from typing import Optional, Type import pytest import pandas as pd import pandas._testing as tm from pandas.core import ops from .base import BaseExtensionTests class BaseOpsUtil(BaseExtensionTests): def get_op_from_name(self, op_name): return tm.get_op_from_name(op_name) def check_opname(self, s, op_name, other, exc=Exception): op = self.get_op_from_name(op_name) self._check_op(s, op, other, op_name, exc) def _check_op(self, s, op, other, op_name, exc=NotImplementedError): if exc is None: result = op(s, other) if isinstance(s, pd.DataFrame): if len(s.columns) != 1: raise NotImplementedError expected = s.iloc[:, 0].combine(other, op).to_frame() self.assert_frame_equal(result, expected) else: expected = s.combine(other, op) self.assert_series_equal(result, expected) else: with pytest.raises(exc): op(s, other) def _check_divmod_op(self, s, op, other, exc=Exception): # divmod has multiple return values, so check separately if exc is None: result_div, result_mod = op(s, other) if op is divmod: expected_div, expected_mod = s // other, s % other else: expected_div, expected_mod = other // s, other % s self.assert_series_equal(result_div, expected_div) self.assert_series_equal(result_mod, expected_mod) else: with pytest.raises(exc): divmod(s, other) class BaseArithmeticOpsTests(BaseOpsUtil): """ Various Series and DataFrame arithmetic ops methods. Subclasses supporting various ops should set the class variables to indicate that they support ops of that kind * series_scalar_exc = TypeError * frame_scalar_exc = TypeError * series_array_exc = TypeError * divmod_exc = TypeError """ series_scalar_exc: Optional[Type[TypeError]] = TypeError frame_scalar_exc: Optional[Type[TypeError]] = TypeError series_array_exc: Optional[Type[TypeError]] = TypeError divmod_exc: Optional[Type[TypeError]] = TypeError def test_arith_series_with_scalar(self, data, all_arithmetic_operators): # series & scalar op_name = all_arithmetic_operators s = pd.Series(data) self.check_opname(s, op_name, s.iloc[0], exc=self.series_scalar_exc) @pytest.mark.xfail(run=False, reason="_reduce needs implementation") def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar op_name = all_arithmetic_operators df = pd.DataFrame({"A": data}) self.check_opname(df, op_name, data[0], exc=self.frame_scalar_exc) def test_arith_series_with_array(self, data, all_arithmetic_operators): # ndarray & other series op_name = all_arithmetic_operators s = pd.Series(data) self.check_opname( s, op_name, pd.Series([s.iloc[0]] * len(s)), exc=self.series_array_exc ) def test_divmod(self, data): s = pd.Series(data) self._check_divmod_op(s, divmod, 1, exc=self.divmod_exc) self._check_divmod_op(1, ops.rdivmod, s, exc=self.divmod_exc) def test_divmod_series_array(self, data, data_for_twos): s = pd.Series(data) self._check_divmod_op(s, divmod, data) other = data_for_twos self._check_divmod_op(other, ops.rdivmod, s) other = pd.Series(other) self._check_divmod_op(other, ops.rdivmod, s) def test_add_series_with_extension_array(self, data): s = pd.Series(data) result = s + data expected = pd.Series(data + data) self.assert_series_equal(result, expected) def test_error(self, data, all_arithmetic_operators): # invalid ops op_name = all_arithmetic_operators with pytest.raises(AttributeError): getattr(data, op_name) @pytest.mark.parametrize("box", [pd.Series, pd.DataFrame]) def test_direct_arith_with_ndframe_returns_not_implemented(self, data, box): # EAs should return NotImplemented for ops with Series/DataFrame # Pandas takes care of unboxing the series and calling the EA's op. other = pd.Series(data) if box is pd.DataFrame: other = other.to_frame() if hasattr(data, "__add__"): result = data.__add__(other) assert result is NotImplemented else: raise pytest.skip(f"{type(data).__name__} does not implement add") class BaseComparisonOpsTests(BaseOpsUtil): """Various Series and DataFrame comparison ops methods.""" def _compare_other(self, s, data, op_name, other): op = self.get_op_from_name(op_name) if op_name == "__eq__": assert not op(s, other).all() elif op_name == "__ne__": assert op(s, other).all() else: # array assert getattr(data, op_name)(other) is NotImplemented # series s = pd.Series(data) with pytest.raises(TypeError): op(s, other) def test_compare_scalar(self, data, all_compare_operators): op_name = all_compare_operators s = pd.Series(data) self._compare_other(s, data, op_name, 0) def test_compare_array(self, data, all_compare_operators): op_name = all_compare_operators s = pd.Series(data) other = pd.Series([data[0]] * len(data)) self._compare_other(s, data, op_name, other) @pytest.mark.parametrize("box", [pd.Series, pd.DataFrame]) def test_direct_arith_with_ndframe_returns_not_implemented(self, data, box): # EAs should return NotImplemented for ops with Series/DataFrame # Pandas takes care of unboxing the series and calling the EA's op. other = pd.Series(data) if box is pd.DataFrame: other = other.to_frame() if hasattr(data, "__eq__"): result = data.__eq__(other) assert result is NotImplemented else: raise pytest.skip(f"{type(data).__name__} does not implement __eq__") if hasattr(data, "__ne__"): result = data.__ne__(other) assert result is NotImplemented else: raise pytest.skip(f"{type(data).__name__} does not implement __ne__") class BaseUnaryOpsTests(BaseOpsUtil): def test_invert(self, data): s = pd.Series(data, name="name") result = ~s expected = pd.Series(~data, name="name") self.assert_series_equal(result, expected)