# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import datetime, time, timedelta from itertools import product, starmap import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.compat.numpy import np_datetime64_compat from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import DatetimeArray, TimedeltaArray from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid(self, other, tz_naive_fixture): # We don't parametrize this over box_with_array because listlike # other plays poorly with assert_invalid_comparison reversed checks tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data assert_invalid_comparison(dta, other, tm.to_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], pd.Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array xbox = box if box is not pd.Index else np.ndarray ts = pd.Timestamp.now(tz) ser = pd.Series([ts, pd.NaT]) obj = tm.box_expected(ser, box) expected = pd.Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [pd.Timestamp("2011-01-01"), NaT, pd.Timestamp("2011-01-03")], [NaT, NaT, pd.Timestamp("2011-01-03")], ), ( [pd.Timedelta("1 days"), NaT, pd.Timedelta("3 days")], [NaT, NaT, pd.Timedelta("3 days")], ), ( [pd.Period("2011-01", freq="M"), NaT, pd.Period("2011-03", freq="M")], [NaT, NaT, pd.Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons(self, dtype, index_or_series, reverse, pair): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) # Series, Index expected = Series([False, False, True]) tm.assert_series_equal(left == right, expected) expected = Series([True, True, False]) tm.assert_series_equal(left != right, expected) expected = Series([False, False, False]) tm.assert_series_equal(left < right, expected) expected = Series([False, False, False]) tm.assert_series_equal(left > right, expected) expected = Series([False, False, True]) tm.assert_series_equal(left >= right, expected) expected = Series([False, False, True]) tm.assert_series_equal(left <= right, expected) def test_comparison_invalid(self, tz_naive_fixture, box_with_array): # GH#4968 # invalid date/int comparisons tz = tz_naive_fixture ser = Series(range(5)) ser2 = Series(pd.date_range("20010101", periods=5, tz=tz)) ser = tm.box_expected(ser, box_with_array) ser2 = tm.box_expected(ser2, box_with_array) assert_invalid_comparison(ser, ser2, box_with_array) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): if box_with_array is tm.to_array and dtype is object: # dont bother testing ndarray comparison methods as this fails # on older numpys (since they check object identity) return xbox = box_with_array if box_with_array is not pd.Index else np.ndarray left = Series(data, dtype=dtype) left = tm.box_expected(left, box_with_array) expected = [False, False, False] expected = tm.box_expected(expected, xbox) tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = pd.Series(pd.date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = pd.Timestamp("nat") ser[3] = pd.Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray ser = pd.Series([pd.Timestamp("2000-01-29 01:59:00"), "NaT"]) ser = tm.box_expected(ser, box_with_array) result = ser != ser expected = tm.box_expected([False, True], xbox) tm.assert_equal(result, expected) result = ser != ser[0] expected = tm.box_expected([False, True], xbox) tm.assert_equal(result, expected) result = ser != ser[1] expected = tm.box_expected([True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, False], xbox) tm.assert_equal(result, expected) result = ser == ser[0] expected = tm.box_expected([True, False], xbox) tm.assert_equal(result, expected) result = ser == ser[1] expected = tm.box_expected([False, False], xbox) tm.assert_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate @pytest.mark.parametrize( "op", [operator.eq, operator.ne, operator.gt, operator.lt, operator.ge, operator.le], ) def test_comparators(self, op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = op(arr, element) index_result = op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = pd.date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): if box_with_array is tm.to_array and dtype is object: # dont bother testing ndarray comparison methods as this fails # on older numpys (since they check object identity) return xbox = box_with_array if box_with_array is not pd.Index else np.ndarray left = pd.DatetimeIndex( [pd.Timestamp("2011-01-01"), pd.NaT, pd.Timestamp("2011-01-03")] ) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == pd.NaT, expected) tm.assert_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != pd.NaT, expected) tm.assert_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < pd.NaT, expected) tm.assert_equal(pd.NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = pd.DatetimeIndex( ["2014-01-01", pd.NaT, "2014-03-01", pd.NaT, "2014-05-01", "2014-07-01"] ) didx2 = pd.DatetimeIndex( ["2014-02-01", "2014-03-01", pd.NaT, pd.NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np_datetime64_compat("2014-02-01 00:00Z"), np_datetime64_compat("2014-03-01 00:00Z"), np_datetime64_compat("nat"), np.datetime64("nat"), np_datetime64_compat("2014-06-01 00:00Z"), np_datetime64_compat("2014-07-01 00:00Z"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, pd.NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "op", [operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le], ) def test_comparison_tzawareness_compat(self, op, box_with_array): # GH#18162 box = box_with_array dr = pd.date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) msg = "Cannot compare tz-naive and tz-aware" with pytest.raises(TypeError, match=msg): op(dr, dz) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) @pytest.mark.parametrize( "op", [operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le], ) def test_comparison_tzawareness_compat_scalars(self, op, box_with_array): # GH#18162 dr = pd.date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = pd.Timestamp("2000-03-14 01:59") ts_tz = pd.Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = "Cannot compare tz-naive and tz-aware" with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) with pytest.raises(TypeError, match=msg): op(dz, ts) # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "op", [operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le], ) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, op, other, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = pd.date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) msg = "Cannot compare tz-naive and tz-aware" with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) @pytest.mark.parametrize( "op", [operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le], ) def test_nat_comparison_tzawareness(self, op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT dti = pd.DatetimeIndex( ["2014-01-01", pd.NaT, "2014-03-01", pd.NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, pd.NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), pd.NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) msg = "Cannot compare tz-naive and tz-aware" with pytest.raises(TypeError, match=msg): # tzawareness failure dti != other other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = pd.date_range("2000-01-01", "2000-02-01", tz=tz) expected = pd.date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) def test_dt64arr_iadd_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = pd.date_range("2000-01-01", "2000-02-01", tz=tz) expected = pd.date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = pd.date_range("2000-01-01", "2000-02-01", tz=tz) expected = pd.date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) def test_dt64arr_isub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = pd.date_range("2000-01-01", "2000-02-01", tz=tz) expected = pd.date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = pd.date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = pd.DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = pd.date_range("2016-01-01", periods=3, tz=tz) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = pd.date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ pd.Timestamp("2013-01-01"), pd.Timestamp("2013-01-01").to_pydatetime(), pd.Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = pd.date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = pd.TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = pd.date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = pd.TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = pd.date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = pd.Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = pd.DatetimeIndex([pd.NaT, pd.Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - pd.NaT expected = pd.Series([pd.NaT, pd.NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - pd.NaT expected = pd.Series([pd.NaT, pd.NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = pd.date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) warn = None if box_with_array is not pd.DataFrame or tz_naive_fixture is None: warn = PerformanceWarning with tm.assert_produces_warning(warn): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = pd.date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = pd.date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = pd.date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "cannot add" with pytest.raises(TypeError, match=msg): dtarr + dt64vals with pytest.raises(TypeError, match=msg): dt64vals + dtarr def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) idx = tm.box_expected(idx, box_with_array) msg = "cannot add" with pytest.raises(TypeError, match=msg): idx + Timestamp("2011-01-01") with pytest.raises(TypeError, match=msg): Timestamp("2011-01-01") + idx # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid pd.Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = pd.date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\(' TimeDeltaIndex (GH ...) dti = date_range("20130101", periods=3) dti_tz = date_range("20130101", periods=3).tz_localize("US/Eastern") dti_tz2 = date_range("20130101", periods=3).tz_localize("UTC") expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) msg = "DatetimeArray subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dti_tz - dti with pytest.raises(TypeError, match=msg): dti - dti_tz with pytest.raises(TypeError, match=msg): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range("20130101", periods=3) dti2 = date_range("20130101", periods=4) msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(["2012-01-01", np.nan, "2012-01-03"]) dti2 = DatetimeIndex(["2012-01-02", "2012-01-03", np.nan]) expected = TimedeltaIndex(["1 days", np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) # ------------------------------------------------------------------- # TODO: Most of this block is moved from series or frame tests, needs # cleanup, box-parametrization, and de-duplication @pytest.mark.parametrize("op", [operator.add, operator.sub]) def test_timedelta64_equal_timedelta_supported_ops(self, op): ser = Series( [ Timestamp("20130301"), Timestamp("20130228 23:00:00"), Timestamp("20130228 22:00:00"), Timestamp("20130228 21:00:00"), ] ) intervals = ["D", "h", "m", "s", "us"] def timedelta64(*args): # see casting notes in NumPy gh-12927 return np.sum(list(starmap(np.timedelta64, zip(args, intervals)))) for d, h, m, s, us in product(*([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) tm.assert_series_equal(lhs, rhs) def test_ops_nat_mixed_datetime64_timedelta64(self): # GH#11349 timedelta_series = Series([NaT, Timedelta("1s")]) datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]") nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]") # subtraction tm.assert_series_equal( datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta ) tm.assert_series_equal( datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp ) tm.assert_series_equal( -single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp ) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta, ) tm.assert_series_equal( nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( -single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) msg = "cannot subtract a datelike" with pytest.raises(TypeError, match=msg): timedelta_series - single_nat_dtype_datetime # addition tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp, ) tm.assert_series_equal( nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp, ) tm.assert_series_equal( single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp, ) def test_ufunc_coercions(self): idx = date_range("2011-01-01", periods=3, freq="2D", name="x") delta = np.timedelta64(1, "D") exp = date_range("2011-01-02", periods=3, freq="2D", name="x") for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" exp = date_range("2010-12-31", periods=3, freq="2D", name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == "2D" # When adding/subtracting an ndarray (which has no .freq), the result # does not infer freq idx = idx._with_freq(None) delta = np.array( [np.timedelta64(1, "D"), np.timedelta64(2, "D"), np.timedelta64(3, "D")] ) exp = DatetimeIndex(["2011-01-02", "2011-01-05", "2011-01-08"], name="x") for result in [idx + delta, np.add(idx, delta)]: tm.assert_index_equal(result, exp) assert result.freq == exp.freq exp = DatetimeIndex(["2010-12-31", "2011-01-01", "2011-01-02"], name="x") for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) tm.assert_index_equal(result, exp) assert result.freq == exp.freq def test_dti_add_series(self, tz_naive_fixture, names): # GH#13905 tz = tz_naive_fixture index = DatetimeIndex( ["2016-06-28 05:30", "2016-06-28 05:31"], tz=tz, name=names[0] ) ser = Series([Timedelta(seconds=5)] * 2, index=index, name=names[1]) expected = Series(index + Timedelta(seconds=5), index=index, name=names[2]) # passing name arg isn't enough when names[2] is None expected.name = names[2] assert expected.dtype == index.dtype result = ser + index tm.assert_series_equal(result, expected) result2 = index + ser tm.assert_series_equal(result2, expected) expected = index + Timedelta(seconds=5) result3 = ser.values + index tm.assert_index_equal(result3, expected) result4 = index + ser.values tm.assert_index_equal(result4, expected) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) def test_dti_addsub_offset_arraylike( self, tz_naive_fixture, names, op, index_or_series ): # GH#18849, GH#19744 box = pd.Index other_box = index_or_series tz = tz_naive_fixture dti = pd.date_range("2017-01-01", periods=2, tz=tz, name=names[0]) other = other_box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)], name=names[1]) xbox = get_upcast_box(box, other) with tm.assert_produces_warning(PerformanceWarning): res = op(dti, other) expected = DatetimeIndex( [op(dti[n], other[n]) for n in range(len(dti))], name=names[2], freq="infer" ) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) @pytest.mark.parametrize("other_box", [pd.Index, np.array]) def test_dti_addsub_object_arraylike( self, tz_naive_fixture, box_with_array, other_box ): tz = tz_naive_fixture dti = pd.date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = other_box([pd.offsets.MonthEnd(), pd.Timedelta(days=4)]) xbox = get_upcast_box(box_with_array, other) expected = pd.DatetimeIndex(["2017-01-31", "2017-01-06"], tz=tz_naive_fixture) expected = tm.box_expected(expected, xbox) warn = PerformanceWarning if box_with_array is pd.DataFrame and tz is not None: warn = None with tm.assert_produces_warning(warn): result = dtarr + other tm.assert_equal(result, expected) expected = pd.DatetimeIndex(["2016-12-31", "2016-12-29"], tz=tz_naive_fixture) expected = tm.box_expected(expected, xbox) with tm.assert_produces_warning(warn): result = dtarr - other tm.assert_equal(result, expected) @pytest.mark.parametrize("years", [-1, 0, 1]) @pytest.mark.parametrize("months", [-2, 0, 2]) def test_shift_months(years, months): dti = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), ] ) actual = DatetimeIndex(shift_months(dti.asi8, years * 12 + months)) raw = [x + pd.offsets.DateOffset(years=years, months=months) for x in dti] expected = DatetimeIndex(raw) tm.assert_index_equal(actual, expected) def test_dt64arr_addsub_object_dtype_2d(): # block-wise DataFrame operations will require operating on 2D # DatetimeArray/TimedeltaArray, so check that specifically. dti = pd.date_range("1994-02-13", freq="2W", periods=4) dta = dti._data.reshape((4, 1)) other = np.array([[pd.offsets.Day(n)] for n in range(4)]) assert other.shape == dta.shape with tm.assert_produces_warning(PerformanceWarning): result = dta + other with tm.assert_produces_warning(PerformanceWarning): expected = (dta[:, 0] + other[:, 0]).reshape(-1, 1) assert isinstance(result, DatetimeArray) assert result.freq is None tm.assert_numpy_array_equal(result._data, expected._data) with tm.assert_produces_warning(PerformanceWarning): # Case where we expect to get a TimedeltaArray back result2 = dta - dta.astype(object) assert isinstance(result2, TimedeltaArray) assert result2.shape == (4, 1) assert result2.freq is None assert (result2.asi8 == 0).all()