import numpy as np from pandas.core.dtypes.common import is_integer, is_list_like from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass from pandas.core.dtypes.missing import isna, remove_na_arraylike from pandas.io.formats.printing import pprint_thing from pandas.plotting._matplotlib.core import LinePlot, MPLPlot from pandas.plotting._matplotlib.tools import _flatten, _set_ticks_props, _subplots class HistPlot(LinePlot): _kind = "hist" def __init__(self, data, bins=10, bottom=0, **kwargs): self.bins = bins # use mpl default self.bottom = bottom # Do not call LinePlot.__init__ which may fill nan MPLPlot.__init__(self, data, **kwargs) def _args_adjust(self): if is_integer(self.bins): # create common bin edge values = self.data._convert(datetime=True)._get_numeric_data() values = np.ravel(values) values = values[~isna(values)] _, self.bins = np.histogram( values, bins=self.bins, range=self.kwds.get("range", None) ) if is_list_like(self.bottom): self.bottom = np.array(self.bottom) @classmethod def _plot( cls, ax, y, style=None, bins=None, bottom=0, column_num=0, stacking_id=None, **kwds, ): if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(bins) - 1) y = y[~isna(y)] base = np.zeros(len(bins) - 1) bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"]) # ignore style n, bins, patches = ax.hist(y, bins=bins, bottom=bottom, **kwds) cls._update_stacker(ax, stacking_id, n) return patches def _make_plot(self): colors = self._get_colors() stacking_id = self._get_stacking_id() for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) kwds = self.kwds.copy() label = pprint_thing(label) kwds["label"] = label style, kwds = self._apply_style_colors(colors, kwds, i, label) if style is not None: kwds["style"] = style kwds = self._make_plot_keywords(kwds, y) # We allow weights to be a multi-dimensional array, e.g. a (10, 2) array, # and each sub-array (10,) will be called in each iteration. If users only # provide 1D array, we assume the same weights is used for all iterations weights = kwds.get("weights", None) if weights is not None and np.ndim(weights) != 1: kwds["weights"] = weights[:, i] artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds) self._add_legend_handle(artists[0], label, index=i) def _make_plot_keywords(self, kwds, y): """merge BoxPlot/KdePlot properties to passed kwds""" # y is required for KdePlot kwds["bottom"] = self.bottom kwds["bins"] = self.bins return kwds def _post_plot_logic(self, ax, data): if self.orientation == "horizontal": ax.set_xlabel("Frequency") else: ax.set_ylabel("Frequency") @property def orientation(self): if self.kwds.get("orientation", None) == "horizontal": return "horizontal" else: return "vertical" class KdePlot(HistPlot): _kind = "kde" orientation = "vertical" def __init__(self, data, bw_method=None, ind=None, **kwargs): MPLPlot.__init__(self, data, **kwargs) self.bw_method = bw_method self.ind = ind def _args_adjust(self): pass def _get_ind(self, y): if self.ind is None: # np.nanmax() and np.nanmin() ignores the missing values sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace( np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, 1000, ) elif is_integer(self.ind): sample_range = np.nanmax(y) - np.nanmin(y) ind = np.linspace( np.nanmin(y) - 0.5 * sample_range, np.nanmax(y) + 0.5 * sample_range, self.ind, ) else: ind = self.ind return ind @classmethod def _plot( cls, ax, y, style=None, bw_method=None, ind=None, column_num=None, stacking_id=None, **kwds, ): from scipy.stats import gaussian_kde y = remove_na_arraylike(y) gkde = gaussian_kde(y, bw_method=bw_method) y = gkde.evaluate(ind) lines = MPLPlot._plot(ax, ind, y, style=style, **kwds) return lines def _make_plot_keywords(self, kwds, y): kwds["bw_method"] = self.bw_method kwds["ind"] = self._get_ind(y) return kwds def _post_plot_logic(self, ax, data): ax.set_ylabel("Density") def _grouped_plot( plotf, data, column=None, by=None, numeric_only=True, figsize=None, sharex=True, sharey=True, layout=None, rot=0, ax=None, **kwargs, ): if figsize == "default": # allowed to specify mpl default with 'default' raise ValueError( "figsize='default' is no longer supported. " "Specify figure size by tuple instead" ) grouped = data.groupby(by) if column is not None: grouped = grouped[column] naxes = len(grouped) fig, axes = _subplots( naxes=naxes, figsize=figsize, sharex=sharex, sharey=sharey, ax=ax, layout=layout ) _axes = _flatten(axes) for i, (key, group) in enumerate(grouped): ax = _axes[i] if numeric_only and isinstance(group, ABCDataFrame): group = group._get_numeric_data() plotf(group, ax, **kwargs) ax.set_title(pprint_thing(key)) return fig, axes def _grouped_hist( data, column=None, by=None, ax=None, bins=50, figsize=None, layout=None, sharex=False, sharey=False, rot=90, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, legend=False, **kwargs, ): """ Grouped histogram Parameters ---------- data : Series/DataFrame column : object, optional by : object, optional ax : axes, optional bins : int, default 50 figsize : tuple, optional layout : optional sharex : bool, default False sharey : bool, default False rot : int, default 90 grid : bool, default True legend: : bool, default False kwargs : dict, keyword arguments passed to matplotlib.Axes.hist Returns ------- collection of Matplotlib Axes """ if legend: assert "label" not in kwargs if data.ndim == 1: kwargs["label"] = data.name elif column is None: kwargs["label"] = data.columns else: kwargs["label"] = column def plot_group(group, ax): ax.hist(group.dropna().values, bins=bins, **kwargs) if legend: ax.legend() if xrot is None: xrot = rot fig, axes = _grouped_plot( plot_group, data, column=column, by=by, sharex=sharex, sharey=sharey, ax=ax, figsize=figsize, layout=layout, rot=rot, ) _set_ticks_props( axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot ) fig.subplots_adjust( bottom=0.15, top=0.9, left=0.1, right=0.9, hspace=0.5, wspace=0.3 ) return axes def hist_series( self, by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, legend: bool = False, **kwds, ): import matplotlib.pyplot as plt if legend and "label" in kwds: raise ValueError("Cannot use both legend and label") if by is None: if kwds.get("layout", None) is not None: raise ValueError("The 'layout' keyword is not supported when 'by' is None") # hack until the plotting interface is a bit more unified fig = kwds.pop( "figure", plt.gcf() if plt.get_fignums() else plt.figure(figsize=figsize) ) if figsize is not None and tuple(figsize) != tuple(fig.get_size_inches()): fig.set_size_inches(*figsize, forward=True) if ax is None: ax = fig.gca() elif ax.get_figure() != fig: raise AssertionError("passed axis not bound to passed figure") values = self.dropna().values if legend: kwds["label"] = self.name ax.hist(values, bins=bins, **kwds) if legend: ax.legend() ax.grid(grid) axes = np.array([ax]) _set_ticks_props( axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot ) else: if "figure" in kwds: raise ValueError( "Cannot pass 'figure' when using the " "'by' argument, since a new 'Figure' instance will be created" ) axes = _grouped_hist( self, by=by, ax=ax, grid=grid, figsize=figsize, bins=bins, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, legend=legend, **kwds, ) if hasattr(axes, "ndim"): if axes.ndim == 1 and len(axes) == 1: return axes[0] return axes def hist_frame( data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, legend: bool = False, **kwds, ): if legend and "label" in kwds: raise ValueError("Cannot use both legend and label") if by is not None: axes = _grouped_hist( data, column=column, by=by, ax=ax, grid=grid, figsize=figsize, sharex=sharex, sharey=sharey, layout=layout, bins=bins, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, legend=legend, **kwds, ) return axes if column is not None: if not isinstance(column, (list, np.ndarray, ABCIndexClass)): column = [column] data = data[column] data = data._get_numeric_data() naxes = len(data.columns) if naxes == 0: raise ValueError("hist method requires numerical columns, nothing to plot.") fig, axes = _subplots( naxes=naxes, ax=ax, squeeze=False, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout, ) _axes = _flatten(axes) can_set_label = "label" not in kwds for i, col in enumerate(data.columns): ax = _axes[i] if legend and can_set_label: kwds["label"] = col ax.hist(data[col].dropna().values, bins=bins, **kwds) ax.set_title(col) ax.grid(grid) if legend: ax.legend() _set_ticks_props( axes, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot ) fig.subplots_adjust(wspace=0.3, hspace=0.3) return axes