""" test setting *parts* of objects both positionally and label based TODO: these should be split among the indexer tests """ import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Period, Series, Timestamp, date_range, period_range import pandas._testing as tm class TestPartialSetting: def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5.0 expected = Series([1, 2, 3, 5.0], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5.0 expected = Series([1, 2, 3, 5.0], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() msg = "iloc cannot enlarge its target object" with pytest.raises(IndexError, match=msg): s.iloc[3] = 5.0 msg = "index 3 is out of bounds for axis 0 with size 3" with pytest.raises(IndexError, match=msg): s.iat[3] = 5.0 # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=["A", "B"], dtype="int64" ) # iloc/iat raise df = df_orig.copy() msg = "iloc cannot enlarge its target object" with pytest.raises(IndexError, match=msg): df.iloc[4, 2] = 5.0 msg = "index 2 is out of bounds for axis 0 with size 2" with pytest.raises(IndexError, match=msg): df.iat[4, 2] = 5.0 # row setting where it exists expected = DataFrame(dict({"A": [0, 4, 4], "B": [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({"A": [0, 4, 4], "B": [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({"A": [0, 2, 4, 4], "B": [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({"A": [0, 2, 4], "B": [0, 2, 4]})) df = df_orig.copy() df.loc[:, "B"] = df.loc[:, "A"] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({"A": [0, 2, 4], "B": Series([0, 2, 4])})) df = df_orig.copy() df["B"] = df["B"].astype(np.float64) df.loc[:, "B"] = df.loc[:, "A"] tm.assert_frame_equal(df, expected) # single dtype frame, partial setting expected = df_orig.copy() expected["C"] = df["A"] df = df_orig.copy() df.loc[:, "C"] = df.loc[:, "A"] tm.assert_frame_equal(df, expected) # mixed frame, partial setting expected = df_orig.copy() expected["C"] = df["A"] df = df_orig.copy() df.loc[:, "C"] = df.loc[:, "A"] tm.assert_frame_equal(df, expected) # GH 8473 dates = date_range("1/1/2000", periods=8) df_orig = DataFrame( np.random.randn(8, 4), index=dates, columns=["A", "B", "C", "D"] ) expected = pd.concat( [df_orig, DataFrame({"A": 7}, index=dates[-1:] + dates.freq)], sort=True ) df = df_orig.copy() df.loc[dates[-1] + dates.freq, "A"] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + dates.freq, "A"] = 7 tm.assert_frame_equal(df, expected) exp_other = DataFrame({0: 7}, index=dates[-1:] + dates.freq) expected = pd.concat([df_orig, exp_other], axis=1) df = df_orig.copy() df.loc[dates[-1] + dates.freq, 0] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + dates.freq, 0] = 7 tm.assert_frame_equal(df, expected) def test_partial_setting_mixed_dtype(self): # in a mixed dtype environment, try to preserve dtypes # by appending df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) s = df.loc[1].copy() s.name = 2 expected = df.append(s) df.loc[2] = df.loc[1] tm.assert_frame_equal(df, expected) # columns will align df = DataFrame(columns=["A", "B"]) df.loc[0] = Series(1, index=range(4)) tm.assert_frame_equal(df, DataFrame(columns=["A", "B"], index=[0])) # columns will align df = DataFrame(columns=["A", "B"]) df.loc[0] = Series(1, index=["B"]) exp = DataFrame([[np.nan, 1]], columns=["A", "B"], index=[0], dtype="float64") tm.assert_frame_equal(df, exp) # list-like must conform df = DataFrame(columns=["A", "B"]) msg = "cannot set a row with mismatched columns" with pytest.raises(ValueError, match=msg): df.loc[0] = [1, 2, 3] # TODO: #15657, these are left as object and not coerced df = DataFrame(columns=["A", "B"]) df.loc[3] = [6, 7] exp = DataFrame([[6, 7]], index=[3], columns=["A", "B"], dtype="object") tm.assert_frame_equal(df, exp) def test_series_partial_set(self): # partial set with new index # Regression from GH4825 ser = Series([0.1, 0.2], index=[1, 2]) # loc equiv to .reindex expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[3, 2, 3]] result = ser.reindex([3, 2, 3]) tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, "x"]) with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[3, 2, 3, "x"]] result = ser.reindex([3, 2, 3, "x"]) tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, "x", 1]) with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[2, 2, "x", 1]] result = ser.reindex([2, 2, "x", 1]) tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing is in the index msg = ( r"\"None of \[Int64Index\(\[3, 3, 3\], dtype='int64'\)\] are " r"in the \[index\]\"" ) with pytest.raises(KeyError, match=msg): ser.loc[[3, 3, 3]] expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[2, 2, 3]] result = ser.reindex([2, 2, 3]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3], index=[1, 2, 3]) expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[3, 4, 4]] result = s.reindex([3, 4, 4]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[5, 3, 3]] result = s.reindex([5, 3, 3]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[5, 4, 4]] result = s.reindex([5, 4, 4]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]) expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[7, 2, 2]] result = s.reindex([7, 2, 2]) tm.assert_series_equal(result, expected, check_index_type=True) s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]) expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) with pytest.raises(KeyError, match="with any missing labels"): s.loc[[4, 5, 5]] result = s.reindex([4, 5, 5]) tm.assert_series_equal(result, expected, check_index_type=True) # iloc expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_series_partial_set_with_name(self): # GH 11497 idx = Index([1, 2], dtype="int64", name="idx") ser = Series([0.1, 0.2], index=idx, name="s") # loc with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[3, 2, 3]] with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[3, 2, 3, "x"]] exp_idx = Index([2, 2, 1], dtype="int64", name="idx") expected = Series([0.2, 0.2, 0.1], index=exp_idx, name="s") result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[2, 2, "x", 1]] # raises as nothing is in the index msg = ( r"\"None of \[Int64Index\(\[3, 3, 3\], dtype='int64', " r"name='idx'\)\] are in the \[index\]\"" ) with pytest.raises(KeyError, match=msg): ser.loc[[3, 3, 3]] with pytest.raises(KeyError, match="with any missing labels"): ser.loc[[2, 2, 3]] idx = Index([1, 2, 3], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3], index=idx, name="s").loc[[3, 4, 4]] idx = Index([1, 2, 3, 4], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[5, 3, 3]] idx = Index([1, 2, 3, 4], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[5, 4, 4]] idx = Index([4, 5, 6, 7], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[7, 2, 2]] idx = Index([1, 2, 3, 4], dtype="int64", name="idx") with pytest.raises(KeyError, match="with any missing labels"): Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[4, 5, 5]] # iloc exp_idx = Index([2, 2, 1, 1], dtype="int64", name="idx") expected = Series([0.2, 0.2, 0.1, 0.1], index=exp_idx, name="s") result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_partial_set_invalid(self): # GH 4940 # allow only setting of 'valid' values orig = tm.makeTimeDataFrame() df = orig.copy() # don't allow not string inserts msg = r"value should be a 'Timestamp' or 'NaT'\. Got '.*' instead\." with pytest.raises(TypeError, match=msg): df.loc[100.0, :] = df.iloc[0] with pytest.raises(TypeError, match=msg): df.loc[100, :] = df.iloc[0] # allow object conversion here df = orig.copy() df.loc["a", :] = df.iloc[0] exp = orig.append(Series(df.iloc[0], name="a")) tm.assert_frame_equal(df, exp) tm.assert_index_equal(df.index, Index(orig.index.tolist() + ["a"])) assert df.index.dtype == "object" def test_partial_set_empty_frame(self): # partially set with an empty object # frame df = DataFrame() msg = "cannot set a frame with no defined columns" with pytest.raises(ValueError, match=msg): df.loc[1] = 1 with pytest.raises(ValueError, match=msg): df.loc[1] = Series([1], index=["foo"]) msg = "cannot set a frame with no defined index and a scalar" with pytest.raises(ValueError, match=msg): df.loc[:, 1] = 1 # these work as they don't really change # anything but the index # GH5632 expected = DataFrame(columns=["foo"], index=Index([], dtype="object")) def f(): df = DataFrame(index=Index([], dtype="object")) df["foo"] = Series([], dtype="object") return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df["foo"] = Series(df.index) return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df["foo"] = df.index return df tm.assert_frame_equal(f(), expected) expected = DataFrame(columns=["foo"], index=Index([], dtype="int64")) expected["foo"] = expected["foo"].astype("float64") def f(): df = DataFrame(index=Index([], dtype="int64")) df["foo"] = [] return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame(index=Index([], dtype="int64")) df["foo"] = Series(np.arange(len(df)), dtype="float64") return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame(index=Index([], dtype="int64")) df["foo"] = range(len(df)) return df expected = DataFrame(columns=["foo"], index=Index([], dtype="int64")) expected["foo"] = expected["foo"].astype("float64") tm.assert_frame_equal(f(), expected) df = DataFrame() tm.assert_index_equal(df.columns, Index([], dtype=object)) df2 = DataFrame() df2[1] = Series([1], index=["foo"]) df.loc[:, 1] = Series([1], index=["foo"]) tm.assert_frame_equal(df, DataFrame([[1]], index=["foo"], columns=[1])) tm.assert_frame_equal(df, df2) # no index to start expected = DataFrame({0: Series(1, index=range(4))}, columns=["A", "B", 0]) df = DataFrame(columns=["A", "B"]) df[0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) df = DataFrame(columns=["A", "B"]) df.loc[:, 0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_row(self): # GH5720, GH5744 # don't create rows when empty expected = DataFrame(columns=["A", "B", "New"], index=Index([], dtype="int64")) expected["A"] = expected["A"].astype("int64") expected["B"] = expected["B"].astype("float64") expected["New"] = expected["New"].astype("float64") df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] y["New"] = np.nan tm.assert_frame_equal(y, expected) # tm.assert_frame_equal(y,expected) expected = DataFrame(columns=["a", "b", "c c", "d"]) expected["d"] = expected["d"].astype("int64") df = DataFrame(columns=["a", "b", "c c"]) df["d"] = 3 tm.assert_frame_equal(df, expected) tm.assert_series_equal(df["c c"], Series(name="c c", dtype=object)) # reindex columns is ok df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] result = y.reindex(columns=["A", "B", "C"]) expected = DataFrame(columns=["A", "B", "C"], index=Index([], dtype="int64")) expected["A"] = expected["A"].astype("int64") expected["B"] = expected["B"].astype("float64") expected["C"] = expected["C"].astype("float64") tm.assert_frame_equal(result, expected) def test_partial_set_empty_frame_set_series(self): # GH 5756 # setting with empty Series df = DataFrame(Series(dtype=object)) expected = DataFrame({0: Series(dtype=object)}) tm.assert_frame_equal(df, expected) df = DataFrame(Series(name="foo", dtype=object)) expected = DataFrame({"foo": Series(dtype=object)}) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_empty_copy_assignment(self): # GH 5932 # copy on empty with assignment fails df = DataFrame(index=[0]) df = df.copy() df["a"] = 0 expected = DataFrame(0, index=[0], columns=["a"]) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_empty_consistencies(self): # GH 6171 # consistency on empty frames df = DataFrame(columns=["x", "y"]) df["x"] = [1, 2] expected = DataFrame({"x": [1, 2], "y": [np.nan, np.nan]}) tm.assert_frame_equal(df, expected, check_dtype=False) df = DataFrame(columns=["x", "y"]) df["x"] = ["1", "2"] expected = DataFrame({"x": ["1", "2"], "y": [np.nan, np.nan]}, dtype=object) tm.assert_frame_equal(df, expected) df = DataFrame(columns=["x", "y"]) df.loc[0, "x"] = 1 expected = DataFrame({"x": [1], "y": [np.nan]}) tm.assert_frame_equal(df, expected, check_dtype=False) @pytest.mark.parametrize( "idx,labels,expected_idx", [ ( period_range(start="2000", periods=20, freq="D"), ["2000-01-04", "2000-01-08", "2000-01-12"], [ Period("2000-01-04", freq="D"), Period("2000-01-08", freq="D"), Period("2000-01-12", freq="D"), ], ), ( date_range(start="2000", periods=20, freq="D"), ["2000-01-04", "2000-01-08", "2000-01-12"], [ Timestamp("2000-01-04", freq="D"), Timestamp("2000-01-08", freq="D"), Timestamp("2000-01-12", freq="D"), ], ), ( pd.timedelta_range(start="1 day", periods=20), ["4D", "8D", "12D"], [pd.Timedelta("4 day"), pd.Timedelta("8 day"), pd.Timedelta("12 day")], ), ], ) def test_loc_with_list_of_strings_representing_datetimes( self, idx, labels, expected_idx, frame_or_series ): # GH 11278 obj = frame_or_series(range(20), index=idx) expected_value = [3, 7, 11] expected = frame_or_series(expected_value, expected_idx) tm.assert_equal(expected, obj.loc[labels]) if frame_or_series is Series: tm.assert_series_equal(expected, obj[labels]) @pytest.mark.parametrize( "idx,labels", [ ( period_range(start="2000", periods=20, freq="D"), ["2000-01-04", "2000-01-30"], ), ( date_range(start="2000", periods=20, freq="D"), ["2000-01-04", "2000-01-30"], ), (pd.timedelta_range(start="1 day", periods=20), ["3 day", "30 day"]), ], ) def test_loc_with_list_of_strings_representing_datetimes_missing_value( self, idx, labels ): # GH 11278 s = Series(range(20), index=idx) df = DataFrame(range(20), index=idx) msg = r"with any missing labels" with pytest.raises(KeyError, match=msg): s.loc[labels] with pytest.raises(KeyError, match=msg): s[labels] with pytest.raises(KeyError, match=msg): df.loc[labels] @pytest.mark.parametrize( "idx,labels,msg", [ ( period_range(start="2000", periods=20, freq="D"), ["4D", "8D"], ( r"None of \[Index\(\['4D', '8D'\], dtype='object'\)\] " r"are in the \[index\]" ), ), ( date_range(start="2000", periods=20, freq="D"), ["4D", "8D"], ( r"None of \[Index\(\['4D', '8D'\], dtype='object'\)\] " r"are in the \[index\]" ), ), ( pd.timedelta_range(start="1 day", periods=20), ["2000-01-04", "2000-01-08"], ( r"None of \[Index\(\['2000-01-04', '2000-01-08'\], " r"dtype='object'\)\] are in the \[index\]" ), ), ], ) def test_loc_with_list_of_strings_representing_datetimes_not_matched_type( self, idx, labels, msg ): # GH 11278 s = Series(range(20), index=idx) df = DataFrame(range(20), index=idx) with pytest.raises(KeyError, match=msg): s.loc[labels] with pytest.raises(KeyError, match=msg): s[labels] with pytest.raises(KeyError, match=msg): df.loc[labels] def test_index_name_empty(self): # GH 31368 df = DataFrame({}, index=pd.RangeIndex(0, name="df_index")) series = Series(1.23, index=pd.RangeIndex(4, name="series_index")) df["series"] = series expected = DataFrame( {"series": [1.23] * 4}, index=pd.RangeIndex(4, name="df_index") ) tm.assert_frame_equal(df, expected) # GH 36527 df = DataFrame() series = Series(1.23, index=pd.RangeIndex(4, name="series_index")) df["series"] = series expected = DataFrame( {"series": [1.23] * 4}, index=pd.RangeIndex(4, name="series_index") ) tm.assert_frame_equal(df, expected) def test_slice_irregular_datetime_index_with_nan(self): # GH36953 index = pd.to_datetime(["2012-01-01", "2012-01-02", "2012-01-03", None]) df = DataFrame(range(len(index)), index=index) expected = DataFrame(range(len(index[:3])), index=index[:3]) result = df["2012-01-01":"2012-01-04"] tm.assert_frame_equal(result, expected)