import builtins from io import StringIO import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna import pandas._testing as tm import pandas.core.nanops as nanops from pandas.util import _test_decorators as td @pytest.fixture( params=[np.int32, np.int64, np.float32, np.float64], ids=["np.int32", "np.int64", "np.float32", "np.float64"], ) def numpy_dtypes_for_minmax(request): """ Fixture of numpy dtypes with min and max values used for testing cummin and cummax """ dtype = request.param min_val = ( np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min ) max_val = ( np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max ) return (dtype, min_val, max_val) @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]}) result = aa.groupby("nn").max() assert "ss" in result result = aa.groupby("nn").max(numeric_only=False) assert "ss" in result result = aa.groupby("nn").min() assert "ss" in result result = aa.groupby("nn").min(numeric_only=False) assert "ss" in result def test_min_date_with_nans(): # GH26321 dates = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d" ).dt.date df = pd.DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates}) result = df.groupby("b", as_index=False)["c"].min()["c"] expected = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d" ).dt.date tm.assert_series_equal(result, expected) result = df.groupby("b")["c"].min() expected.index.name = "b" tm.assert_series_equal(result, expected) def test_intercept_builtin_sum(): s = Series([1.0, 2.0, np.nan, 3.0]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))" assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal( result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname)), ) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( { "group": [1, 1, 2], "int": [1, 2, 3], "float": [4.0, 5.0, 6.0], "string": list("abc"), "category_string": pd.Series(list("abc")).astype("category"), "category_int": [7, 8, 9], "datetime": pd.date_range("20130101", periods=3), "datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"), "timedelta": pd.timedelta_range("1 s", periods=3, freq="s"), }, columns=[ "group", "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ], ) expected_columns_numeric = Index(["int", "float", "category_int"]) # mean / median expected = pd.DataFrame( { "category_int": [7.5, 9], "float": [4.5, 6.0], "timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")], "int": [1.5, 3], "datetime": [ pd.Timestamp("2013-01-01 12:00:00"), pd.Timestamp("2013-01-03 00:00:00"), ], "datetimetz": [ pd.Timestamp("2013-01-01 12:00:00", tz="US/Eastern"), pd.Timestamp("2013-01-03 00:00:00", tz="US/Eastern"), ], }, index=Index([1, 2], name="group"), columns=["int", "float", "category_int", "datetime", "datetimetz", "timedelta"], ) for attr in ["mean", "median"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index( [ "int", "float", "string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["min", "max"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index( [ "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["first", "last"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "string", "category_int", "timedelta"]) result = df.groupby("group").sum() tm.assert_index_equal(result.columns, expected_columns_numeric) result = df.groupby("group").sum(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int"]) for attr in ["prod", "cumprod"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index( ["int", "float", "category_int", "datetime", "datetimetz", "timedelta"] ) for attr in ["cummin", "cummax"]: result = getattr(df.groupby("group"), attr)() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int", "timedelta"]) result = getattr(df.groupby("group"), "cumsum")() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), "cumsum")(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]], columns=["A", "B", "C"] ) g = df.groupby("A") gni = df.groupby("A", as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=["B"], index=[1, 3]) expected.index.name = "A" result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[1, 0.0], [3, np.nan]], columns=["A", "B"], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index = pd.Index([1, 3], name="A") expected_col = pd.MultiIndex( levels=[["B"], ["count", "mean", "std", "min", "25%", "50%", "75%", "max"]], codes=[[0] * 8, list(range(8))], ) expected = pd.DataFrame( [ [1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0], [0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], ], index=expected_index, columns=expected_col, ) result = g.describe() tm.assert_frame_equal(result, expected) expected = pd.concat( [ df[df.A == 1].describe().unstack().to_frame().T, df[df.A == 3].describe().unstack().to_frame().T, ] ) expected.index = pd.Index([0, 1]) result = gni.describe() tm.assert_frame_equal(result, expected) # any expected = DataFrame( [[True, True], [False, True]], columns=["B", "C"], index=[1, 3] ) expected.index.name = "A" result = g.any() tm.assert_frame_equal(result, expected) # idxmax expected = DataFrame([[0.0], [np.nan]], columns=["B"], index=[1, 3]) expected.index.name = "A" result = g.idxmax() tm.assert_frame_equal(result, expected) def test_cython_api2(): # this takes the fast apply path # cumsum (GH5614) df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"]) expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"]) result = df.groupby("A").cumsum() tm.assert_frame_equal(result, expected) # GH 5755 - cumsum is a transformer and should ignore as_index result = df.groupby("A", as_index=False).cumsum() tm.assert_frame_equal(result, expected) # GH 13994 result = df.groupby("A").cumsum(axis=1) expected = df.cumsum(axis=1) tm.assert_frame_equal(result, expected) result = df.groupby("A").cumprod(axis=1) expected = df.cumprod(axis=1) tm.assert_frame_equal(result, expected) def test_cython_median(): df = DataFrame(np.random.randn(1000)) df.values[::2] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) labels[::17] = np.nan result = df.groupby(labels).median() exp = df.groupby(labels).agg(nanops.nanmedian) tm.assert_frame_equal(result, exp) df = DataFrame(np.random.randn(1000, 5)) rs = df.groupby(labels).agg(np.median) xp = df.groupby(labels).median() tm.assert_frame_equal(rs, xp) def test_median_empty_bins(observed): df = pd.DataFrame(np.random.randint(0, 44, 500)) grps = range(0, 55, 5) bins = pd.cut(df[0], grps) result = df.groupby(bins, observed=observed).median() expected = df.groupby(bins, observed=observed).agg(lambda x: x.median()) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"] ) @pytest.mark.parametrize( "method,data", [ ("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}), ("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}), ("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}), ("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}), ("nth", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}], "args": [1]}), ("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}), ], ) def test_groupby_non_arithmetic_agg_types(dtype, method, data): # GH9311, GH6620 df = pd.DataFrame( [{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}] ) df["b"] = df.b.astype(dtype) if "args" not in data: data["args"] = [] if "out_type" in data: out_type = data["out_type"] else: out_type = dtype exp = data["df"] df_out = pd.DataFrame(exp) df_out["b"] = df_out.b.astype(out_type) df_out.set_index("a", inplace=True) grpd = df.groupby("a") t = getattr(grpd, method)(*data["args"]) tm.assert_frame_equal(t, df_out) @pytest.mark.parametrize( "i", [ ( Timestamp("2011-01-15 12:50:28.502376"), Timestamp("2011-01-20 12:50:28.593448"), ), (24650000000000001, 24650000000000002), ], ) def test_groupby_non_arithmetic_agg_int_like_precision(i): # see gh-6620, gh-9311 df = pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}]) grp_exp = { "first": {"expected": i[0]}, "last": {"expected": i[1]}, "min": {"expected": i[0]}, "max": {"expected": i[1]}, "nth": {"expected": i[1], "args": [1]}, "count": {"expected": 2}, } for method, data in grp_exp.items(): if "args" not in data: data["args"] = [] grouped = df.groupby("a") res = getattr(grouped, method)(*data["args"]) assert res.iloc[0].b == data["expected"] @pytest.mark.parametrize( "func, values", [ ("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}), ("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}), ], ) def test_idxmin_idxmax_returns_int_types(func, values): # GH 25444 df = pd.DataFrame( { "name": ["A", "A", "B", "B"], "c_int": [1, 2, 3, 4], "c_float": [4.02, 3.03, 2.04, 1.05], "c_date": ["2019", "2018", "2016", "2017"], } ) df["c_date"] = pd.to_datetime(df["c_date"]) result = getattr(df.groupby("name"), func)() expected = pd.DataFrame(values, index=Index(["A", "B"], name="name")) tm.assert_frame_equal(result, expected) def test_fill_consistency(): # GH9221 # pass thru keyword arguments to the generated wrapper # are set if the passed kw is None (only) df = DataFrame( index=pd.MultiIndex.from_product( [["value1", "value2"], date_range("2014-01-01", "2014-01-06")] ), columns=Index(["1", "2"], name="id"), ) df["1"] = [ np.nan, 1, np.nan, np.nan, 11, np.nan, np.nan, 2, np.nan, np.nan, 22, np.nan, ] df["2"] = [ np.nan, 3, np.nan, np.nan, 33, np.nan, np.nan, 4, np.nan, np.nan, 44, np.nan, ] expected = df.groupby(level=0, axis=0).fillna(method="ffill") result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T tm.assert_frame_equal(result, expected) def test_groupby_cumprod(): # GH 4095 df = pd.DataFrame({"key": ["b"] * 10, "value": 2}) actual = df.groupby("key")["value"].cumprod() expected = df.groupby("key")["value"].apply(lambda x: x.cumprod()) expected.name = "value" tm.assert_series_equal(actual, expected) df = pd.DataFrame({"key": ["b"] * 100, "value": 2}) actual = df.groupby("key")["value"].cumprod() # if overflows, groupby product casts to float # while numpy passes back invalid values df["value"] = df["value"].astype(float) expected = df.groupby("key")["value"].apply(lambda x: x.cumprod()) expected.name = "value" tm.assert_series_equal(actual, expected) def scipy_sem(*args, **kwargs): from scipy.stats import sem return sem(*args, ddof=1, **kwargs) @pytest.mark.parametrize( "op,targop", [ ("mean", np.mean), ("median", np.median), ("std", np.std), ("var", np.var), ("sum", np.sum), ("prod", np.prod), ("min", np.min), ("max", np.max), ("first", lambda x: x.iloc[0]), ("last", lambda x: x.iloc[-1]), ("count", np.size), pytest.param("sem", scipy_sem, marks=td.skip_if_no_scipy), ], ) def test_ops_general(op, targop): df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) result = getattr(df.groupby(labels), op)().astype(float) expected = df.groupby(labels).agg(targop) tm.assert_frame_equal(result, expected) def test_max_nan_bug(): raw = """,Date,app,File -04-23,2013-04-23 00:00:00,,log080001.log -05-06,2013-05-06 00:00:00,,log.log -05-07,2013-05-07 00:00:00,OE,xlsx""" df = pd.read_csv(StringIO(raw), parse_dates=[0]) gb = df.groupby("Date") r = gb[["File"]].max() e = gb["File"].max().to_frame() tm.assert_frame_equal(r, e) assert not r["File"].isna().any() def test_nlargest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list("a" * 5 + "b" * 5)) gb = a.groupby(b) r = gb.nlargest(3) e = Series( [7, 5, 3, 10, 9, 6], index=MultiIndex.from_arrays([list("aaabbb"), [3, 2, 1, 9, 5, 8]]), ) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series( [3, 2, 1, 3, 3, 2], index=MultiIndex.from_arrays([list("aaabbb"), [2, 3, 1, 6, 5, 7]]), ) tm.assert_series_equal(gb.nlargest(3, keep="last"), e) def test_nlargest_mi_grouper(): # see gh-21411 npr = np.random.RandomState(123456789) dts = date_range("20180101", periods=10) iterables = [dts, ["one", "two"]] idx = MultiIndex.from_product(iterables, names=["first", "second"]) s = Series(npr.randn(20), index=idx) result = s.groupby("first").nlargest(1) exp_idx = MultiIndex.from_tuples( [ (dts[0], dts[0], "one"), (dts[1], dts[1], "one"), (dts[2], dts[2], "one"), (dts[3], dts[3], "two"), (dts[4], dts[4], "one"), (dts[5], dts[5], "one"), (dts[6], dts[6], "one"), (dts[7], dts[7], "one"), (dts[8], dts[8], "two"), (dts[9], dts[9], "one"), ], names=["first", "first", "second"], ) exp_values = [ 2.2129019979039612, 1.8417114045748335, 0.858963679564603, 1.3759151378258088, 0.9430284594687134, 0.5296914208183142, 0.8318045593815487, -0.8476703342910327, 0.3804446884133735, -0.8028845810770998, ] expected = Series(exp_values, index=exp_idx) tm.assert_series_equal(result, expected, check_exact=False, rtol=1e-3) def test_nsmallest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list("a" * 5 + "b" * 5)) gb = a.groupby(b) r = gb.nsmallest(3) e = Series( [1, 2, 3, 0, 4, 6], index=MultiIndex.from_arrays([list("aaabbb"), [0, 4, 1, 6, 7, 8]]), ) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series( [0, 1, 1, 0, 1, 2], index=MultiIndex.from_arrays([list("aaabbb"), [4, 1, 0, 9, 8, 7]]), ) tm.assert_series_equal(gb.nsmallest(3, keep="last"), e) @pytest.mark.parametrize("func", ["cumprod", "cumsum"]) def test_numpy_compat(func): # see gh-12811 df = pd.DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]}) g = df.groupby("A") msg = "numpy operations are not valid with groupby" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(g, func)(foo=1) def test_cummin(numpy_dtypes_for_minmax): dtype = numpy_dtypes_for_minmax[0] min_val = numpy_dtypes_for_minmax[1] # GH 15048 base_df = pd.DataFrame( {"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]} ) expected_mins = [3, 3, 3, 2, 2, 2, 2, 1] df = base_df.astype(dtype) expected = pd.DataFrame({"B": expected_mins}).astype(dtype) result = df.groupby("A").cummin() tm.assert_frame_equal(result, expected) result = df.groupby("A").B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test w/ min value for dtype df.loc[[2, 6], "B"] = min_val expected.loc[[2, 3, 6, 7], "B"] = min_val result = df.groupby("A").cummin() tm.assert_frame_equal(result, expected) expected = df.groupby("A").B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # Test nan in some values base_df.loc[[0, 2, 4, 6], "B"] = np.nan expected = pd.DataFrame({"B": [np.nan, 4, np.nan, 2, np.nan, 3, np.nan, 1]}) result = base_df.groupby("A").cummin() tm.assert_frame_equal(result, expected) expected = base_df.groupby("A").B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(result, expected) # GH 15561 df = pd.DataFrame(dict(a=[1], b=pd.to_datetime(["2001"]))) expected = pd.Series(pd.to_datetime("2001"), index=[0], name="b") result = df.groupby("a")["b"].cummin() tm.assert_series_equal(expected, result) # GH 15635 df = pd.DataFrame(dict(a=[1, 2, 1], b=[1, 2, 2])) result = df.groupby("a").b.cummin() expected = pd.Series([1, 2, 1], name="b") tm.assert_series_equal(result, expected) def test_cummin_all_nan_column(): base_df = pd.DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8}) expected = pd.DataFrame({"B": [np.nan] * 8}) result = base_df.groupby("A").cummin() tm.assert_frame_equal(expected, result) result = base_df.groupby("A").B.apply(lambda x: x.cummin()).to_frame() tm.assert_frame_equal(expected, result) def test_cummax(numpy_dtypes_for_minmax): dtype = numpy_dtypes_for_minmax[0] max_val = numpy_dtypes_for_minmax[2] # GH 15048 base_df = pd.DataFrame( {"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [3, 4, 3, 2, 2, 3, 2, 1]} ) expected_maxs = [3, 4, 4, 4, 2, 3, 3, 3] df = base_df.astype(dtype) expected = pd.DataFrame({"B": expected_maxs}).astype(dtype) result = df.groupby("A").cummax() tm.assert_frame_equal(result, expected) result = df.groupby("A").B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # Test w/ max value for dtype df.loc[[2, 6], "B"] = max_val expected.loc[[2, 3, 6, 7], "B"] = max_val result = df.groupby("A").cummax() tm.assert_frame_equal(result, expected) expected = df.groupby("A").B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # Test nan in some values base_df.loc[[0, 2, 4, 6], "B"] = np.nan expected = pd.DataFrame({"B": [np.nan, 4, np.nan, 4, np.nan, 3, np.nan, 3]}) result = base_df.groupby("A").cummax() tm.assert_frame_equal(result, expected) expected = base_df.groupby("A").B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(result, expected) # GH 15561 df = pd.DataFrame(dict(a=[1], b=pd.to_datetime(["2001"]))) expected = pd.Series(pd.to_datetime("2001"), index=[0], name="b") result = df.groupby("a")["b"].cummax() tm.assert_series_equal(expected, result) # GH 15635 df = pd.DataFrame(dict(a=[1, 2, 1], b=[2, 1, 1])) result = df.groupby("a").b.cummax() expected = pd.Series([2, 1, 2], name="b") tm.assert_series_equal(result, expected) def test_cummax_all_nan_column(): base_df = pd.DataFrame({"A": [1, 1, 1, 1, 2, 2, 2, 2], "B": [np.nan] * 8}) expected = pd.DataFrame({"B": [np.nan] * 8}) result = base_df.groupby("A").cummax() tm.assert_frame_equal(expected, result) result = base_df.groupby("A").B.apply(lambda x: x.cummax()).to_frame() tm.assert_frame_equal(expected, result) @pytest.mark.parametrize( "in_vals, out_vals", [ # Basics: strictly increasing (T), strictly decreasing (F), # abs val increasing (F), non-strictly increasing (T) ([1, 2, 5, 3, 2, 0, 4, 5, -6, 1, 1], [True, False, False, True]), # Test with inf vals ( [1, 2.1, np.inf, 3, 2, np.inf, -np.inf, 5, 11, 1, -np.inf], [True, False, True, False], ), # Test with nan vals; should always be False ( [1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], [False, False, False, False], ), ], ) def test_is_monotonic_increasing(in_vals, out_vals): # GH 17015 source_dict = { "A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"], "B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"], "C": in_vals, } df = pd.DataFrame(source_dict) result = df.groupby("B").C.is_monotonic_increasing index = Index(list("abcd"), name="B") expected = pd.Series(index=index, data=out_vals, name="C") tm.assert_series_equal(result, expected) # Also check result equal to manually taking x.is_monotonic_increasing. expected = df.groupby(["B"]).C.apply(lambda x: x.is_monotonic_increasing) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "in_vals, out_vals", [ # Basics: strictly decreasing (T), strictly increasing (F), # abs val decreasing (F), non-strictly increasing (T) ([10, 9, 7, 3, 4, 5, -3, 2, 0, 1, 1], [True, False, False, True]), # Test with inf vals ( [np.inf, 1, -np.inf, np.inf, 2, -3, -np.inf, 5, -3, -np.inf, -np.inf], [True, True, False, True], ), # Test with nan vals; should always be False ( [1, 2, np.nan, 3, 2, np.nan, np.nan, 5, -np.inf, 1, np.nan], [False, False, False, False], ), ], ) def test_is_monotonic_decreasing(in_vals, out_vals): # GH 17015 source_dict = { "A": ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"], "B": ["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d"], "C": in_vals, } df = pd.DataFrame(source_dict) result = df.groupby("B").C.is_monotonic_decreasing index = Index(list("abcd"), name="B") expected = pd.Series(index=index, data=out_vals, name="C") tm.assert_series_equal(result, expected) # describe # -------------------------------- def test_apply_describe_bug(mframe): grouped = mframe.groupby(level="first") grouped.describe() # it works! def test_series_describe_multikey(): ts = tm.makeTimeSeries() grouped = ts.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() tm.assert_series_equal(result["mean"], grouped.mean(), check_names=False) tm.assert_series_equal(result["std"], grouped.std(), check_names=False) tm.assert_series_equal(result["min"], grouped.min(), check_names=False) def test_series_describe_single(): ts = tm.makeTimeSeries() grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x.describe()) expected = grouped.describe().stack() tm.assert_series_equal(result, expected) def test_series_index_name(df): grouped = df.loc[:, ["C"]].groupby(df["A"]) result = grouped.agg(lambda x: x.mean()) assert result.index.name == "A" def test_frame_describe_multikey(tsframe): grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) result = grouped.describe() desc_groups = [] for col in tsframe: group = grouped[col].describe() # GH 17464 - Remove duplicate MultiIndex levels group_col = pd.MultiIndex( levels=[[col], group.columns], codes=[[0] * len(group.columns), range(len(group.columns))], ) group = pd.DataFrame(group.values, columns=group_col, index=group.index) desc_groups.append(group) expected = pd.concat(desc_groups, axis=1) tm.assert_frame_equal(result, expected) groupedT = tsframe.groupby({"A": 0, "B": 0, "C": 1, "D": 1}, axis=1) result = groupedT.describe() expected = tsframe.describe().T expected.index = pd.MultiIndex( levels=[[0, 1], expected.index], codes=[[0, 0, 1, 1], range(len(expected.index))], ) tm.assert_frame_equal(result, expected) def test_frame_describe_tupleindex(): # GH 14848 - regression from 0.19.0 to 0.19.1 df1 = DataFrame( { "x": [1, 2, 3, 4, 5] * 3, "y": [10, 20, 30, 40, 50] * 3, "z": [100, 200, 300, 400, 500] * 3, } ) df1["k"] = [(0, 0, 1), (0, 1, 0), (1, 0, 0)] * 5 df2 = df1.rename(columns={"k": "key"}) msg = "Names should be list-like for a MultiIndex" with pytest.raises(ValueError, match=msg): df1.groupby("k").describe() with pytest.raises(ValueError, match=msg): df2.groupby("key").describe() def test_frame_describe_unstacked_format(): # GH 4792 prices = { pd.Timestamp("2011-01-06 10:59:05", tz=None): 24990, pd.Timestamp("2011-01-06 12:43:33", tz=None): 25499, pd.Timestamp("2011-01-06 12:54:09", tz=None): 25499, } volumes = { pd.Timestamp("2011-01-06 10:59:05", tz=None): 1500000000, pd.Timestamp("2011-01-06 12:43:33", tz=None): 5000000000, pd.Timestamp("2011-01-06 12:54:09", tz=None): 100000000, } df = pd.DataFrame({"PRICE": prices, "VOLUME": volumes}) result = df.groupby("PRICE").VOLUME.describe() data = [ df[df.PRICE == 24990].VOLUME.describe().values.tolist(), df[df.PRICE == 25499].VOLUME.describe().values.tolist(), ] expected = pd.DataFrame( data, index=pd.Index([24990, 25499], name="PRICE"), columns=["count", "mean", "std", "min", "25%", "50%", "75%", "max"], ) tm.assert_frame_equal(result, expected) def test_groupby_mean_no_overflow(): # Regression test for (#22487) df = pd.DataFrame( { "user": ["A", "A", "A", "A", "A"], "connections": [4970, 4749, 4719, 4704, 18446744073699999744], } ) assert df.groupby("user")["connections"].mean()["A"] == 3689348814740003840 @pytest.mark.parametrize( "values", [ { "a": [1, 1, 1, 2, 2, 2, 3, 3, 3], "b": [1, pd.NA, 2, 1, pd.NA, 2, 1, pd.NA, 2], }, {"a": [1, 1, 2, 2, 3, 3], "b": [1, 2, 1, 2, 1, 2]}, ], ) @pytest.mark.parametrize("function", ["mean", "median", "var"]) def test_apply_to_nullable_integer_returns_float(values, function): # https://github.com/pandas-dev/pandas/issues/32219 output = 0.5 if function == "var" else 1.5 arr = np.array([output] * 3, dtype=float) idx = pd.Index([1, 2, 3], dtype=object, name="a") expected = pd.DataFrame({"b": arr}, index=idx) groups = pd.DataFrame(values, dtype="Int64").groupby("a") result = getattr(groups, function)() tm.assert_frame_equal(result, expected) result = groups.agg(function) tm.assert_frame_equal(result, expected) result = groups.agg([function]) expected.columns = MultiIndex.from_tuples([("b", function)]) tm.assert_frame_equal(result, expected) def test_groupby_sum_below_mincount_nullable_integer(): # https://github.com/pandas-dev/pandas/issues/32861 df = pd.DataFrame({"a": [0, 1, 2], "b": [0, 1, 2], "c": [0, 1, 2]}, dtype="Int64") grouped = df.groupby("a") idx = pd.Index([0, 1, 2], dtype=object, name="a") result = grouped["b"].sum(min_count=2) expected = pd.Series([pd.NA] * 3, dtype="Int64", index=idx, name="b") tm.assert_series_equal(result, expected) result = grouped.sum(min_count=2) expected = pd.DataFrame( {"b": [pd.NA] * 3, "c": [pd.NA] * 3}, dtype="Int64", index=idx ) tm.assert_frame_equal(result, expected)