import collections import inspect import re from functools import wraps import sys from contextlib import contextmanager import itertools from voluptuous import error as er if sys.version_info >= (3,): long = int unicode = str basestring = str ifilter = filter def iteritems(d): return d.items() else: from itertools import ifilter def iteritems(d): return d.iteritems() if sys.version_info >= (3, 3): _Mapping = collections.abc.Mapping else: _Mapping = collections.Mapping """Schema validation for Python data structures. Given eg. a nested data structure like this: { 'exclude': ['Users', 'Uptime'], 'include': [], 'set': { 'snmp_community': 'public', 'snmp_timeout': 15, 'snmp_version': '2c', }, 'targets': { 'localhost': { 'exclude': ['Uptime'], 'features': { 'Uptime': { 'retries': 3, }, 'Users': { 'snmp_community': 'monkey', 'snmp_port': 15, }, }, 'include': ['Users'], 'set': { 'snmp_community': 'monkeys', }, }, }, } A schema like this: >>> settings = { ... 'snmp_community': str, ... 'retries': int, ... 'snmp_version': All(Coerce(str), Any('3', '2c', '1')), ... } >>> features = ['Ping', 'Uptime', 'Http'] >>> schema = Schema({ ... 'exclude': features, ... 'include': features, ... 'set': settings, ... 'targets': { ... 'exclude': features, ... 'include': features, ... 'features': { ... str: settings, ... }, ... }, ... }) Validate like so: >>> schema({ ... 'set': { ... 'snmp_community': 'public', ... 'snmp_version': '2c', ... }, ... 'targets': { ... 'exclude': ['Ping'], ... 'features': { ... 'Uptime': {'retries': 3}, ... 'Users': {'snmp_community': 'monkey'}, ... }, ... }, ... }) == { ... 'set': {'snmp_version': '2c', 'snmp_community': 'public'}, ... 'targets': { ... 'exclude': ['Ping'], ... 'features': {'Uptime': {'retries': 3}, ... 'Users': {'snmp_community': 'monkey'}}}} True """ # options for extra keys PREVENT_EXTRA = 0 # any extra key not in schema will raise an error ALLOW_EXTRA = 1 # extra keys not in schema will be included in output REMOVE_EXTRA = 2 # extra keys not in schema will be excluded from output def _isnamedtuple(obj): return isinstance(obj, tuple) and hasattr(obj, '_fields') primitive_types = (str, unicode, bool, int, float) class Undefined(object): def __nonzero__(self): return False def __repr__(self): return '...' UNDEFINED = Undefined() def Self(): raise er.SchemaError('"Self" should never be called') def default_factory(value): if value is UNDEFINED or callable(value): return value return lambda: value @contextmanager def raises(exc, msg=None, regex=None): try: yield except exc as e: if msg is not None: assert str(e) == msg, '%r != %r' % (str(e), msg) if regex is not None: assert re.search(regex, str(e)), '%r does not match %r' % (str(e), regex) def Extra(_): """Allow keys in the data that are not present in the schema.""" raise er.SchemaError('"Extra" should never be called') # As extra() is never called there's no way to catch references to the # deprecated object, so we just leave an alias here instead. extra = Extra class Schema(object): """A validation schema. The schema is a Python tree-like structure where nodes are pattern matched against corresponding trees of values. Nodes can be values, in which case a direct comparison is used, types, in which case an isinstance() check is performed, or callables, which will validate and optionally convert the value. We can equate schemas also. For Example: >>> v = Schema({Required('a'): unicode}) >>> v1 = Schema({Required('a'): unicode}) >>> v2 = Schema({Required('b'): unicode}) >>> assert v == v1 >>> assert v != v2 """ _extra_to_name = { REMOVE_EXTRA: 'REMOVE_EXTRA', ALLOW_EXTRA: 'ALLOW_EXTRA', PREVENT_EXTRA: 'PREVENT_EXTRA', } def __init__(self, schema, required=False, extra=PREVENT_EXTRA): """Create a new Schema. :param schema: Validation schema. See :module:`voluptuous` for details. :param required: Keys defined in the schema must be in the data. :param extra: Specify how extra keys in the data are treated: - :const:`~voluptuous.PREVENT_EXTRA`: to disallow any undefined extra keys (raise ``Invalid``). - :const:`~voluptuous.ALLOW_EXTRA`: to include undefined extra keys in the output. - :const:`~voluptuous.REMOVE_EXTRA`: to exclude undefined extra keys from the output. - Any value other than the above defaults to :const:`~voluptuous.PREVENT_EXTRA` """ self.schema = schema self.required = required self.extra = int(extra) # ensure the value is an integer self._compiled = self._compile(schema) @classmethod def infer(cls, data, **kwargs): """Create a Schema from concrete data (e.g. an API response). For example, this will take a dict like: { 'foo': 1, 'bar': { 'a': True, 'b': False }, 'baz': ['purple', 'monkey', 'dishwasher'] } And return a Schema: { 'foo': int, 'bar': { 'a': bool, 'b': bool }, 'baz': [str] } Note: only very basic inference is supported. """ def value_to_schema_type(value): if isinstance(value, dict): if len(value) == 0: return dict return {k: value_to_schema_type(v) for k, v in iteritems(value)} if isinstance(value, list): if len(value) == 0: return list else: return [value_to_schema_type(v) for v in value] return type(value) return cls(value_to_schema_type(data), **kwargs) def __eq__(self, other): if not isinstance(other, Schema): return False return other.schema == self.schema def __ne__(self, other): return not (self == other) def __str__(self): return str(self.schema) def __repr__(self): return "" % ( self.schema, self._extra_to_name.get(self.extra, '??'), self.required, id(self)) def __call__(self, data): """Validate data against this schema.""" try: return self._compiled([], data) except er.MultipleInvalid: raise except er.Invalid as e: raise er.MultipleInvalid([e]) # return self.validate([], self.schema, data) def _compile(self, schema): if schema is Extra: return lambda _, v: v if schema is Self: return lambda p, v: self._compiled(p, v) elif hasattr(schema, "__voluptuous_compile__"): return schema.__voluptuous_compile__(self) if isinstance(schema, Object): return self._compile_object(schema) if isinstance(schema, _Mapping): return self._compile_dict(schema) elif isinstance(schema, list): return self._compile_list(schema) elif isinstance(schema, tuple): return self._compile_tuple(schema) elif isinstance(schema, (frozenset, set)): return self._compile_set(schema) type_ = type(schema) if inspect.isclass(schema): type_ = schema if type_ in (bool, bytes, int, long, str, unicode, float, complex, object, list, dict, type(None)) or callable(schema): return _compile_scalar(schema) raise er.SchemaError('unsupported schema data type %r' % type(schema).__name__) def _compile_mapping(self, schema, invalid_msg=None): """Create validator for given mapping.""" invalid_msg = invalid_msg or 'mapping value' # Keys that may be required all_required_keys = set(key for key in schema if key is not Extra and ((self.required and not isinstance(key, (Optional, Remove))) or isinstance(key, Required))) # Keys that may have defaults all_default_keys = set(key for key in schema if isinstance(key, Required) or isinstance(key, Optional)) _compiled_schema = {} for skey, svalue in iteritems(schema): new_key = self._compile(skey) new_value = self._compile(svalue) _compiled_schema[skey] = (new_key, new_value) candidates = list(_iterate_mapping_candidates(_compiled_schema)) # After we have the list of candidates in the correct order, we want to apply some optimization so that each # key in the data being validated will be matched against the relevant schema keys only. # No point in matching against different keys additional_candidates = [] candidates_by_key = {} for skey, (ckey, cvalue) in candidates: if type(skey) in primitive_types: candidates_by_key.setdefault(skey, []).append((skey, (ckey, cvalue))) elif isinstance(skey, Marker) and type(skey.schema) in primitive_types: candidates_by_key.setdefault(skey.schema, []).append((skey, (ckey, cvalue))) else: # These are wildcards such as 'int', 'str', 'Remove' and others which should be applied to all keys additional_candidates.append((skey, (ckey, cvalue))) def validate_mapping(path, iterable, out): required_keys = all_required_keys.copy() # Build a map of all provided key-value pairs. # The type(out) is used to retain ordering in case a ordered # map type is provided as input. key_value_map = type(out)() for key, value in iterable: key_value_map[key] = value # Insert default values for non-existing keys. for key in all_default_keys: if not isinstance(key.default, Undefined) and \ key.schema not in key_value_map: # A default value has been specified for this missing # key, insert it. key_value_map[key.schema] = key.default() error = None errors = [] for key, value in key_value_map.items(): key_path = path + [key] remove_key = False # Optimization. Validate against the matching key first, then fallback to the rest relevant_candidates = itertools.chain(candidates_by_key.get(key, []), additional_candidates) # compare each given key/value against all compiled key/values # schema key, (compiled key, compiled value) for skey, (ckey, cvalue) in relevant_candidates: try: new_key = ckey(key_path, key) except er.Invalid as e: if len(e.path) > len(key_path): raise if not error or len(e.path) > len(error.path): error = e continue # Backtracking is not performed once a key is selected, so if # the value is invalid we immediately throw an exception. exception_errors = [] # check if the key is marked for removal is_remove = new_key is Remove try: cval = cvalue(key_path, value) # include if it's not marked for removal if not is_remove: out[new_key] = cval else: remove_key = True continue except er.MultipleInvalid as e: exception_errors.extend(e.errors) except er.Invalid as e: exception_errors.append(e) if exception_errors: if is_remove or remove_key: continue for err in exception_errors: if len(err.path) <= len(key_path): err.error_type = invalid_msg errors.append(err) # If there is a validation error for a required # key, this means that the key was provided. # Discard the required key so it does not # create an additional, noisy exception. required_keys.discard(skey) break # Key and value okay, mark as found in case it was # a Required() field. required_keys.discard(skey) break else: if remove_key: # remove key continue elif self.extra == ALLOW_EXTRA: out[key] = value elif self.extra != REMOVE_EXTRA: errors.append(er.Invalid('extra keys not allowed', key_path)) # else REMOVE_EXTRA: ignore the key so it's removed from output # for any required keys left that weren't found and don't have defaults: for key in required_keys: msg = key.msg if hasattr(key, 'msg') and key.msg else 'required key not provided' errors.append(er.RequiredFieldInvalid(msg, path + [key])) if errors: raise er.MultipleInvalid(errors) return out return validate_mapping def _compile_object(self, schema): """Validate an object. Has the same behavior as dictionary validator but work with object attributes. For example: >>> class Structure(object): ... def __init__(self, one=None, three=None): ... self.one = one ... self.three = three ... >>> validate = Schema(Object({'one': 'two', 'three': 'four'}, cls=Structure)) >>> with raises(er.MultipleInvalid, "not a valid value for object value @ data['one']"): ... validate(Structure(one='three')) """ base_validate = self._compile_mapping( schema, invalid_msg='object value') def validate_object(path, data): if schema.cls is not UNDEFINED and not isinstance(data, schema.cls): raise er.ObjectInvalid('expected a {0!r}'.format(schema.cls), path) iterable = _iterate_object(data) iterable = ifilter(lambda item: item[1] is not None, iterable) out = base_validate(path, iterable, {}) return type(data)(**out) return validate_object def _compile_dict(self, schema): """Validate a dictionary. A dictionary schema can contain a set of values, or at most one validator function/type. A dictionary schema will only validate a dictionary: >>> validate = Schema({}) >>> with raises(er.MultipleInvalid, 'expected a dictionary'): ... validate([]) An invalid dictionary value: >>> validate = Schema({'one': 'two', 'three': 'four'}) >>> with raises(er.MultipleInvalid, "not a valid value for dictionary value @ data['one']"): ... validate({'one': 'three'}) An invalid key: >>> with raises(er.MultipleInvalid, "extra keys not allowed @ data['two']"): ... validate({'two': 'three'}) Validation function, in this case the "int" type: >>> validate = Schema({'one': 'two', 'three': 'four', int: str}) Valid integer input: >>> validate({10: 'twenty'}) {10: 'twenty'} By default, a "type" in the schema (in this case "int") will be used purely to validate that the corresponding value is of that type. It will not Coerce the value: >>> with raises(er.MultipleInvalid, "extra keys not allowed @ data['10']"): ... validate({'10': 'twenty'}) Wrap them in the Coerce() function to achieve this: >>> from voluptuous import Coerce >>> validate = Schema({'one': 'two', 'three': 'four', ... Coerce(int): str}) >>> validate({'10': 'twenty'}) {10: 'twenty'} Custom message for required key >>> validate = Schema({Required('one', 'required'): 'two'}) >>> with raises(er.MultipleInvalid, "required @ data['one']"): ... validate({}) (This is to avoid unexpected surprises.) Multiple errors for nested field in a dict: >>> validate = Schema({ ... 'adict': { ... 'strfield': str, ... 'intfield': int ... } ... }) >>> try: ... validate({ ... 'adict': { ... 'strfield': 123, ... 'intfield': 'one' ... } ... }) ... except er.MultipleInvalid as e: ... print(sorted(str(i) for i in e.errors)) # doctest: +NORMALIZE_WHITESPACE ["expected int for dictionary value @ data['adict']['intfield']", "expected str for dictionary value @ data['adict']['strfield']"] """ base_validate = self._compile_mapping( schema, invalid_msg='dictionary value') groups_of_exclusion = {} groups_of_inclusion = {} for node in schema: if isinstance(node, Exclusive): g = groups_of_exclusion.setdefault(node.group_of_exclusion, []) g.append(node) elif isinstance(node, Inclusive): g = groups_of_inclusion.setdefault(node.group_of_inclusion, []) g.append(node) def validate_dict(path, data): if not isinstance(data, dict): raise er.DictInvalid('expected a dictionary', path) errors = [] for label, group in groups_of_exclusion.items(): exists = False for exclusive in group: if exclusive.schema in data: if exists: msg = exclusive.msg if hasattr(exclusive, 'msg') and exclusive.msg else \ "two or more values in the same group of exclusion '%s'" % label next_path = path + [VirtualPathComponent(label)] errors.append(er.ExclusiveInvalid(msg, next_path)) break exists = True if errors: raise er.MultipleInvalid(errors) for label, group in groups_of_inclusion.items(): included = [node.schema in data for node in group] if any(included) and not all(included): msg = "some but not all values in the same group of inclusion '%s'" % label for g in group: if hasattr(g, 'msg') and g.msg: msg = g.msg break next_path = path + [VirtualPathComponent(label)] errors.append(er.InclusiveInvalid(msg, next_path)) break if errors: raise er.MultipleInvalid(errors) out = data.__class__() return base_validate(path, iteritems(data), out) return validate_dict def _compile_sequence(self, schema, seq_type): """Validate a sequence type. This is a sequence of valid values or validators tried in order. >>> validator = Schema(['one', 'two', int]) >>> validator(['one']) ['one'] >>> with raises(er.MultipleInvalid, 'expected int @ data[0]'): ... validator([3.5]) >>> validator([1]) [1] """ _compiled = [self._compile(s) for s in schema] seq_type_name = seq_type.__name__ def validate_sequence(path, data): if not isinstance(data, seq_type): raise er.SequenceTypeInvalid('expected a %s' % seq_type_name, path) # Empty seq schema, reject any data. if not schema: if data: raise er.MultipleInvalid([ er.ValueInvalid('not a valid value', path if path else data) ]) return data out = [] invalid = None errors = [] index_path = UNDEFINED for i, value in enumerate(data): index_path = path + [i] invalid = None for validate in _compiled: try: cval = validate(index_path, value) if cval is not Remove: # do not include Remove values out.append(cval) break except er.Invalid as e: if len(e.path) > len(index_path): raise invalid = e else: errors.append(invalid) if errors: raise er.MultipleInvalid(errors) if _isnamedtuple(data): return type(data)(*out) else: return type(data)(out) return validate_sequence def _compile_tuple(self, schema): """Validate a tuple. A tuple is a sequence of valid values or validators tried in order. >>> validator = Schema(('one', 'two', int)) >>> validator(('one',)) ('one',) >>> with raises(er.MultipleInvalid, 'expected int @ data[0]'): ... validator((3.5,)) >>> validator((1,)) (1,) """ return self._compile_sequence(schema, tuple) def _compile_list(self, schema): """Validate a list. A list is a sequence of valid values or validators tried in order. >>> validator = Schema(['one', 'two', int]) >>> validator(['one']) ['one'] >>> with raises(er.MultipleInvalid, 'expected int @ data[0]'): ... validator([3.5]) >>> validator([1]) [1] """ return self._compile_sequence(schema, list) def _compile_set(self, schema): """Validate a set. A set is an unordered collection of unique elements. >>> validator = Schema({int}) >>> validator(set([42])) == set([42]) True >>> with raises(er.Invalid, 'expected a set'): ... validator(42) >>> with raises(er.MultipleInvalid, 'invalid value in set'): ... validator(set(['a'])) """ type_ = type(schema) type_name = type_.__name__ def validate_set(path, data): if not isinstance(data, type_): raise er.Invalid('expected a %s' % type_name, path) _compiled = [self._compile(s) for s in schema] errors = [] for value in data: for validate in _compiled: try: validate(path, value) break except er.Invalid: pass else: invalid = er.Invalid('invalid value in %s' % type_name, path) errors.append(invalid) if errors: raise er.MultipleInvalid(errors) return data return validate_set def extend(self, schema, required=None, extra=None): """Create a new `Schema` by merging this and the provided `schema`. Neither this `Schema` nor the provided `schema` are modified. The resulting `Schema` inherits the `required` and `extra` parameters of this, unless overridden. Both schemas must be dictionary-based. :param schema: dictionary to extend this `Schema` with :param required: if set, overrides `required` of this `Schema` :param extra: if set, overrides `extra` of this `Schema` """ assert type(self.schema) == dict and type(schema) == dict, 'Both schemas must be dictionary-based' result = self.schema.copy() # returns the key that may have been passed as an argument to Marker constructor def key_literal(key): return (key.schema if isinstance(key, Marker) else key) # build a map that takes the key literals to the needed objects # literal -> Required|Optional|literal result_key_map = dict((key_literal(key), key) for key in result) # for each item in the extension schema, replace duplicates # or add new keys for key, value in iteritems(schema): # if the key is already in the dictionary, we need to replace it # transform key to literal before checking presence if key_literal(key) in result_key_map: result_key = result_key_map[key_literal(key)] result_value = result[result_key] # if both are dictionaries, we need to extend recursively # create the new extended sub schema, then remove the old key and add the new one if type(result_value) == dict and type(value) == dict: new_value = Schema(result_value).extend(value).schema del result[result_key] result[key] = new_value # one or the other or both are not sub-schemas, simple replacement is fine # remove old key and add new one else: del result[result_key] result[key] = value # key is new and can simply be added else: result[key] = value # recompile and send old object result_cls = type(self) result_required = (required if required is not None else self.required) result_extra = (extra if extra is not None else self.extra) return result_cls(result, required=result_required, extra=result_extra) def _compile_scalar(schema): """A scalar value. The schema can either be a value or a type. >>> _compile_scalar(int)([], 1) 1 >>> with raises(er.Invalid, 'expected float'): ... _compile_scalar(float)([], '1') Callables have >>> _compile_scalar(lambda v: float(v))([], '1') 1.0 As a convenience, ValueError's are trapped: >>> with raises(er.Invalid, 'not a valid value'): ... _compile_scalar(lambda v: float(v))([], 'a') """ if inspect.isclass(schema): def validate_instance(path, data): if isinstance(data, schema): return data else: msg = 'expected %s' % schema.__name__ raise er.TypeInvalid(msg, path) return validate_instance if callable(schema): def validate_callable(path, data): try: return schema(data) except ValueError: raise er.ValueInvalid('not a valid value', path) except er.Invalid as e: e.prepend(path) raise return validate_callable def validate_value(path, data): if data != schema: raise er.ScalarInvalid('not a valid value', path) return data return validate_value def _compile_itemsort(): '''return sort function of mappings''' def is_extra(key_): return key_ is Extra def is_remove(key_): return isinstance(key_, Remove) def is_marker(key_): return isinstance(key_, Marker) def is_type(key_): return inspect.isclass(key_) def is_callable(key_): return callable(key_) # priority list for map sorting (in order of checking) # We want Extra to match last, because it's a catch-all. On the other hand, # Remove markers should match first (since invalid values will not # raise an Error, instead the validator will check if other schemas match # the same value). priority = [(1, is_remove), # Remove highest priority after values (2, is_marker), # then other Markers (4, is_type), # types/classes lowest before Extra (3, is_callable), # callables after markers (5, is_extra)] # Extra lowest priority def item_priority(item_): key_ = item_[0] for i, check_ in priority: if check_(key_): return i # values have hightest priorities return 0 return item_priority _sort_item = _compile_itemsort() def _iterate_mapping_candidates(schema): """Iterate over schema in a meaningful order.""" # Without this, Extra might appear first in the iterator, and fail to # validate a key even though it's a Required that has its own validation, # generating a false positive. return sorted(iteritems(schema), key=_sort_item) def _iterate_object(obj): """Return iterator over object attributes. Respect objects with defined __slots__. """ d = {} try: d = vars(obj) except TypeError: # maybe we have named tuple here? if hasattr(obj, '_asdict'): d = obj._asdict() for item in iteritems(d): yield item try: slots = obj.__slots__ except AttributeError: pass else: for key in slots: if key != '__dict__': yield (key, getattr(obj, key)) class Msg(object): """Report a user-friendly message if a schema fails to validate. >>> validate = Schema( ... Msg(['one', 'two', int], ... 'should be one of "one", "two" or an integer')) >>> with raises(er.MultipleInvalid, 'should be one of "one", "two" or an integer'): ... validate(['three']) Messages are only applied to invalid direct descendants of the schema: >>> validate = Schema(Msg([['one', 'two', int]], 'not okay!')) >>> with raises(er.MultipleInvalid, 'expected int @ data[0][0]'): ... validate([['three']]) The type which is thrown can be overridden but needs to be a subclass of Invalid >>> with raises(er.SchemaError, 'Msg can only use subclases of Invalid as custom class'): ... validate = Schema(Msg([int], 'should be int', cls=KeyError)) If you do use a subclass of Invalid, that error will be thrown (wrapped in a MultipleInvalid) >>> validate = Schema(Msg([['one', 'two', int]], 'not okay!', cls=er.RangeInvalid)) >>> try: ... validate(['three']) ... except er.MultipleInvalid as e: ... assert isinstance(e.errors[0], er.RangeInvalid) """ def __init__(self, schema, msg, cls=None): if cls and not issubclass(cls, er.Invalid): raise er.SchemaError("Msg can only use subclases of" " Invalid as custom class") self._schema = schema self.schema = Schema(schema) self.msg = msg self.cls = cls def __call__(self, v): try: return self.schema(v) except er.Invalid as e: if len(e.path) > 1: raise e else: raise (self.cls or er.Invalid)(self.msg) def __repr__(self): return 'Msg(%s, %s, cls=%s)' % (self._schema, self.msg, self.cls) class Object(dict): """Indicate that we should work with attributes, not keys.""" def __init__(self, schema, cls=UNDEFINED): self.cls = cls super(Object, self).__init__(schema) class VirtualPathComponent(str): def __str__(self): return '<' + self + '>' def __repr__(self): return self.__str__() # Markers.py class Marker(object): """Mark nodes for special treatment.""" def __init__(self, schema_, msg=None, description=None): self.schema = schema_ self._schema = Schema(schema_) self.msg = msg self.description = description def __call__(self, v): try: return self._schema(v) except er.Invalid as e: if not self.msg or len(e.path) > 1: raise raise er.Invalid(self.msg) def __str__(self): return str(self.schema) def __repr__(self): return repr(self.schema) def __lt__(self, other): if isinstance(other, Marker): return self.schema < other.schema return self.schema < other def __hash__(self): return hash(self.schema) def __eq__(self, other): return self.schema == other def __ne__(self, other): return not(self.schema == other) class Optional(Marker): """Mark a node in the schema as optional, and optionally provide a default >>> schema = Schema({Optional('key'): str}) >>> schema({}) {} >>> schema = Schema({Optional('key', default='value'): str}) >>> schema({}) {'key': 'value'} >>> schema = Schema({Optional('key', default=list): list}) >>> schema({}) {'key': []} If 'required' flag is set for an entire schema, optional keys aren't required >>> schema = Schema({ ... Optional('key'): str, ... 'key2': str ... }, required=True) >>> schema({'key2':'value'}) {'key2': 'value'} """ def __init__(self, schema, msg=None, default=UNDEFINED, description=None): super(Optional, self).__init__(schema, msg=msg, description=description) self.default = default_factory(default) class Exclusive(Optional): """Mark a node in the schema as exclusive. Exclusive keys inherited from Optional: >>> schema = Schema({Exclusive('alpha', 'angles'): int, Exclusive('beta', 'angles'): int}) >>> schema({'alpha': 30}) {'alpha': 30} Keys inside a same group of exclusion cannot be together, it only makes sense for dictionaries: >>> with raises(er.MultipleInvalid, "two or more values in the same group of exclusion 'angles' @ data[]"): ... schema({'alpha': 30, 'beta': 45}) For example, API can provides multiple types of authentication, but only one works in the same time: >>> msg = 'Please, use only one type of authentication at the same time.' >>> schema = Schema({ ... Exclusive('classic', 'auth', msg=msg):{ ... Required('email'): basestring, ... Required('password'): basestring ... }, ... Exclusive('internal', 'auth', msg=msg):{ ... Required('secret_key'): basestring ... }, ... Exclusive('social', 'auth', msg=msg):{ ... Required('social_network'): basestring, ... Required('token'): basestring ... } ... }) >>> with raises(er.MultipleInvalid, "Please, use only one type of authentication at the same time. @ data[]"): ... schema({'classic': {'email': 'foo@example.com', 'password': 'bar'}, ... 'social': {'social_network': 'barfoo', 'token': 'tEMp'}}) """ def __init__(self, schema, group_of_exclusion, msg=None, description=None): super(Exclusive, self).__init__(schema, msg=msg, description=description) self.group_of_exclusion = group_of_exclusion class Inclusive(Optional): """ Mark a node in the schema as inclusive. Inclusive keys inherited from Optional: >>> schema = Schema({ ... Inclusive('filename', 'file'): str, ... Inclusive('mimetype', 'file'): str ... }) >>> data = {'filename': 'dog.jpg', 'mimetype': 'image/jpeg'} >>> data == schema(data) True Keys inside a same group of inclusive must exist together, it only makes sense for dictionaries: >>> with raises(er.MultipleInvalid, "some but not all values in the same group of inclusion 'file' @ data[]"): ... schema({'filename': 'dog.jpg'}) If none of the keys in the group are present, it is accepted: >>> schema({}) {} For example, API can return 'height' and 'width' together, but not separately. >>> msg = "Height and width must exist together" >>> schema = Schema({ ... Inclusive('height', 'size', msg=msg): int, ... Inclusive('width', 'size', msg=msg): int ... }) >>> with raises(er.MultipleInvalid, msg + " @ data[]"): ... schema({'height': 100}) >>> with raises(er.MultipleInvalid, msg + " @ data[]"): ... schema({'width': 100}) >>> data = {'height': 100, 'width': 100} >>> data == schema(data) True """ def __init__(self, schema, group_of_inclusion, msg=None, description=None, default=UNDEFINED): super(Inclusive, self).__init__(schema, msg=msg, default=default, description=description) self.group_of_inclusion = group_of_inclusion class Required(Marker): """Mark a node in the schema as being required, and optionally provide a default value. >>> schema = Schema({Required('key'): str}) >>> with raises(er.MultipleInvalid, "required key not provided @ data['key']"): ... schema({}) >>> schema = Schema({Required('key', default='value'): str}) >>> schema({}) {'key': 'value'} >>> schema = Schema({Required('key', default=list): list}) >>> schema({}) {'key': []} """ def __init__(self, schema, msg=None, default=UNDEFINED, description=None): super(Required, self).__init__(schema, msg=msg, description=description) self.default = default_factory(default) class Remove(Marker): """Mark a node in the schema to be removed and excluded from the validated output. Keys that fail validation will not raise ``Invalid``. Instead, these keys will be treated as extras. >>> schema = Schema({str: int, Remove(int): str}) >>> with raises(er.MultipleInvalid, "extra keys not allowed @ data[1]"): ... schema({'keep': 1, 1: 1.0}) >>> schema({1: 'red', 'red': 1, 2: 'green'}) {'red': 1} >>> schema = Schema([int, Remove(float), Extra]) >>> schema([1, 2, 3, 4.0, 5, 6.0, '7']) [1, 2, 3, 5, '7'] """ def __call__(self, v): super(Remove, self).__call__(v) return self.__class__ def __repr__(self): return "Remove(%r)" % (self.schema,) def __hash__(self): return object.__hash__(self) def message(default=None, cls=None): """Convenience decorator to allow functions to provide a message. Set a default message: >>> @message('not an integer') ... def isint(v): ... return int(v) >>> validate = Schema(isint()) >>> with raises(er.MultipleInvalid, 'not an integer'): ... validate('a') The message can be overridden on a per validator basis: >>> validate = Schema(isint('bad')) >>> with raises(er.MultipleInvalid, 'bad'): ... validate('a') The class thrown too: >>> class IntegerInvalid(er.Invalid): pass >>> validate = Schema(isint('bad', clsoverride=IntegerInvalid)) >>> try: ... validate('a') ... except er.MultipleInvalid as e: ... assert isinstance(e.errors[0], IntegerInvalid) """ if cls and not issubclass(cls, er.Invalid): raise er.SchemaError("message can only use subclases of Invalid as custom class") def decorator(f): @wraps(f) def check(msg=None, clsoverride=None): @wraps(f) def wrapper(*args, **kwargs): try: return f(*args, **kwargs) except ValueError: raise (clsoverride or cls or er.ValueInvalid)(msg or default or 'invalid value') return wrapper return check return decorator def _args_to_dict(func, args): """Returns argument names as values as key-value pairs.""" if sys.version_info >= (3, 0): arg_count = func.__code__.co_argcount arg_names = func.__code__.co_varnames[:arg_count] else: arg_count = func.func_code.co_argcount arg_names = func.func_code.co_varnames[:arg_count] arg_value_list = list(args) arguments = dict((arg_name, arg_value_list[i]) for i, arg_name in enumerate(arg_names) if i < len(arg_value_list)) return arguments def _merge_args_with_kwargs(args_dict, kwargs_dict): """Merge args with kwargs.""" ret = args_dict.copy() ret.update(kwargs_dict) return ret def validate(*a, **kw): """Decorator for validating arguments of a function against a given schema. Set restrictions for arguments: >>> @validate(arg1=int, arg2=int) ... def foo(arg1, arg2): ... return arg1 * arg2 Set restriction for returned value: >>> @validate(arg=int, __return__=int) ... def bar(arg1): ... return arg1 * 2 """ RETURNS_KEY = '__return__' def validate_schema_decorator(func): returns_defined = False returns = None schema_args_dict = _args_to_dict(func, a) schema_arguments = _merge_args_with_kwargs(schema_args_dict, kw) if RETURNS_KEY in schema_arguments: returns_defined = True returns = schema_arguments[RETURNS_KEY] del schema_arguments[RETURNS_KEY] input_schema = (Schema(schema_arguments, extra=ALLOW_EXTRA) if len(schema_arguments) != 0 else lambda x: x) output_schema = Schema(returns) if returns_defined else lambda x: x @wraps(func) def func_wrapper(*args, **kwargs): args_dict = _args_to_dict(func, args) arguments = _merge_args_with_kwargs(args_dict, kwargs) validated_arguments = input_schema(arguments) output = func(**validated_arguments) return output_schema(output) return func_wrapper return validate_schema_decorator