# -*- coding: utf-8 -*- # Copyright (c) 2009-2011, 2013-2014 LOGILAB S.A. (Paris, FRANCE) # Copyright (c) 2012 FELD Boris # Copyright (c) 2014-2020 Claudiu Popa # Copyright (c) 2014 Google, Inc. # Copyright (c) 2014 Eevee (Alex Munroe) # Copyright (c) 2015-2016 Ceridwen # Copyright (c) 2015 Florian Bruhin # Copyright (c) 2016-2017 Derek Gustafson # Copyright (c) 2017 Calen Pennington # Copyright (c) 2018-2019 hippo91 # Copyright (c) 2018 Ville Skyttä # Copyright (c) 2018 Bryce Guinta # Copyright (c) 2018 Nick Drozd # Copyright (c) 2018 Daniel Colascione # Copyright (c) 2019 Hugo van Kemenade # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER """This module contains base classes and functions for the nodes and some inference utils. """ import builtins import collections from astroid import context as contextmod from astroid import exceptions from astroid import util objectmodel = util.lazy_import("interpreter.objectmodel") helpers = util.lazy_import("helpers") BUILTINS = builtins.__name__ manager = util.lazy_import("manager") MANAGER = manager.AstroidManager() # TODO: check if needs special treatment BUILTINS = "builtins" BOOL_SPECIAL_METHOD = "__bool__" PROPERTIES = {BUILTINS + ".property", "abc.abstractproperty"} # List of possible property names. We use this list in order # to see if a method is a property or not. This should be # pretty reliable and fast, the alternative being to check each # decorator to see if its a real property-like descriptor, which # can be too complicated. # Also, these aren't qualified, because each project can # define them, we shouldn't expect to know every possible # property-like decorator! POSSIBLE_PROPERTIES = { "cached_property", "cachedproperty", "lazyproperty", "lazy_property", "reify", "lazyattribute", "lazy_attribute", "LazyProperty", "lazy", "cache_readonly", } def _is_property(meth, context=None): decoratornames = meth.decoratornames(context=context) if PROPERTIES.intersection(decoratornames): return True stripped = { name.split(".")[-1] for name in decoratornames if name is not util.Uninferable } if any(name in stripped for name in POSSIBLE_PROPERTIES): return True # Lookup for subclasses of *property* if not meth.decorators: return False for decorator in meth.decorators.nodes or (): inferred = helpers.safe_infer(decorator, context=context) if inferred is None or inferred is util.Uninferable: continue if inferred.__class__.__name__ == "ClassDef": for base_class in inferred.bases: if base_class.__class__.__name__ != "Name": continue module, _ = base_class.lookup(base_class.name) if module.name == BUILTINS and base_class.name == "property": return True return False class Proxy: """a simple proxy object Note: Subclasses of this object will need a custom __getattr__ if new instance attributes are created. See the Const class """ _proxied = None # proxied object may be set by class or by instance def __init__(self, proxied=None): if proxied is not None: self._proxied = proxied def __getattr__(self, name): if name == "_proxied": return getattr(self.__class__, "_proxied") if name in self.__dict__: return self.__dict__[name] return getattr(self._proxied, name) def infer(self, context=None): yield self def _infer_stmts(stmts, context, frame=None): """Return an iterator on statements inferred by each statement in *stmts*.""" inferred = False if context is not None: name = context.lookupname context = context.clone() else: name = None context = contextmod.InferenceContext() for stmt in stmts: if stmt is util.Uninferable: yield stmt inferred = True continue context.lookupname = stmt._infer_name(frame, name) try: for inferred in stmt.infer(context=context): yield inferred inferred = True except exceptions.NameInferenceError: continue except exceptions.InferenceError: yield util.Uninferable inferred = True if not inferred: raise exceptions.InferenceError( "Inference failed for all members of {stmts!r}.", stmts=stmts, frame=frame, context=context, ) def _infer_method_result_truth(instance, method_name, context): # Get the method from the instance and try to infer # its return's truth value. meth = next(instance.igetattr(method_name, context=context), None) if meth and hasattr(meth, "infer_call_result"): if not meth.callable(): return util.Uninferable try: for value in meth.infer_call_result(instance, context=context): if value is util.Uninferable: return value inferred = next(value.infer(context=context)) return inferred.bool_value() except exceptions.InferenceError: pass return util.Uninferable class BaseInstance(Proxy): """An instance base class, which provides lookup methods for potential instances.""" special_attributes = None def display_type(self): return "Instance of" def getattr(self, name, context=None, lookupclass=True): try: values = self._proxied.instance_attr(name, context) except exceptions.AttributeInferenceError as exc: if self.special_attributes and name in self.special_attributes: return [self.special_attributes.lookup(name)] if lookupclass: # Class attributes not available through the instance # unless they are explicitly defined. return self._proxied.getattr(name, context, class_context=False) raise exceptions.AttributeInferenceError( target=self, attribute=name, context=context ) from exc # since we've no context information, return matching class members as # well if lookupclass: try: return values + self._proxied.getattr( name, context, class_context=False ) except exceptions.AttributeInferenceError: pass return values def igetattr(self, name, context=None): """inferred getattr""" if not context: context = contextmod.InferenceContext() try: # avoid recursively inferring the same attr on the same class if context.push((self._proxied, name)): raise exceptions.InferenceError( message="Cannot infer the same attribute again", node=self, context=context, ) # XXX frame should be self._proxied, or not ? get_attr = self.getattr(name, context, lookupclass=False) yield from _infer_stmts( self._wrap_attr(get_attr, context), context, frame=self ) except exceptions.AttributeInferenceError as error: try: # fallback to class.igetattr since it has some logic to handle # descriptors # But only if the _proxied is the Class. if self._proxied.__class__.__name__ != "ClassDef": raise attrs = self._proxied.igetattr(name, context, class_context=False) yield from self._wrap_attr(attrs, context) except exceptions.AttributeInferenceError as error: raise exceptions.InferenceError(**vars(error)) from error def _wrap_attr(self, attrs, context=None): """wrap bound methods of attrs in a InstanceMethod proxies""" for attr in attrs: if isinstance(attr, UnboundMethod): if _is_property(attr): yield from attr.infer_call_result(self, context) else: yield BoundMethod(attr, self) elif hasattr(attr, "name") and attr.name == "": if attr.args.arguments and attr.args.arguments[0].name == "self": yield BoundMethod(attr, self) continue yield attr else: yield attr def infer_call_result(self, caller, context=None): """infer what a class instance is returning when called""" context = contextmod.bind_context_to_node(context, self) inferred = False for node in self._proxied.igetattr("__call__", context): if node is util.Uninferable or not node.callable(): continue for res in node.infer_call_result(caller, context): inferred = True yield res if not inferred: raise exceptions.InferenceError(node=self, caller=caller, context=context) class Instance(BaseInstance): """A special node representing a class instance.""" # pylint: disable=unnecessary-lambda special_attributes = util.lazy_descriptor(lambda: objectmodel.InstanceModel()) def __repr__(self): return "" % ( self._proxied.root().name, self._proxied.name, id(self), ) def __str__(self): return "Instance of %s.%s" % (self._proxied.root().name, self._proxied.name) def callable(self): try: self._proxied.getattr("__call__", class_context=False) return True except exceptions.AttributeInferenceError: return False def pytype(self): return self._proxied.qname() def display_type(self): return "Instance of" def bool_value(self, context=None): """Infer the truth value for an Instance The truth value of an instance is determined by these conditions: * if it implements __bool__ on Python 3 or __nonzero__ on Python 2, then its bool value will be determined by calling this special method and checking its result. * when this method is not defined, __len__() is called, if it is defined, and the object is considered true if its result is nonzero. If a class defines neither __len__() nor __bool__(), all its instances are considered true. """ context = context or contextmod.InferenceContext() context.callcontext = contextmod.CallContext(args=[]) context.boundnode = self try: result = _infer_method_result_truth(self, BOOL_SPECIAL_METHOD, context) except (exceptions.InferenceError, exceptions.AttributeInferenceError): # Fallback to __len__. try: result = _infer_method_result_truth(self, "__len__", context) except (exceptions.AttributeInferenceError, exceptions.InferenceError): return True return result # This is set in inference.py. def getitem(self, index, context=None): pass class UnboundMethod(Proxy): """a special node representing a method not bound to an instance""" # pylint: disable=unnecessary-lambda special_attributes = util.lazy_descriptor(lambda: objectmodel.UnboundMethodModel()) def __repr__(self): frame = self._proxied.parent.frame() return "<%s %s of %s at 0x%s" % ( self.__class__.__name__, self._proxied.name, frame.qname(), id(self), ) def implicit_parameters(self): return 0 def is_bound(self): return False def getattr(self, name, context=None): if name in self.special_attributes: return [self.special_attributes.lookup(name)] return self._proxied.getattr(name, context) def igetattr(self, name, context=None): if name in self.special_attributes: return iter((self.special_attributes.lookup(name),)) return self._proxied.igetattr(name, context) def infer_call_result(self, caller, context): """ The boundnode of the regular context with a function called on ``object.__new__`` will be of type ``object``, which is incorrect for the argument in general. If no context is given the ``object.__new__`` call argument will correctly inferred except when inside a call that requires the additional context (such as a classmethod) of the boundnode to determine which class the method was called from """ # If we're unbound method __new__ of builtin object, the result is an # instance of the class given as first argument. if ( self._proxied.name == "__new__" and self._proxied.parent.frame().qname() == "%s.object" % BUILTINS ): if caller.args: node_context = context.extra_context.get(caller.args[0]) infer = caller.args[0].infer(context=node_context) else: infer = [] return (Instance(x) if x is not util.Uninferable else x for x in infer) return self._proxied.infer_call_result(caller, context) def bool_value(self, context=None): return True class BoundMethod(UnboundMethod): """a special node representing a method bound to an instance""" # pylint: disable=unnecessary-lambda special_attributes = util.lazy_descriptor(lambda: objectmodel.BoundMethodModel()) def __init__(self, proxy, bound): UnboundMethod.__init__(self, proxy) self.bound = bound def implicit_parameters(self): if self.name == "__new__": # __new__ acts as a classmethod but the class argument is not implicit. return 0 return 1 def is_bound(self): return True def _infer_type_new_call(self, caller, context): """Try to infer what type.__new__(mcs, name, bases, attrs) returns. In order for such call to be valid, the metaclass needs to be a subtype of ``type``, the name needs to be a string, the bases needs to be a tuple of classes """ # pylint: disable=import-outside-toplevel; circular import from astroid import node_classes # Verify the metaclass mcs = next(caller.args[0].infer(context=context)) if mcs.__class__.__name__ != "ClassDef": # Not a valid first argument. return None if not mcs.is_subtype_of("%s.type" % BUILTINS): # Not a valid metaclass. return None # Verify the name name = next(caller.args[1].infer(context=context)) if name.__class__.__name__ != "Const": # Not a valid name, needs to be a const. return None if not isinstance(name.value, str): # Needs to be a string. return None # Verify the bases bases = next(caller.args[2].infer(context=context)) if bases.__class__.__name__ != "Tuple": # Needs to be a tuple. return None inferred_bases = [next(elt.infer(context=context)) for elt in bases.elts] if any(base.__class__.__name__ != "ClassDef" for base in inferred_bases): # All the bases needs to be Classes return None # Verify the attributes. attrs = next(caller.args[3].infer(context=context)) if attrs.__class__.__name__ != "Dict": # Needs to be a dictionary. return None cls_locals = collections.defaultdict(list) for key, value in attrs.items: key = next(key.infer(context=context)) value = next(value.infer(context=context)) # Ignore non string keys if key.__class__.__name__ == "Const" and isinstance(key.value, str): cls_locals[key.value].append(value) # Build the class from now. cls = mcs.__class__( name=name.value, lineno=caller.lineno, col_offset=caller.col_offset, parent=caller, ) empty = node_classes.Pass() cls.postinit( bases=bases.elts, body=[empty], decorators=[], newstyle=True, metaclass=mcs, keywords=[], ) cls.locals = cls_locals return cls def infer_call_result(self, caller, context=None): context = contextmod.bind_context_to_node(context, self.bound) if ( self.bound.__class__.__name__ == "ClassDef" and self.bound.name == "type" and self.name == "__new__" and len(caller.args) == 4 ): # Check if we have a ``type.__new__(mcs, name, bases, attrs)`` call. new_cls = self._infer_type_new_call(caller, context) if new_cls: return iter((new_cls,)) return super().infer_call_result(caller, context) def bool_value(self, context=None): return True class Generator(BaseInstance): """a special node representing a generator. Proxied class is set once for all in raw_building. """ # pylint: disable=unnecessary-lambda special_attributes = util.lazy_descriptor(lambda: objectmodel.GeneratorModel()) # pylint: disable=super-init-not-called def __init__(self, parent=None): self.parent = parent def callable(self): return False def pytype(self): return "%s.generator" % BUILTINS def display_type(self): return "Generator" def bool_value(self, context=None): return True def __repr__(self): return "" % ( self._proxied.name, self.lineno, id(self), ) def __str__(self): return "Generator(%s)" % (self._proxied.name) class AsyncGenerator(Generator): """Special node representing an async generator""" def pytype(self): return "%s.async_generator" % BUILTINS def display_type(self): return "AsyncGenerator" def __repr__(self): return "" % ( self._proxied.name, self.lineno, id(self), ) def __str__(self): return "AsyncGenerator(%s)" % (self._proxied.name)