ufunc__)
|
||||
|
||||
for item in inputs:
|
||||
higher_priority = (
|
||||
hasattr(item, "__array_priority__")
|
||||
and item.__array_priority__ > self.__array_priority__
|
||||
)
|
||||
has_array_ufunc = (
|
||||
hasattr(item, "__array_ufunc__")
|
||||
and type(item).__array_ufunc__ not in no_defer
|
||||
and not isinstance(item, self._HANDLED_TYPES)
|
||||
)
|
||||
if higher_priority or has_array_ufunc:
|
||||
return NotImplemented
|
||||
|
||||
# align all the inputs.
|
||||
types = tuple(type(x) for x in inputs)
|
||||
alignable = [x for x, t in zip(inputs, types) if issubclass(t, NDFrame)]
|
||||
|
||||
if len(alignable) > 1:
|
||||
# This triggers alignment.
|
||||
# At the moment, there aren't any ufuncs with more than two inputs
|
||||
# so this ends up just being x1.index | x2.index, but we write
|
||||
# it to handle *args.
|
||||
|
||||
if len(set(types)) > 1:
|
||||
# We currently don't handle ufunc(DataFrame, Series)
|
||||
# well. Previously this raised an internal ValueError. We might
|
||||
# support it someday, so raise a NotImplementedError.
|
||||
raise NotImplementedError(
|
||||
"Cannot apply ufunc {} to mixed DataFrame and Series "
|
||||
"inputs.".format(ufunc)
|
||||
)
|
||||
axes = self.axes
|
||||
for obj in alignable[1:]:
|
||||
# this relies on the fact that we aren't handling mixed
|
||||
# series / frame ufuncs.
|
||||
for i, (ax1, ax2) in enumerate(zip(axes, obj.axes)):
|
||||
axes[i] = ax1.union(ax2)
|
||||
|
||||
reconstruct_axes = dict(zip(self._AXIS_ORDERS, axes))
|
||||
inputs = tuple(
|
||||
x.reindex(**reconstruct_axes) if issubclass(t, NDFrame) else x
|
||||
for x, t in zip(inputs, types)
|
||||
)
|
||||
else:
|
||||
reconstruct_axes = dict(zip(self._AXIS_ORDERS, self.axes))
|
||||
|
||||
if self.ndim == 1:
|
||||
names = [getattr(x, "name") for x in inputs if hasattr(x, "name")]
|
||||
name = names[0] if len(set(names)) == 1 else None
|
||||
reconstruct_kwargs = {"name": name}
|
||||
else:
|
||||
reconstruct_kwargs = {}
|
||||
|
||||
def reconstruct(result):
|
||||
if lib.is_scalar(result):
|
||||
return result
|
||||
if result.ndim != self.ndim:
|
||||
if method == "outer":
|
||||
if self.ndim == 2:
|
||||
# we already deprecated for Series
|
||||
msg = (
|
||||
"outer method for ufunc {} is not implemented on "
|
||||
"pandas objects. Returning an ndarray, but in the "
|
||||
"future this will raise a 'NotImplementedError'. "
|
||||
"Consider explicitly converting the DataFrame "
|
||||
"to an array with '.to_numpy()' first."
|
||||
)
|
||||
warnings.warn(msg.format(ufunc), FutureWarning, stacklevel=4)
|
||||
return result
|
||||
raise NotImplementedError
|
||||
return result
|
||||
if isinstance(result, BlockManager):
|
||||
# we went through BlockManager.apply
|
||||
result = self._constructor(result, **reconstruct_kwargs, copy=False)
|
||||
else:
|
||||
# we converted an array, lost our axes
|
||||
result = self._constructor(
|
||||
result, **reconstruct_axes, **reconstruct_kwargs, copy=False
|
||||
)
|
||||
# TODO: When we support multiple values in __finalize__, this
|
||||
# should pass alignable to `__fianlize__` instead of self.
|
||||
# Then `np.add(a, b)` would consider attrs from both a and b
|
||||
# when a and b are NDFrames.
|
||||
if len(alignable) == 1:
|
||||
result = result.__finalize__(self)
|
||||
return result
|
||||
|
||||
if self.ndim > 1 and (
|
||||
len(inputs) > 1 or ufunc.nout > 1 # type: ignore[attr-defined]
|
||||
):
|
||||
# Just give up on preserving types in the complex case.
|
||||
# In theory we could preserve them for them.
|
||||
# * nout>1 is doable if BlockManager.apply took nout and
|
||||
# returned a Tuple[BlockManager].
|
||||
# * len(inputs) > 1 is doable when we know that we have
|
||||
# aligned blocks / dtypes.
|
||||
inputs = tuple(np.asarray(x) for x in inputs)
|
||||
result = getattr(ufunc, method)(*inputs)
|
||||
elif self.ndim == 1:
|
||||
# ufunc(series, ...)
|
||||
inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs)
|
||||
result = getattr(ufunc, method)(*inputs, **kwargs)
|
||||
else:
|
||||
# ufunc(dataframe)
|
||||
mgr = inputs[0]._mgr
|
||||
result = mgr.apply(getattr(ufunc, method))
|
||||
|
||||
if ufunc.nout > 1: # type: ignore[attr-defined]
|
||||
result = tuple(reconstruct(x) for x in result)
|
||||
else:
|
||||
result = reconstruct(result)
|
||||
return result
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue