import operator import numpy as np import pytest from pandas.core.dtypes.common import is_list_like import pandas as pd from pandas import ( Categorical, Index, Interval, IntervalIndex, Period, Series, Timedelta, Timestamp, date_range, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray @pytest.fixture( params=[ (Index([0, 2, 4, 4]), Index([1, 3, 5, 8])), (Index([0.0, 1.0, 2.0, np.nan]), Index([1.0, 2.0, 3.0, np.nan])), ( timedelta_range("0 days", periods=3).insert(4, pd.NaT), timedelta_range("1 day", periods=3).insert(4, pd.NaT), ), ( date_range("20170101", periods=3).insert(4, pd.NaT), date_range("20170102", periods=3).insert(4, pd.NaT), ), ( date_range("20170101", periods=3, tz="US/Eastern").insert(4, pd.NaT), date_range("20170102", periods=3, tz="US/Eastern").insert(4, pd.NaT), ), ], ids=lambda x: str(x[0].dtype), ) def left_right_dtypes(request): """ Fixture for building an IntervalArray from various dtypes """ return request.param @pytest.fixture def array(left_right_dtypes): """ Fixture to generate an IntervalArray of various dtypes containing NA if possible """ left, right = left_right_dtypes return IntervalArray.from_arrays(left, right) def create_categorical_intervals(left, right, closed="right"): return Categorical(IntervalIndex.from_arrays(left, right, closed)) def create_series_intervals(left, right, closed="right"): return Series(IntervalArray.from_arrays(left, right, closed)) def create_series_categorical_intervals(left, right, closed="right"): return Series(Categorical(IntervalIndex.from_arrays(left, right, closed))) class TestComparison: @pytest.fixture(params=[operator.eq, operator.ne]) def op(self, request): return request.param @pytest.fixture( params=[ IntervalArray.from_arrays, IntervalIndex.from_arrays, create_categorical_intervals, create_series_intervals, create_series_categorical_intervals, ], ids=[ "IntervalArray", "IntervalIndex", "Categorical[Interval]", "Series[Interval]", "Series[Categorical[Interval]]", ], ) def interval_constructor(self, request): """ Fixture for all pandas native interval constructors. To be used as the LHS of IntervalArray comparisons. """ return request.param def elementwise_comparison(self, op, array, other): """ Helper that performs elementwise comparisons between `array` and `other` """ other = other if is_list_like(other) else [other] * len(array) expected = np.array([op(x, y) for x, y in zip(array, other)]) if isinstance(other, Series): return Series(expected, index=other.index) return expected def test_compare_scalar_interval(self, op, array): # matches first interval other = array[0] result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_numpy_array_equal(result, expected) # matches on a single endpoint but not both other = Interval(array.left[0], array.right[1]) result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_numpy_array_equal(result, expected) def test_compare_scalar_interval_mixed_closed(self, op, closed, other_closed): array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed) other = Interval(0, 1, closed=other_closed) result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_numpy_array_equal(result, expected) def test_compare_scalar_na(self, op, array, nulls_fixture, request): result = op(array, nulls_fixture) expected = self.elementwise_comparison(op, array, nulls_fixture) if nulls_fixture is pd.NA and array.dtype != pd.IntervalDtype("int64"): mark = pytest.mark.xfail( reason="broken for non-integer IntervalArray; see GH 31882" ) request.node.add_marker(mark) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ 0, 1.0, True, "foo", Timestamp("2017-01-01"), Timestamp("2017-01-01", tz="US/Eastern"), Timedelta("0 days"), Period("2017-01-01", "D"), ], ) def test_compare_scalar_other(self, op, array, other): result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_numpy_array_equal(result, expected) def test_compare_list_like_interval(self, op, array, interval_constructor): # same endpoints other = interval_constructor(array.left, array.right) result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_equal(result, expected) # different endpoints other = interval_constructor(array.left[::-1], array.right[::-1]) result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_equal(result, expected) # all nan endpoints other = interval_constructor([np.nan] * 4, [np.nan] * 4) result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_equal(result, expected) def test_compare_list_like_interval_mixed_closed( self, op, interval_constructor, closed, other_closed ): array = IntervalArray.from_arrays(range(2), range(1, 3), closed=closed) other = interval_constructor(range(2), range(1, 3), closed=other_closed) result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ ( Interval(0, 1), Interval(Timedelta("1 day"), Timedelta("2 days")), Interval(4, 5, "both"), Interval(10, 20, "neither"), ), (0, 1.5, Timestamp("20170103"), np.nan), ( Timestamp("20170102", tz="US/Eastern"), Timedelta("2 days"), "baz", pd.NaT, ), ], ) def test_compare_list_like_object(self, op, array, other): result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_numpy_array_equal(result, expected) def test_compare_list_like_nan(self, op, array, nulls_fixture, request): other = [nulls_fixture] * 4 result = op(array, other) expected = self.elementwise_comparison(op, array, other) if nulls_fixture is pd.NA and array.dtype.subtype != "i8": reason = "broken for non-integer IntervalArray; see GH 31882" mark = pytest.mark.xfail(reason=reason) request.node.add_marker(mark) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ np.arange(4, dtype="int64"), np.arange(4, dtype="float64"), date_range("2017-01-01", periods=4), date_range("2017-01-01", periods=4, tz="US/Eastern"), timedelta_range("0 days", periods=4), period_range("2017-01-01", periods=4, freq="D"), Categorical(list("abab")), Categorical(date_range("2017-01-01", periods=4)), pd.array(list("abcd")), pd.array(["foo", 3.14, None, object()]), ], ids=lambda x: str(x.dtype), ) def test_compare_list_like_other(self, op, array, other): result = op(array, other) expected = self.elementwise_comparison(op, array, other) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("length", [1, 3, 5]) @pytest.mark.parametrize("other_constructor", [IntervalArray, list]) def test_compare_length_mismatch_errors(self, op, other_constructor, length): array = IntervalArray.from_arrays(range(4), range(1, 5)) other = other_constructor([Interval(0, 1)] * length) with pytest.raises(ValueError, match="Lengths must match to compare"): op(array, other) @pytest.mark.parametrize( "constructor, expected_type, assert_func", [ (IntervalIndex, np.array, tm.assert_numpy_array_equal), (Series, Series, tm.assert_series_equal), ], ) def test_index_series_compat(self, op, constructor, expected_type, assert_func): # IntervalIndex/Series that rely on IntervalArray for comparisons breaks = range(4) index = constructor(IntervalIndex.from_breaks(breaks)) # scalar comparisons other = index[0] result = op(index, other) expected = expected_type(self.elementwise_comparison(op, index, other)) assert_func(result, expected) other = breaks[0] result = op(index, other) expected = expected_type(self.elementwise_comparison(op, index, other)) assert_func(result, expected) # list-like comparisons other = IntervalArray.from_breaks(breaks) result = op(index, other) expected = expected_type(self.elementwise_comparison(op, index, other)) assert_func(result, expected) other = [index[0], breaks[0], "foo"] result = op(index, other) expected = expected_type(self.elementwise_comparison(op, index, other)) assert_func(result, expected) @pytest.mark.parametrize("scalars", ["a", False, 1, 1.0, None]) def test_comparison_operations(self, scalars): # GH #28981 expected = Series([False, False]) s = Series([Interval(0, 1), Interval(1, 2)], dtype="interval") result = s == scalars tm.assert_series_equal(result, expected)