from datetime import datetime, timedelta import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, NaT, Period, PeriodIndex, RangeIndex, Series, Timedelta, TimedeltaIndex, Timestamp, isna, timedelta_range, to_timedelta, ) import pandas._testing as tm from pandas.core import nanops def get_objs(): indexes = [ tm.makeBoolIndex(10, name="a"), tm.makeIntIndex(10, name="a"), tm.makeFloatIndex(10, name="a"), tm.makeDateIndex(10, name="a"), tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern"), tm.makePeriodIndex(10, name="a"), tm.makeStringIndex(10, name="a"), tm.makeUnicodeIndex(10, name="a"), ] arr = np.random.randn(10) series = [Series(arr, index=idx, name="a") for idx in indexes] objs = indexes + series return objs objs = get_objs() class TestReductions: @pytest.mark.parametrize("opname", ["max", "min"]) @pytest.mark.parametrize("obj", objs) def test_ops(self, opname, obj): result = getattr(obj, opname)() if not isinstance(obj, PeriodIndex): expected = getattr(obj.values, opname)() else: expected = pd.Period(ordinal=getattr(obj.asi8, opname)(), freq=obj.freq) try: assert result == expected except TypeError: # comparing tz-aware series with np.array results in # TypeError expected = expected.astype("M8[ns]").astype("int64") assert result.value == expected @pytest.mark.parametrize("opname", ["max", "min"]) @pytest.mark.parametrize( "dtype, val", [ ("object", 2.0), ("float64", 2.0), ("datetime64[ns]", datetime(2011, 11, 1)), ("Int64", 2), ("boolean", True), ], ) def test_nanminmax(self, opname, dtype, val, index_or_series): # GH#7261 klass = index_or_series if dtype in ["Int64", "boolean"] and klass == pd.Index: pytest.skip("EAs can't yet be stored in an index") def check_missing(res): if dtype == "datetime64[ns]": return res is pd.NaT elif dtype == "Int64": return res is pd.NA else: return pd.isna(res) obj = klass([None], dtype=dtype) assert check_missing(getattr(obj, opname)()) assert check_missing(getattr(obj, opname)(skipna=False)) obj = klass([], dtype=dtype) assert check_missing(getattr(obj, opname)()) assert check_missing(getattr(obj, opname)(skipna=False)) if dtype == "object": # generic test with object only works for empty / all NaN return obj = klass([None, val], dtype=dtype) assert getattr(obj, opname)() == val assert check_missing(getattr(obj, opname)(skipna=False)) obj = klass([None, val, None], dtype=dtype) assert getattr(obj, opname)() == val assert check_missing(getattr(obj, opname)(skipna=False)) @pytest.mark.parametrize("opname", ["max", "min"]) def test_nanargminmax(self, opname, index_or_series): # GH#7261 klass = index_or_series arg_op = "arg" + opname if klass is Index else "idx" + opname obj = klass([pd.NaT, datetime(2011, 11, 1)]) assert getattr(obj, arg_op)() == 1 result = getattr(obj, arg_op)(skipna=False) if klass is Series: assert np.isnan(result) else: assert result == -1 obj = klass([pd.NaT, datetime(2011, 11, 1), pd.NaT]) # check DatetimeIndex non-monotonic path assert getattr(obj, arg_op)() == 1 result = getattr(obj, arg_op)(skipna=False) if klass is Series: assert np.isnan(result) else: assert result == -1 @pytest.mark.parametrize("opname", ["max", "min"]) @pytest.mark.parametrize("dtype", ["M8[ns]", "datetime64[ns, UTC]"]) def test_nanops_empty_object(self, opname, index_or_series, dtype): klass = index_or_series arg_op = "arg" + opname if klass is Index else "idx" + opname obj = klass([], dtype=dtype) assert getattr(obj, opname)() is pd.NaT assert getattr(obj, opname)(skipna=False) is pd.NaT with pytest.raises(ValueError, match="empty sequence"): getattr(obj, arg_op)() with pytest.raises(ValueError, match="empty sequence"): getattr(obj, arg_op)(skipna=False) def test_argminmax(self): obj = Index(np.arange(5, dtype="int64")) assert obj.argmin() == 0 assert obj.argmax() == 4 obj = Index([np.nan, 1, np.nan, 2]) assert obj.argmin() == 1 assert obj.argmax() == 3 assert obj.argmin(skipna=False) == -1 assert obj.argmax(skipna=False) == -1 obj = Index([np.nan]) assert obj.argmin() == -1 assert obj.argmax() == -1 assert obj.argmin(skipna=False) == -1 assert obj.argmax(skipna=False) == -1 obj = Index([pd.NaT, datetime(2011, 11, 1), datetime(2011, 11, 2), pd.NaT]) assert obj.argmin() == 1 assert obj.argmax() == 2 assert obj.argmin(skipna=False) == -1 assert obj.argmax(skipna=False) == -1 obj = Index([pd.NaT]) assert obj.argmin() == -1 assert obj.argmax() == -1 assert obj.argmin(skipna=False) == -1 assert obj.argmax(skipna=False) == -1 @pytest.mark.parametrize("op, expected_col", [["max", "a"], ["min", "b"]]) def test_same_tz_min_max_axis_1(self, op, expected_col): # GH 10390 df = DataFrame( pd.date_range("2016-01-01 00:00:00", periods=3, tz="UTC"), columns=["a"] ) df["b"] = df.a.subtract(pd.Timedelta(seconds=3600)) result = getattr(df, op)(axis=1) expected = df[expected_col].rename(None) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("func", ["maximum", "minimum"]) def test_numpy_reduction_with_tz_aware_dtype(self, tz_aware_fixture, func): # GH 15552 tz = tz_aware_fixture arg = pd.to_datetime(["2019"]).tz_localize(tz) expected = Series(arg) result = getattr(np, func)(expected, expected) tm.assert_series_equal(result, expected) class TestIndexReductions: # Note: the name TestIndexReductions indicates these tests # were moved from a Index-specific test file, _not_ that these tests are # intended long-term to be Index-specific @pytest.mark.parametrize( "start,stop,step", [ (0, 400, 3), (500, 0, -6), (-(10 ** 6), 10 ** 6, 4), (10 ** 6, -(10 ** 6), -4), (0, 10, 20), ], ) def test_max_min_range(self, start, stop, step): # GH#17607 idx = RangeIndex(start, stop, step) expected = idx._int64index.max() result = idx.max() assert result == expected # skipna should be irrelevant since RangeIndex should never have NAs result2 = idx.max(skipna=False) assert result2 == expected expected = idx._int64index.min() result = idx.min() assert result == expected # skipna should be irrelevant since RangeIndex should never have NAs result2 = idx.min(skipna=False) assert result2 == expected # empty idx = RangeIndex(start, stop, -step) assert isna(idx.max()) assert isna(idx.min()) def test_minmax_timedelta64(self): # monotonic idx1 = TimedeltaIndex(["1 days", "2 days", "3 days"]) assert idx1.is_monotonic # non-monotonic idx2 = TimedeltaIndex(["1 days", np.nan, "3 days", "NaT"]) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.min() == Timedelta("1 days") assert idx.max() == Timedelta("3 days") assert idx.argmin() == 0 assert idx.argmax() == 2 @pytest.mark.parametrize("op", ["min", "max"]) def test_minmax_timedelta_empty_or_na(self, op): # Return NaT obj = TimedeltaIndex([]) assert getattr(obj, op)() is pd.NaT obj = TimedeltaIndex([pd.NaT]) assert getattr(obj, op)() is pd.NaT obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) assert getattr(obj, op)() is pd.NaT def test_numpy_minmax_timedelta64(self): td = timedelta_range("16815 days", "16820 days", freq="D") assert np.min(td) == Timedelta("16815 days") assert np.max(td) == Timedelta("16820 days") errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.min(td, out=0) with pytest.raises(ValueError, match=errmsg): np.max(td, out=0) assert np.argmin(td) == 0 assert np.argmax(td) == 5 errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.argmin(td, out=0) with pytest.raises(ValueError, match=errmsg): np.argmax(td, out=0) def test_timedelta_ops(self): # GH#4984 # make sure ops return Timedelta s = Series( [Timestamp("20130101") + timedelta(seconds=i * i) for i in range(10)] ) td = s.diff() result = td.mean() expected = to_timedelta(timedelta(seconds=9)) assert result == expected result = td.to_frame().mean() assert result[0] == expected result = td.quantile(0.1) expected = Timedelta(np.timedelta64(2600, "ms")) assert result == expected result = td.median() expected = to_timedelta("00:00:09") assert result == expected result = td.to_frame().median() assert result[0] == expected # GH#6462 # consistency in returned values for sum result = td.sum() expected = to_timedelta("00:01:21") assert result == expected result = td.to_frame().sum() assert result[0] == expected # std result = td.std() expected = to_timedelta(Series(td.dropna().values).std()) assert result == expected result = td.to_frame().std() assert result[0] == expected # GH#10040 # make sure NaT is properly handled by median() s = Series([Timestamp("2015-02-03"), Timestamp("2015-02-07")]) assert s.diff().median() == timedelta(days=4) s = Series( [Timestamp("2015-02-03"), Timestamp("2015-02-07"), Timestamp("2015-02-15")] ) assert s.diff().median() == timedelta(days=6) @pytest.mark.parametrize("opname", ["skew", "kurt", "sem", "prod", "var"]) def test_invalid_td64_reductions(self, opname): s = Series( [Timestamp("20130101") + timedelta(seconds=i * i) for i in range(10)] ) td = s.diff() msg = "|".join( [ f"reduction operation '{opname}' not allowed for this dtype", rf"cannot perform {opname} with type timedelta64\[ns\]", ] ) with pytest.raises(TypeError, match=msg): getattr(td, opname)() with pytest.raises(TypeError, match=msg): getattr(td.to_frame(), opname)(numeric_only=False) def test_minmax_tz(self, tz_naive_fixture): tz = tz_naive_fixture # monotonic idx1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz=tz) assert idx1.is_monotonic # non-monotonic idx2 = pd.DatetimeIndex( ["2011-01-01", pd.NaT, "2011-01-03", "2011-01-02", pd.NaT], tz=tz ) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.min() == Timestamp("2011-01-01", tz=tz) assert idx.max() == Timestamp("2011-01-03", tz=tz) assert idx.argmin() == 0 assert idx.argmax() == 2 @pytest.mark.parametrize("op", ["min", "max"]) def test_minmax_nat_datetime64(self, op): # Return NaT obj = DatetimeIndex([]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT]) assert pd.isna(getattr(obj, op)()) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) assert pd.isna(getattr(obj, op)()) def test_numpy_minmax_integer(self): # GH#26125 idx = Index([1, 2, 3]) expected = idx.values.max() result = np.max(idx) assert result == expected expected = idx.values.min() result = np.min(idx) assert result == expected errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.min(idx, out=0) with pytest.raises(ValueError, match=errmsg): np.max(idx, out=0) expected = idx.values.argmax() result = np.argmax(idx) assert result == expected expected = idx.values.argmin() result = np.argmin(idx) assert result == expected errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.argmin(idx, out=0) with pytest.raises(ValueError, match=errmsg): np.argmax(idx, out=0) def test_numpy_minmax_range(self): # GH#26125 idx = RangeIndex(0, 10, 3) expected = idx._int64index.max() result = np.max(idx) assert result == expected expected = idx._int64index.min() result = np.min(idx) assert result == expected errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.min(idx, out=0) with pytest.raises(ValueError, match=errmsg): np.max(idx, out=0) # No need to test again argmax/argmin compat since the implementation # is the same as basic integer index def test_numpy_minmax_datetime64(self): dr = pd.date_range(start="2016-01-15", end="2016-01-20") assert np.min(dr) == Timestamp("2016-01-15 00:00:00", freq="D") assert np.max(dr) == Timestamp("2016-01-20 00:00:00", freq="D") errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.min(dr, out=0) with pytest.raises(ValueError, match=errmsg): np.max(dr, out=0) assert np.argmin(dr) == 0 assert np.argmax(dr) == 5 errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.argmin(dr, out=0) with pytest.raises(ValueError, match=errmsg): np.argmax(dr, out=0) def test_minmax_period(self): # monotonic idx1 = pd.PeriodIndex([NaT, "2011-01-01", "2011-01-02", "2011-01-03"], freq="D") assert not idx1.is_monotonic assert idx1[1:].is_monotonic # non-monotonic idx2 = pd.PeriodIndex( ["2011-01-01", NaT, "2011-01-03", "2011-01-02", NaT], freq="D" ) assert not idx2.is_monotonic for idx in [idx1, idx2]: assert idx.min() == pd.Period("2011-01-01", freq="D") assert idx.max() == pd.Period("2011-01-03", freq="D") assert idx1.argmin() == 1 assert idx2.argmin() == 0 assert idx1.argmax() == 3 assert idx2.argmax() == 2 for op in ["min", "max"]: # Return NaT obj = PeriodIndex([], freq="M") result = getattr(obj, op)() assert result is NaT obj = PeriodIndex([NaT], freq="M") result = getattr(obj, op)() assert result is NaT obj = PeriodIndex([NaT, NaT, NaT], freq="M") result = getattr(obj, op)() assert result is NaT def test_numpy_minmax_period(self): pr = pd.period_range(start="2016-01-15", end="2016-01-20") assert np.min(pr) == Period("2016-01-15", freq="D") assert np.max(pr) == Period("2016-01-20", freq="D") errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.min(pr, out=0) with pytest.raises(ValueError, match=errmsg): np.max(pr, out=0) assert np.argmin(pr) == 0 assert np.argmax(pr) == 5 errmsg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=errmsg): np.argmin(pr, out=0) with pytest.raises(ValueError, match=errmsg): np.argmax(pr, out=0) def test_min_max_categorical(self): ci = pd.CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False) with pytest.raises(TypeError): ci.min() with pytest.raises(TypeError): ci.max() ci = pd.CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=True) assert ci.min() == "c" assert ci.max() == "b" class TestSeriesReductions: # Note: the name TestSeriesReductions indicates these tests # were moved from a series-specific test file, _not_ that these tests are # intended long-term to be series-specific def test_sum_inf(self): s = Series(np.random.randn(10)) s2 = s.copy() s[5:8] = np.inf s2[5:8] = np.nan assert np.isinf(s.sum()) arr = np.random.randn(100, 100).astype("f4") arr[:, 2] = np.inf with pd.option_context("mode.use_inf_as_na", True): tm.assert_almost_equal(s.sum(), s2.sum()) res = nanops.nansum(arr, axis=1) assert np.isinf(res).all() @pytest.mark.parametrize("dtype", ["float64", "Int64", "boolean", "object"]) @pytest.mark.parametrize("use_bottleneck", [True, False]) @pytest.mark.parametrize("method, unit", [("sum", 0.0), ("prod", 1.0)]) def test_empty(self, method, unit, use_bottleneck, dtype): with pd.option_context("use_bottleneck", use_bottleneck): # GH#9422 / GH#18921 # Entirely empty s = Series([], dtype=dtype) # NA by default result = getattr(s, method)() assert result == unit # Explicit result = getattr(s, method)(min_count=0) assert result == unit result = getattr(s, method)(min_count=1) assert pd.isna(result) # Skipna, default result = getattr(s, method)(skipna=True) result == unit # Skipna, explicit result = getattr(s, method)(skipna=True, min_count=0) assert result == unit result = getattr(s, method)(skipna=True, min_count=1) assert pd.isna(result) result = getattr(s, method)(skipna=False, min_count=0) assert result == unit result = getattr(s, method)(skipna=False, min_count=1) assert pd.isna(result) # All-NA s = Series([np.nan], dtype=dtype) # NA by default result = getattr(s, method)() assert result == unit # Explicit result = getattr(s, method)(min_count=0) assert result == unit result = getattr(s, method)(min_count=1) assert pd.isna(result) # Skipna, default result = getattr(s, method)(skipna=True) result == unit # skipna, explicit result = getattr(s, method)(skipna=True, min_count=0) assert result == unit result = getattr(s, method)(skipna=True, min_count=1) assert pd.isna(result) # Mix of valid, empty s = Series([np.nan, 1], dtype=dtype) # Default result = getattr(s, method)() assert result == 1.0 # Explicit result = getattr(s, method)(min_count=0) assert result == 1.0 result = getattr(s, method)(min_count=1) assert result == 1.0 # Skipna result = getattr(s, method)(skipna=True) assert result == 1.0 result = getattr(s, method)(skipna=True, min_count=0) assert result == 1.0 # GH#844 (changed in GH#9422) df = DataFrame(np.empty((10, 0)), dtype=dtype) assert (getattr(df, method)(1) == unit).all() s = pd.Series([1], dtype=dtype) result = getattr(s, method)(min_count=2) assert pd.isna(result) result = getattr(s, method)(skipna=False, min_count=2) assert pd.isna(result) s = pd.Series([np.nan], dtype=dtype) result = getattr(s, method)(min_count=2) assert pd.isna(result) s = pd.Series([np.nan, 1], dtype=dtype) result = getattr(s, method)(min_count=2) assert pd.isna(result) @pytest.mark.parametrize("method, unit", [("sum", 0.0), ("prod", 1.0)]) def test_empty_multi(self, method, unit): s = pd.Series( [1, np.nan, np.nan, np.nan], index=pd.MultiIndex.from_product([("a", "b"), (0, 1)]), ) # 1 / 0 by default result = getattr(s, method)(level=0) expected = pd.Series([1, unit], index=["a", "b"]) tm.assert_series_equal(result, expected) # min_count=0 result = getattr(s, method)(level=0, min_count=0) expected = pd.Series([1, unit], index=["a", "b"]) tm.assert_series_equal(result, expected) # min_count=1 result = getattr(s, method)(level=0, min_count=1) expected = pd.Series([1, np.nan], index=["a", "b"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["mean", "median", "std", "var"]) def test_ops_consistency_on_empty(self, method): # GH#7869 # consistency on empty # float result = getattr(Series(dtype=float), method)() assert pd.isna(result) # timedelta64[ns] tdser = Series([], dtype="m8[ns]") if method == "var": msg = "|".join( [ "operation 'var' not allowed", r"cannot perform var with type timedelta64\[ns\]", ] ) with pytest.raises(TypeError, match=msg): getattr(tdser, method)() else: result = getattr(tdser, method)() assert result is pd.NaT def test_nansum_buglet(self): ser = Series([1.0, np.nan], index=[0, 1]) result = np.nansum(ser) tm.assert_almost_equal(result, 1) @pytest.mark.parametrize("use_bottleneck", [True, False]) def test_sum_overflow(self, use_bottleneck): with pd.option_context("use_bottleneck", use_bottleneck): # GH#6915 # overflowing on the smaller int dtypes for dtype in ["int32", "int64"]: v = np.arange(5000000, dtype=dtype) s = Series(v) result = s.sum(skipna=False) assert int(result) == v.sum(dtype="int64") result = s.min(skipna=False) assert int(result) == 0 result = s.max(skipna=False) assert int(result) == v[-1] for dtype in ["float32", "float64"]: v = np.arange(5000000, dtype=dtype) s = Series(v) result = s.sum(skipna=False) assert result == v.sum(dtype=dtype) result = s.min(skipna=False) assert np.allclose(float(result), 0.0) result = s.max(skipna=False) assert np.allclose(float(result), v[-1]) def test_empty_timeseries_reductions_return_nat(self): # covers GH#11245 for dtype in ("m8[ns]", "m8[ns]", "M8[ns]", "M8[ns, UTC]"): assert Series([], dtype=dtype).min() is pd.NaT assert Series([], dtype=dtype).max() is pd.NaT assert Series([], dtype=dtype).min(skipna=False) is pd.NaT assert Series([], dtype=dtype).max(skipna=False) is pd.NaT def test_numpy_argmin(self): # See GH#16830 data = np.arange(1, 11) s = Series(data, index=data) result = np.argmin(s) expected = np.argmin(data) assert result == expected result = s.argmin() assert result == expected msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argmin(s, out=data) def test_numpy_argmax(self): # See GH#16830 data = np.arange(1, 11) s = Series(data, index=data) result = np.argmax(s) expected = np.argmax(data) assert result == expected result = s.argmax() assert result == expected msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.argmax(s, out=data) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isna check. string_series = tm.makeStringSeries().rename("series") # add some NaNs string_series[5:15] = np.NaN # skipna or no assert string_series[string_series.idxmin()] == string_series.min() assert pd.isna(string_series.idxmin(skipna=False)) # no NaNs nona = string_series.dropna() assert nona[nona.idxmin()] == nona.min() assert nona.index.values.tolist().index(nona.idxmin()) == nona.values.argmin() # all NaNs allna = string_series * np.nan assert pd.isna(allna.idxmin()) # datetime64[ns] s = Series(pd.date_range("20130102", periods=6)) result = s.idxmin() assert result == 0 s[0] = np.nan result = s.idxmin() assert result == 1 def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isna check. string_series = tm.makeStringSeries().rename("series") # add some NaNs string_series[5:15] = np.NaN # skipna or no assert string_series[string_series.idxmax()] == string_series.max() assert pd.isna(string_series.idxmax(skipna=False)) # no NaNs nona = string_series.dropna() assert nona[nona.idxmax()] == nona.max() assert nona.index.values.tolist().index(nona.idxmax()) == nona.values.argmax() # all NaNs allna = string_series * np.nan assert pd.isna(allna.idxmax()) from pandas import date_range s = Series(date_range("20130102", periods=6)) result = s.idxmax() assert result == 5 s[5] = np.nan result = s.idxmax() assert result == 4 # Float64Index # GH#5914 s = pd.Series([1, 2, 3], [1.1, 2.1, 3.1]) result = s.idxmax() assert result == 3.1 result = s.idxmin() assert result == 1.1 s = pd.Series(s.index, s.index) result = s.idxmax() assert result == 3.1 result = s.idxmin() assert result == 1.1 def test_all_any(self): ts = tm.makeTimeSeries() bool_series = ts > 0 assert not bool_series.all() assert bool_series.any() # Alternative types, with implicit 'object' dtype. s = Series(["abc", True]) assert "abc" == s.any() # 'abc' || True => 'abc' def test_all_any_params(self): # Check skipna, with implicit 'object' dtype. s1 = Series([np.nan, True]) s2 = Series([np.nan, False]) assert s1.all(skipna=False) # nan && True => True assert s1.all(skipna=True) assert np.isnan(s2.any(skipna=False)) # nan || False => nan assert not s2.any(skipna=True) # Check level. s = pd.Series([False, False, True, True, False, True], index=[0, 0, 1, 1, 2, 2]) tm.assert_series_equal(s.all(level=0), Series([False, True, False])) tm.assert_series_equal(s.any(level=0), Series([False, True, True])) # bool_only is not implemented with level option. with pytest.raises(NotImplementedError): s.any(bool_only=True, level=0) with pytest.raises(NotImplementedError): s.all(bool_only=True, level=0) # bool_only is not implemented alone. with pytest.raises(NotImplementedError): s.any(bool_only=True) with pytest.raises(NotImplementedError): s.all(bool_only=True) def test_all_any_boolean(self): # Check skipna, with boolean type s1 = Series([pd.NA, True], dtype="boolean") s2 = Series([pd.NA, False], dtype="boolean") assert s1.all(skipna=False) is pd.NA # NA && True => NA assert s1.all(skipna=True) assert s2.any(skipna=False) is pd.NA # NA || False => NA assert not s2.any(skipna=True) # GH-33253: all True / all False values buggy with skipna=False s3 = Series([True, True], dtype="boolean") s4 = Series([False, False], dtype="boolean") assert s3.all(skipna=False) assert not s4.any(skipna=False) # Check level TODO(GH-33449) result should also be boolean s = pd.Series( [False, False, True, True, False, True], index=[0, 0, 1, 1, 2, 2], dtype="boolean", ) tm.assert_series_equal(s.all(level=0), Series([False, True, False])) tm.assert_series_equal(s.any(level=0), Series([False, True, True])) def test_timedelta64_analytics(self): # index min/max dti = pd.date_range("2012-1-1", periods=3, freq="D") td = Series(dti) - pd.Timestamp("20120101") result = td.idxmin() assert result == 0 result = td.idxmax() assert result == 2 # GH#2982 # with NaT td[0] = np.nan result = td.idxmin() assert result == 1 result = td.idxmax() assert result == 2 # abs s1 = Series(pd.date_range("20120101", periods=3)) s2 = Series(pd.date_range("20120102", periods=3)) expected = Series(s2 - s1) result = np.abs(s1 - s2) tm.assert_series_equal(result, expected) result = (s1 - s2).abs() tm.assert_series_equal(result, expected) # max/min result = td.max() expected = pd.Timedelta("2 days") assert result == expected result = td.min() expected = pd.Timedelta("1 days") assert result == expected @pytest.mark.parametrize( "test_input,error_type", [ (pd.Series([], dtype="float64"), ValueError), # For strings, or any Series with dtype 'O' (pd.Series(["foo", "bar", "baz"]), TypeError), (pd.Series([(1,), (2,)]), TypeError), # For mixed data types (pd.Series(["foo", "foo", "bar", "bar", None, np.nan, "baz"]), TypeError), ], ) def test_assert_idxminmax_raises(self, test_input, error_type): """ Cases where ``Series.argmax`` and related should raise an exception """ with pytest.raises(error_type): test_input.idxmin() with pytest.raises(error_type): test_input.idxmin(skipna=False) with pytest.raises(error_type): test_input.idxmax() with pytest.raises(error_type): test_input.idxmax(skipna=False) def test_idxminmax_with_inf(self): # For numeric data with NA and Inf (GH #13595) s = pd.Series([0, -np.inf, np.inf, np.nan]) assert s.idxmin() == 1 assert np.isnan(s.idxmin(skipna=False)) assert s.idxmax() == 2 assert np.isnan(s.idxmax(skipna=False)) # Using old-style behavior that treats floating point nan, -inf, and # +inf as missing with pd.option_context("mode.use_inf_as_na", True): assert s.idxmin() == 0 assert np.isnan(s.idxmin(skipna=False)) assert s.idxmax() == 0 np.isnan(s.idxmax(skipna=False)) class TestDatetime64SeriesReductions: # Note: the name TestDatetime64SeriesReductions indicates these tests # were moved from a series-specific test file, _not_ that these tests are # intended long-term to be series-specific @pytest.mark.parametrize( "nat_ser", [ Series([pd.NaT, pd.NaT]), Series([pd.NaT, pd.Timedelta("nat")]), Series([pd.Timedelta("nat"), pd.Timedelta("nat")]), ], ) def test_minmax_nat_series(self, nat_ser): # GH#23282 assert nat_ser.min() is pd.NaT assert nat_ser.max() is pd.NaT assert nat_ser.min(skipna=False) is pd.NaT assert nat_ser.max(skipna=False) is pd.NaT @pytest.mark.parametrize( "nat_df", [ pd.DataFrame([pd.NaT, pd.NaT]), pd.DataFrame([pd.NaT, pd.Timedelta("nat")]), pd.DataFrame([pd.Timedelta("nat"), pd.Timedelta("nat")]), ], ) def test_minmax_nat_dataframe(self, nat_df): # GH#23282 assert nat_df.min()[0] is pd.NaT assert nat_df.max()[0] is pd.NaT assert nat_df.min(skipna=False)[0] is pd.NaT assert nat_df.max(skipna=False)[0] is pd.NaT def test_min_max(self): rng = pd.date_range("1/1/2000", "12/31/2000") rng2 = rng.take(np.random.permutation(len(rng))) the_min = rng2.min() the_max = rng2.max() assert isinstance(the_min, pd.Timestamp) assert isinstance(the_max, pd.Timestamp) assert the_min == rng[0] assert the_max == rng[-1] assert rng.min() == rng[0] assert rng.max() == rng[-1] def test_min_max_series(self): rng = pd.date_range("1/1/2000", periods=10, freq="4h") lvls = ["A", "A", "A", "B", "B", "B", "C", "C", "C", "C"] df = DataFrame({"TS": rng, "V": np.random.randn(len(rng)), "L": lvls}) result = df.TS.max() exp = pd.Timestamp(df.TS.iat[-1]) assert isinstance(result, pd.Timestamp) assert result == exp result = df.TS.min() exp = pd.Timestamp(df.TS.iat[0]) assert isinstance(result, pd.Timestamp) assert result == exp class TestCategoricalSeriesReductions: # Note: the name TestCategoricalSeriesReductions indicates these tests # were moved from a series-specific test file, _not_ that these tests are # intended long-term to be series-specific @pytest.mark.parametrize("function", ["min", "max"]) def test_min_max_unordered_raises(self, function): # unordered cats have no min/max cat = Series(Categorical(["a", "b", "c", "d"], ordered=False)) msg = f"Categorical is not ordered for operation {function}" with pytest.raises(TypeError, match=msg): getattr(cat, function)() @pytest.mark.parametrize( "values, categories", [ (list("abc"), list("abc")), (list("abc"), list("cba")), (list("abc") + [np.nan], list("cba")), ([1, 2, 3], [3, 2, 1]), ([1, 2, 3, np.nan], [3, 2, 1]), ], ) @pytest.mark.parametrize("function", ["min", "max"]) def test_min_max_ordered(self, values, categories, function): # GH 25303 cat = Series(Categorical(values, categories=categories, ordered=True)) result = getattr(cat, function)(skipna=True) expected = categories[0] if function == "min" else categories[2] assert result == expected @pytest.mark.parametrize("function", ["min", "max"]) @pytest.mark.parametrize("skipna", [True, False]) def test_min_max_ordered_with_nan_only(self, function, skipna): # https://github.com/pandas-dev/pandas/issues/33450 cat = Series(Categorical([np.nan], categories=[1, 2], ordered=True)) result = getattr(cat, function)(skipna=skipna) assert result is np.nan @pytest.mark.parametrize("function", ["min", "max"]) @pytest.mark.parametrize("skipna", [True, False]) def test_min_max_skipna(self, function, skipna): cat = Series( Categorical(["a", "b", np.nan, "a"], categories=["b", "a"], ordered=True) ) result = getattr(cat, function)(skipna=skipna) if skipna is True: expected = "b" if function == "min" else "a" assert result == expected else: assert result is np.nan class TestSeriesMode: # Note: the name TestSeriesMode indicates these tests # were moved from a series-specific test file, _not_ that these tests are # intended long-term to be series-specific @pytest.mark.parametrize( "dropna, expected", [(True, Series([], dtype=np.float64)), (False, Series([], dtype=np.float64))], ) def test_mode_empty(self, dropna, expected): s = Series([], dtype=np.float64) result = s.mode(dropna) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dropna, data, expected", [ (True, [1, 1, 1, 2], [1]), (True, [1, 1, 1, 2, 3, 3, 3], [1, 3]), (False, [1, 1, 1, 2], [1]), (False, [1, 1, 1, 2, 3, 3, 3], [1, 3]), ], ) @pytest.mark.parametrize( "dt", list(np.typecodes["AllInteger"] + np.typecodes["Float"]) ) def test_mode_numerical(self, dropna, data, expected, dt): s = Series(data, dtype=dt) result = s.mode(dropna) expected = Series(expected, dtype=dt) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dropna, expected", [(True, [1.0]), (False, [1, np.nan])]) def test_mode_numerical_nan(self, dropna, expected): s = Series([1, 1, 2, np.nan, np.nan]) result = s.mode(dropna) expected = Series(expected) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dropna, expected1, expected2, expected3", [(True, ["b"], ["bar"], ["nan"]), (False, ["b"], [np.nan], ["nan"])], ) def test_mode_str_obj(self, dropna, expected1, expected2, expected3): # Test string and object types. data = ["a"] * 2 + ["b"] * 3 s = Series(data, dtype="c") result = s.mode(dropna) expected1 = Series(expected1, dtype="c") tm.assert_series_equal(result, expected1) data = ["foo", "bar", "bar", np.nan, np.nan, np.nan] s = Series(data, dtype=object) result = s.mode(dropna) expected2 = Series(expected2, dtype=object) tm.assert_series_equal(result, expected2) data = ["foo", "bar", "bar", np.nan, np.nan, np.nan] s = Series(data, dtype=object).astype(str) result = s.mode(dropna) expected3 = Series(expected3, dtype=str) tm.assert_series_equal(result, expected3) @pytest.mark.parametrize( "dropna, expected1, expected2", [(True, ["foo"], ["foo"]), (False, ["foo"], [np.nan])], ) def test_mode_mixeddtype(self, dropna, expected1, expected2): s = Series([1, "foo", "foo"]) result = s.mode(dropna) expected = Series(expected1) tm.assert_series_equal(result, expected) s = Series([1, "foo", "foo", np.nan, np.nan, np.nan]) result = s.mode(dropna) expected = Series(expected2, dtype=object) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dropna, expected1, expected2", [ ( True, ["1900-05-03", "2011-01-03", "2013-01-02"], ["2011-01-03", "2013-01-02"], ), (False, [np.nan], [np.nan, "2011-01-03", "2013-01-02"]), ], ) def test_mode_datetime(self, dropna, expected1, expected2): s = Series( ["2011-01-03", "2013-01-02", "1900-05-03", "nan", "nan"], dtype="M8[ns]" ) result = s.mode(dropna) expected1 = Series(expected1, dtype="M8[ns]") tm.assert_series_equal(result, expected1) s = Series( [ "2011-01-03", "2013-01-02", "1900-05-03", "2011-01-03", "2013-01-02", "nan", "nan", ], dtype="M8[ns]", ) result = s.mode(dropna) expected2 = Series(expected2, dtype="M8[ns]") tm.assert_series_equal(result, expected2) @pytest.mark.parametrize( "dropna, expected1, expected2", [ (True, ["-1 days", "0 days", "1 days"], ["2 min", "1 day"]), (False, [np.nan], [np.nan, "2 min", "1 day"]), ], ) def test_mode_timedelta(self, dropna, expected1, expected2): # gh-5986: Test timedelta types. s = Series( ["1 days", "-1 days", "0 days", "nan", "nan"], dtype="timedelta64[ns]" ) result = s.mode(dropna) expected1 = Series(expected1, dtype="timedelta64[ns]") tm.assert_series_equal(result, expected1) s = Series( [ "1 day", "1 day", "-1 day", "-1 day 2 min", "2 min", "2 min", "nan", "nan", ], dtype="timedelta64[ns]", ) result = s.mode(dropna) expected2 = Series(expected2, dtype="timedelta64[ns]") tm.assert_series_equal(result, expected2) @pytest.mark.parametrize( "dropna, expected1, expected2, expected3", [ ( True, Categorical([1, 2], categories=[1, 2]), Categorical(["a"], categories=[1, "a"]), Categorical([3, 1], categories=[3, 2, 1], ordered=True), ), ( False, Categorical([np.nan], categories=[1, 2]), Categorical([np.nan, "a"], categories=[1, "a"]), Categorical([np.nan, 3, 1], categories=[3, 2, 1], ordered=True), ), ], ) def test_mode_category(self, dropna, expected1, expected2, expected3): s = Series(Categorical([1, 2, np.nan, np.nan])) result = s.mode(dropna) expected1 = Series(expected1, dtype="category") tm.assert_series_equal(result, expected1) s = Series(Categorical([1, "a", "a", np.nan, np.nan])) result = s.mode(dropna) expected2 = Series(expected2, dtype="category") tm.assert_series_equal(result, expected2) s = Series( Categorical( [1, 1, 2, 3, 3, np.nan, np.nan], categories=[3, 2, 1], ordered=True ) ) result = s.mode(dropna) expected3 = Series(expected3, dtype="category") tm.assert_series_equal(result, expected3) @pytest.mark.parametrize( "dropna, expected1, expected2", [(True, [2 ** 63], [1, 2 ** 63]), (False, [2 ** 63], [1, 2 ** 63])], ) def test_mode_intoverflow(self, dropna, expected1, expected2): # Test for uint64 overflow. s = Series([1, 2 ** 63, 2 ** 63], dtype=np.uint64) result = s.mode(dropna) expected1 = Series(expected1, dtype=np.uint64) tm.assert_series_equal(result, expected1) s = Series([1, 2 ** 63], dtype=np.uint64) result = s.mode(dropna) expected2 = Series(expected2, dtype=np.uint64) tm.assert_series_equal(result, expected2) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted expected = Series(["foo", np.nan]) s = Series([1, "foo", "foo", np.nan, np.nan]) with tm.assert_produces_warning(UserWarning, check_stacklevel=False): result = s.mode(dropna=False) result = result.sort_values().reset_index(drop=True) tm.assert_series_equal(result, expected)