from datetime import datetime, timedelta import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import Float64Index, Index, Int64Index, Series, UInt64Index import pandas._testing as tm from pandas.tests.indexes.common import Base class Numeric(Base): def test_where(self): # Tested in numeric.test_indexing pass def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is False def test_format(self): # GH35439 idx = self.create_index() max_width = max(len(str(x)) for x in idx) expected = [str(x).ljust(max_width) for x in idx] assert idx.format() == expected def test_numeric_compat(self): pass # override Base method def test_explicit_conversions(self): # GH 8608 # add/sub are overridden explicitly for Float/Int Index idx = self._holder(np.arange(5, dtype="int64")) # float conversions arr = np.arange(5, dtype="int64") * 3.2 expected = Float64Index(arr) fidx = idx * 3.2 tm.assert_index_equal(fidx, expected) fidx = 3.2 * idx tm.assert_index_equal(fidx, expected) # interops with numpy arrays expected = Float64Index(arr) a = np.zeros(5, dtype="float64") result = fidx - a tm.assert_index_equal(result, expected) expected = Float64Index(-arr) a = np.zeros(5, dtype="float64") result = a - fidx tm.assert_index_equal(result, expected) def test_index_groupby(self): int_idx = Index(range(6)) float_idx = Index(np.arange(0, 0.6, 0.1)) obj_idx = Index("A B C D E F".split()) dt_idx = pd.date_range("2013-01-01", freq="M", periods=6) for idx in [int_idx, float_idx, obj_idx, dt_idx]: to_groupby = np.array([1, 2, np.nan, np.nan, 2, 1]) tm.assert_dict_equal( idx.groupby(to_groupby), {1.0: idx[[0, 5]], 2.0: idx[[1, 4]]} ) to_groupby = Index( [ datetime(2011, 11, 1), datetime(2011, 12, 1), pd.NaT, pd.NaT, datetime(2011, 12, 1), datetime(2011, 11, 1), ], tz="UTC", ).values ex_keys = [Timestamp("2011-11-01"), Timestamp("2011-12-01")] expected = {ex_keys[0]: idx[[0, 5]], ex_keys[1]: idx[[1, 4]]} tm.assert_dict_equal(idx.groupby(to_groupby), expected) def test_insert(self, nulls_fixture): # GH 18295 (test missing) index = self.create_index() expected = Float64Index([index[0], np.nan] + list(index[1:])) result = index.insert(1, nulls_fixture) tm.assert_index_equal(result, expected) class TestFloat64Index(Numeric): _holder = Float64Index @pytest.fixture( params=[ [1.5, 2, 3, 4, 5], [0.0, 2.5, 5.0, 7.5, 10.0], [5, 4, 3, 2, 1.5], [10.0, 7.5, 5.0, 2.5, 0.0], ], ids=["mixed", "float", "mixed_dec", "float_dec"], ) def index(self, request): return Float64Index(request.param) @pytest.fixture def mixed_index(self): return Float64Index([1.5, 2, 3, 4, 5]) @pytest.fixture def float_index(self): return Float64Index([0.0, 2.5, 5.0, 7.5, 10.0]) def create_index(self) -> Float64Index: return Float64Index(np.arange(5, dtype="float64")) def test_repr_roundtrip(self, index): tm.assert_index_equal(eval(repr(index)), index) def check_is_index(self, i): assert isinstance(i, Index) assert not isinstance(i, Float64Index) def check_coerce(self, a, b, is_float_index=True): assert a.equals(b) tm.assert_index_equal(a, b, exact=False) if is_float_index: assert isinstance(b, Float64Index) else: self.check_is_index(b) def test_constructor(self): # explicit construction index = Float64Index([1, 2, 3, 4, 5]) assert isinstance(index, Float64Index) expected = np.array([1, 2, 3, 4, 5], dtype="float64") tm.assert_numpy_array_equal(index.values, expected) index = Float64Index(np.array([1, 2, 3, 4, 5])) assert isinstance(index, Float64Index) index = Float64Index([1.0, 2, 3, 4, 5]) assert isinstance(index, Float64Index) index = Float64Index(np.array([1.0, 2, 3, 4, 5])) assert isinstance(index, Float64Index) assert index.dtype == float index = Float64Index(np.array([1.0, 2, 3, 4, 5]), dtype=np.float32) assert isinstance(index, Float64Index) assert index.dtype == np.float64 index = Float64Index(np.array([1, 2, 3, 4, 5]), dtype=np.float32) assert isinstance(index, Float64Index) assert index.dtype == np.float64 # nan handling result = Float64Index([np.nan, np.nan]) assert pd.isna(result.values).all() result = Float64Index(np.array([np.nan])) assert pd.isna(result.values).all() result = Index(np.array([np.nan])) assert pd.isna(result.values).all() @pytest.mark.parametrize( "index, dtype", [ (pd.Int64Index, "float64"), (pd.UInt64Index, "categorical"), (pd.Float64Index, "datetime64"), (pd.RangeIndex, "float64"), ], ) def test_invalid_dtype(self, index, dtype): # GH 29539 with pytest.raises( ValueError, match=rf"Incorrect `dtype` passed: expected \w+(?: \w+)?, received {dtype}", ): index([1, 2, 3], dtype=dtype) def test_constructor_invalid(self): # invalid msg = ( r"Float64Index\(\.\.\.\) must be called with a collection of " r"some kind, 0\.0 was passed" ) with pytest.raises(TypeError, match=msg): Float64Index(0.0) msg = ( "String dtype not supported, " "you may need to explicitly cast to a numeric type" ) with pytest.raises(TypeError, match=msg): Float64Index(["a", "b", 0.0]) msg = r"float\(\) argument must be a string or a number, not 'Timestamp'" with pytest.raises(TypeError, match=msg): Float64Index([Timestamp("20130101")]) def test_constructor_coerce(self, mixed_index, float_index): self.check_coerce(mixed_index, Index([1.5, 2, 3, 4, 5])) self.check_coerce(float_index, Index(np.arange(5) * 2.5)) self.check_coerce( float_index, Index(np.array(np.arange(5) * 2.5, dtype=object)) ) def test_constructor_explicit(self, mixed_index, float_index): # these don't auto convert self.check_coerce( float_index, Index((np.arange(5) * 2.5), dtype=object), is_float_index=False ) self.check_coerce( mixed_index, Index([1.5, 2, 3, 4, 5], dtype=object), is_float_index=False ) def test_type_coercion_fail(self, any_int_dtype): # see gh-15832 msg = "Trying to coerce float values to integers" with pytest.raises(ValueError, match=msg): Index([1, 2, 3.5], dtype=any_int_dtype) def test_type_coercion_valid(self, float_dtype): # There is no Float32Index, so we always # generate Float64Index. i = Index([1, 2, 3.5], dtype=float_dtype) tm.assert_index_equal(i, Index([1, 2, 3.5])) def test_equals_numeric(self): i = Float64Index([1.0, 2.0]) assert i.equals(i) assert i.identical(i) i2 = Float64Index([1.0, 2.0]) assert i.equals(i2) i = Float64Index([1.0, np.nan]) assert i.equals(i) assert i.identical(i) i2 = Float64Index([1.0, np.nan]) assert i.equals(i2) @pytest.mark.parametrize( "other", ( Int64Index([1, 2]), Index([1.0, 2.0], dtype=object), Index([1, 2], dtype=object), ), ) def test_equals_numeric_other_index_type(self, other): i = Float64Index([1.0, 2.0]) assert i.equals(other) assert other.equals(i) @pytest.mark.parametrize( "vals", [ pd.date_range("2016-01-01", periods=3), pd.timedelta_range("1 Day", periods=3), ], ) def test_lookups_datetimelike_values(self, vals): # If we have datetime64 or timedelta64 values, make sure they are # wrappped correctly GH#31163 ser = pd.Series(vals, index=range(3, 6)) ser.index = ser.index.astype("float64") expected = vals[1] with tm.assert_produces_warning(FutureWarning): result = ser.index.get_value(ser, 4.0) assert isinstance(result, type(expected)) and result == expected with tm.assert_produces_warning(FutureWarning): result = ser.index.get_value(ser, 4) assert isinstance(result, type(expected)) and result == expected result = ser[4.0] assert isinstance(result, type(expected)) and result == expected result = ser[4] assert isinstance(result, type(expected)) and result == expected result = ser.loc[4.0] assert isinstance(result, type(expected)) and result == expected result = ser.loc[4] assert isinstance(result, type(expected)) and result == expected result = ser.at[4.0] assert isinstance(result, type(expected)) and result == expected # GH#31329 .at[4] should cast to 4.0, matching .loc behavior result = ser.at[4] assert isinstance(result, type(expected)) and result == expected result = ser.iloc[1] assert isinstance(result, type(expected)) and result == expected result = ser.iat[1] assert isinstance(result, type(expected)) and result == expected def test_doesnt_contain_all_the_things(self): i = Float64Index([np.nan]) assert not i.isin([0]).item() assert not i.isin([1]).item() assert i.isin([np.nan]).item() def test_nan_multiple_containment(self): i = Float64Index([1.0, np.nan]) tm.assert_numpy_array_equal(i.isin([1.0]), np.array([True, False])) tm.assert_numpy_array_equal(i.isin([2.0, np.pi]), np.array([False, False])) tm.assert_numpy_array_equal(i.isin([np.nan]), np.array([False, True])) tm.assert_numpy_array_equal(i.isin([1.0, np.nan]), np.array([True, True])) i = Float64Index([1.0, 2.0]) tm.assert_numpy_array_equal(i.isin([np.nan]), np.array([False, False])) def test_fillna_float64(self): # GH 11343 idx = Index([1.0, np.nan, 3.0], dtype=float, name="x") # can't downcast exp = Index([1.0, 0.1, 3.0], name="x") tm.assert_index_equal(idx.fillna(0.1), exp) # downcast exp = Float64Index([1.0, 2.0, 3.0], name="x") tm.assert_index_equal(idx.fillna(2), exp) # object exp = Index([1.0, "obj", 3.0], name="x") tm.assert_index_equal(idx.fillna("obj"), exp) class NumericInt(Numeric): def test_view(self): i = self._holder([], name="Foo") i_view = i.view() assert i_view.name == "Foo" i_view = i.view(self._dtype) tm.assert_index_equal(i, self._holder(i_view, name="Foo")) i_view = i.view(self._holder) tm.assert_index_equal(i, self._holder(i_view, name="Foo")) def test_is_monotonic(self): index = self._holder([1, 2, 3, 4]) assert index.is_monotonic is True assert index.is_monotonic_increasing is True assert index._is_strictly_monotonic_increasing is True assert index.is_monotonic_decreasing is False assert index._is_strictly_monotonic_decreasing is False index = self._holder([4, 3, 2, 1]) assert index.is_monotonic is False assert index._is_strictly_monotonic_increasing is False assert index._is_strictly_monotonic_decreasing is True index = self._holder([1]) assert index.is_monotonic is True assert index.is_monotonic_increasing is True assert index.is_monotonic_decreasing is True assert index._is_strictly_monotonic_increasing is True assert index._is_strictly_monotonic_decreasing is True def test_is_strictly_monotonic(self): index = self._holder([1, 1, 2, 3]) assert index.is_monotonic_increasing is True assert index._is_strictly_monotonic_increasing is False index = self._holder([3, 2, 1, 1]) assert index.is_monotonic_decreasing is True assert index._is_strictly_monotonic_decreasing is False index = self._holder([1, 1]) assert index.is_monotonic_increasing assert index.is_monotonic_decreasing assert not index._is_strictly_monotonic_increasing assert not index._is_strictly_monotonic_decreasing def test_logical_compat(self): idx = self.create_index() assert idx.all() == idx.values.all() assert idx.any() == idx.values.any() def test_identical(self): index = self.create_index() i = Index(index.copy()) assert i.identical(index) same_values_different_type = Index(i, dtype=object) assert not i.identical(same_values_different_type) i = index.copy(dtype=object) i = i.rename("foo") same_values = Index(i, dtype=object) assert same_values.identical(i) assert not i.identical(index) assert Index(same_values, name="foo", dtype=object).identical(i) assert not index.copy(dtype=object).identical(index.copy(dtype=self._dtype)) def test_union_noncomparable(self): # corner case, non-Int64Index index = self.create_index() other = Index([datetime.now() + timedelta(i) for i in range(4)], dtype=object) result = index.union(other) expected = Index(np.concatenate((index, other))) tm.assert_index_equal(result, expected) result = other.union(index) expected = Index(np.concatenate((other, index))) tm.assert_index_equal(result, expected) def test_cant_or_shouldnt_cast(self): msg = ( "String dtype not supported, " "you may need to explicitly cast to a numeric type" ) # can't data = ["foo", "bar", "baz"] with pytest.raises(TypeError, match=msg): self._holder(data) # shouldn't data = ["0", "1", "2"] with pytest.raises(TypeError, match=msg): self._holder(data) def test_view_index(self): index = self.create_index() index.view(Index) def test_prevent_casting(self): index = self.create_index() result = index.astype("O") assert result.dtype == np.object_ class TestInt64Index(NumericInt): _dtype = "int64" _holder = Int64Index @pytest.fixture( params=[range(0, 20, 2), range(19, -1, -1)], ids=["index_inc", "index_dec"] ) def index(self, request): return Int64Index(request.param) def create_index(self) -> Int64Index: # return Int64Index(np.arange(5, dtype="int64")) return Int64Index(range(0, 20, 2)) def test_constructor(self): # pass list, coerce fine index = Int64Index([-5, 0, 1, 2]) expected = Index([-5, 0, 1, 2], dtype=np.int64) tm.assert_index_equal(index, expected) # from iterable index = Int64Index(iter([-5, 0, 1, 2])) tm.assert_index_equal(index, expected) # scalar raise Exception msg = ( r"Int64Index\(\.\.\.\) must be called with a collection of some " "kind, 5 was passed" ) with pytest.raises(TypeError, match=msg): Int64Index(5) # copy arr = index.values new_index = Int64Index(arr, copy=True) tm.assert_index_equal(new_index, index) val = arr[0] + 3000 # this should not change index arr[0] = val assert new_index[0] != val # interpret list-like expected = Int64Index([5, 0]) for cls in [Index, Int64Index]: for idx in [ cls([5, 0], dtype="int64"), cls(np.array([5, 0]), dtype="int64"), cls(Series([5, 0]), dtype="int64"), ]: tm.assert_index_equal(idx, expected) def test_constructor_corner(self): arr = np.array([1, 2, 3, 4], dtype=object) index = Int64Index(arr) assert index.values.dtype == np.int64 tm.assert_index_equal(index, Index(arr)) # preventing casting arr = np.array([1, "2", 3, "4"], dtype=object) with pytest.raises(TypeError, match="casting"): Int64Index(arr) arr_with_floats = [0, 2, 3, 4, 5, 1.25, 3, -1] with pytest.raises(TypeError, match="casting"): Int64Index(arr_with_floats) def test_constructor_coercion_signed_to_unsigned(self, uint_dtype): # see gh-15832 msg = "Trying to coerce negative values to unsigned integers" with pytest.raises(OverflowError, match=msg): Index([-1], dtype=uint_dtype) def test_constructor_unwraps_index(self): idx = pd.Index([1, 2]) result = pd.Int64Index(idx) expected = np.array([1, 2], dtype="int64") tm.assert_numpy_array_equal(result._data, expected) def test_coerce_list(self): # coerce things arr = Index([1, 2, 3, 4]) assert isinstance(arr, Int64Index) # but not if explicit dtype passed arr = Index([1, 2, 3, 4], dtype=object) assert isinstance(arr, Index) def test_intersection(self): index = self.create_index() other = Index([1, 2, 3, 4, 5]) result = index.intersection(other) expected = Index(np.sort(np.intersect1d(index.values, other.values))) tm.assert_index_equal(result, expected) result = other.intersection(index) expected = Index( np.sort(np.asarray(np.intersect1d(index.values, other.values))) ) tm.assert_index_equal(result, expected) class TestUInt64Index(NumericInt): _dtype = "uint64" _holder = UInt64Index @pytest.fixture( params=[ [2 ** 63, 2 ** 63 + 10, 2 ** 63 + 15, 2 ** 63 + 20, 2 ** 63 + 25], [2 ** 63 + 25, 2 ** 63 + 20, 2 ** 63 + 15, 2 ** 63 + 10, 2 ** 63], ], ids=["index_inc", "index_dec"], ) def index(self, request): return UInt64Index(request.param) @pytest.fixture def index_large(self): # large values used in TestUInt64Index where no compat needed with Int64/Float64 large = [2 ** 63, 2 ** 63 + 10, 2 ** 63 + 15, 2 ** 63 + 20, 2 ** 63 + 25] return UInt64Index(large) def create_index(self) -> UInt64Index: # compat with shared Int64/Float64 tests; use index_large for UInt64 only tests return UInt64Index(np.arange(5, dtype="uint64")) def test_constructor(self): idx = UInt64Index([1, 2, 3]) res = Index([1, 2, 3], dtype=np.uint64) tm.assert_index_equal(res, idx) idx = UInt64Index([1, 2 ** 63]) res = Index([1, 2 ** 63], dtype=np.uint64) tm.assert_index_equal(res, idx) idx = UInt64Index([1, 2 ** 63]) res = Index([1, 2 ** 63]) tm.assert_index_equal(res, idx) idx = Index([-1, 2 ** 63], dtype=object) res = Index(np.array([-1, 2 ** 63], dtype=object)) tm.assert_index_equal(res, idx) # https://github.com/pandas-dev/pandas/issues/29526 idx = UInt64Index([1, 2 ** 63 + 1], dtype=np.uint64) res = Index([1, 2 ** 63 + 1], dtype=np.uint64) tm.assert_index_equal(res, idx) def test_intersection(self, index_large): other = Index([2 ** 63, 2 ** 63 + 5, 2 ** 63 + 10, 2 ** 63 + 15, 2 ** 63 + 20]) result = index_large.intersection(other) expected = Index(np.sort(np.intersect1d(index_large.values, other.values))) tm.assert_index_equal(result, expected) result = other.intersection(index_large) expected = Index( np.sort(np.asarray(np.intersect1d(index_large.values, other.values))) ) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dtype", ["int64", "uint64"]) def test_int_float_union_dtype(dtype): # https://github.com/pandas-dev/pandas/issues/26778 # [u]int | float -> float index = pd.Index([0, 2, 3], dtype=dtype) other = pd.Float64Index([0.5, 1.5]) expected = pd.Float64Index([0.0, 0.5, 1.5, 2.0, 3.0]) result = index.union(other) tm.assert_index_equal(result, expected) result = other.union(index) tm.assert_index_equal(result, expected) def test_range_float_union_dtype(): # https://github.com/pandas-dev/pandas/issues/26778 index = pd.RangeIndex(start=0, stop=3) other = pd.Float64Index([0.5, 1.5]) result = index.union(other) expected = pd.Float64Index([0.0, 0.5, 1, 1.5, 2.0]) tm.assert_index_equal(result, expected) result = other.union(index) tm.assert_index_equal(result, expected) def test_uint_index_does_not_convert_to_float64(): # https://github.com/pandas-dev/pandas/issues/28279 # https://github.com/pandas-dev/pandas/issues/28023 series = pd.Series( [0, 1, 2, 3, 4, 5], index=[ 7606741985629028552, 17876870360202815256, 17876870360202815256, 13106359306506049338, 8991270399732411471, 8991270399732411472, ], ) result = series.loc[[7606741985629028552, 17876870360202815256]] expected = UInt64Index( [7606741985629028552, 17876870360202815256, 17876870360202815256], dtype="uint64", ) tm.assert_index_equal(result.index, expected) tm.assert_equal(result, series[:3]) def test_float64_index_equals(): # https://github.com/pandas-dev/pandas/issues/35217 float_index = pd.Index([1.0, 2, 3]) string_index = pd.Index(["1", "2", "3"]) result = float_index.equals(string_index) assert result is False result = string_index.equals(float_index) assert result is False def test_float64_index_difference(): # https://github.com/pandas-dev/pandas/issues/35217 float_index = pd.Index([1.0, 2, 3]) string_index = pd.Index(["1", "2", "3"]) result = float_index.difference(string_index) tm.assert_index_equal(result, float_index) result = string_index.difference(float_index) tm.assert_index_equal(result, string_index)