from itertools import product from string import ascii_lowercase import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, Timestamp, date_range, ) import pandas._testing as tm class TestCounting: def test_cumcount(self): df = DataFrame([["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"]) g = df.groupby("A") sg = g.A expected = Series([0, 1, 2, 0, 3]) tm.assert_series_equal(expected, g.cumcount()) tm.assert_series_equal(expected, sg.cumcount()) def test_cumcount_empty(self): ge = DataFrame().groupby(level=0) se = Series(dtype=object).groupby(level=0) # edge case, as this is usually considered float e = Series(dtype="int64") tm.assert_series_equal(e, ge.cumcount()) tm.assert_series_equal(e, se.cumcount()) def test_cumcount_dupe_index(self): df = DataFrame( [["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=[0] * 5 ) g = df.groupby("A") sg = g.A expected = Series([0, 1, 2, 0, 3], index=[0] * 5) tm.assert_series_equal(expected, g.cumcount()) tm.assert_series_equal(expected, sg.cumcount()) def test_cumcount_mi(self): mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]]) df = DataFrame([["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=mi) g = df.groupby("A") sg = g.A expected = Series([0, 1, 2, 0, 3], index=mi) tm.assert_series_equal(expected, g.cumcount()) tm.assert_series_equal(expected, sg.cumcount()) def test_cumcount_groupby_not_col(self): df = DataFrame( [["a"], ["a"], ["a"], ["b"], ["a"]], columns=["A"], index=[0] * 5 ) g = df.groupby([0, 0, 0, 1, 0]) sg = g.A expected = Series([0, 1, 2, 0, 3], index=[0] * 5) tm.assert_series_equal(expected, g.cumcount()) tm.assert_series_equal(expected, sg.cumcount()) def test_ngroup(self): df = DataFrame({"A": list("aaaba")}) g = df.groupby("A") sg = g.A expected = Series([0, 0, 0, 1, 0]) tm.assert_series_equal(expected, g.ngroup()) tm.assert_series_equal(expected, sg.ngroup()) def test_ngroup_distinct(self): df = DataFrame({"A": list("abcde")}) g = df.groupby("A") sg = g.A expected = Series(range(5), dtype="int64") tm.assert_series_equal(expected, g.ngroup()) tm.assert_series_equal(expected, sg.ngroup()) def test_ngroup_one_group(self): df = DataFrame({"A": [0] * 5}) g = df.groupby("A") sg = g.A expected = Series([0] * 5) tm.assert_series_equal(expected, g.ngroup()) tm.assert_series_equal(expected, sg.ngroup()) def test_ngroup_empty(self): ge = DataFrame().groupby(level=0) se = Series(dtype=object).groupby(level=0) # edge case, as this is usually considered float e = Series(dtype="int64") tm.assert_series_equal(e, ge.ngroup()) tm.assert_series_equal(e, se.ngroup()) def test_ngroup_series_matches_frame(self): df = DataFrame({"A": list("aaaba")}) s = Series(list("aaaba")) tm.assert_series_equal(df.groupby(s).ngroup(), s.groupby(s).ngroup()) def test_ngroup_dupe_index(self): df = DataFrame({"A": list("aaaba")}, index=[0] * 5) g = df.groupby("A") sg = g.A expected = Series([0, 0, 0, 1, 0], index=[0] * 5) tm.assert_series_equal(expected, g.ngroup()) tm.assert_series_equal(expected, sg.ngroup()) def test_ngroup_mi(self): mi = MultiIndex.from_tuples([[0, 1], [1, 2], [2, 2], [2, 2], [1, 0]]) df = DataFrame({"A": list("aaaba")}, index=mi) g = df.groupby("A") sg = g.A expected = Series([0, 0, 0, 1, 0], index=mi) tm.assert_series_equal(expected, g.ngroup()) tm.assert_series_equal(expected, sg.ngroup()) def test_ngroup_groupby_not_col(self): df = DataFrame({"A": list("aaaba")}, index=[0] * 5) g = df.groupby([0, 0, 0, 1, 0]) sg = g.A expected = Series([0, 0, 0, 1, 0], index=[0] * 5) tm.assert_series_equal(expected, g.ngroup()) tm.assert_series_equal(expected, sg.ngroup()) def test_ngroup_descending(self): df = DataFrame(["a", "a", "b", "a", "b"], columns=["A"]) g = df.groupby(["A"]) ascending = Series([0, 0, 1, 0, 1]) descending = Series([1, 1, 0, 1, 0]) tm.assert_series_equal(descending, (g.ngroups - 1) - ascending) tm.assert_series_equal(ascending, g.ngroup(ascending=True)) tm.assert_series_equal(descending, g.ngroup(ascending=False)) def test_ngroup_matches_cumcount(self): # verify one manually-worked out case works df = DataFrame( [["a", "x"], ["a", "y"], ["b", "x"], ["a", "x"], ["b", "y"]], columns=["A", "X"], ) g = df.groupby(["A", "X"]) g_ngroup = g.ngroup() g_cumcount = g.cumcount() expected_ngroup = Series([0, 1, 2, 0, 3]) expected_cumcount = Series([0, 0, 0, 1, 0]) tm.assert_series_equal(g_ngroup, expected_ngroup) tm.assert_series_equal(g_cumcount, expected_cumcount) def test_ngroup_cumcount_pair(self): # brute force comparison for all small series for p in product(range(3), repeat=4): df = DataFrame({"a": p}) g = df.groupby(["a"]) order = sorted(set(p)) ngroupd = [order.index(val) for val in p] cumcounted = [p[:i].count(val) for i, val in enumerate(p)] tm.assert_series_equal(g.ngroup(), Series(ngroupd)) tm.assert_series_equal(g.cumcount(), Series(cumcounted)) def test_ngroup_respects_groupby_order(self): np.random.seed(0) df = DataFrame({"a": np.random.choice(list("abcdef"), 100)}) for sort_flag in (False, True): g = df.groupby(["a"], sort=sort_flag) df["group_id"] = -1 df["group_index"] = -1 for i, (_, group) in enumerate(g): df.loc[group.index, "group_id"] = i for j, ind in enumerate(group.index): df.loc[ind, "group_index"] = j tm.assert_series_equal(Series(df["group_id"].values), g.ngroup()) tm.assert_series_equal(Series(df["group_index"].values), g.cumcount()) @pytest.mark.parametrize( "datetimelike", [ [Timestamp(f"2016-05-{i:02d} 20:09:25+00:00") for i in range(1, 4)], [Timestamp(f"2016-05-{i:02d} 20:09:25") for i in range(1, 4)], [Timedelta(x, unit="h") for x in range(1, 4)], [Period(freq="2W", year=2017, month=x) for x in range(1, 4)], ], ) def test_count_with_datetimelike(self, datetimelike): # test for #13393, where DataframeGroupBy.count() fails # when counting a datetimelike column. df = DataFrame({"x": ["a", "a", "b"], "y": datetimelike}) res = df.groupby("x").count() expected = DataFrame({"y": [2, 1]}, index=["a", "b"]) expected.index.name = "x" tm.assert_frame_equal(expected, res) def test_count_with_only_nans_in_first_group(self): # GH21956 df = DataFrame({"A": [np.nan, np.nan], "B": ["a", "b"], "C": [1, 2]}) result = df.groupby(["A", "B"]).C.count() mi = MultiIndex(levels=[[], ["a", "b"]], codes=[[], []], names=["A", "B"]) expected = Series([], index=mi, dtype=np.int64, name="C") tm.assert_series_equal(result, expected, check_index_type=False) def test_count_groupby_column_with_nan_in_groupby_column(self): # https://github.com/pandas-dev/pandas/issues/32841 df = DataFrame({"A": [1, 1, 1, 1, 1], "B": [5, 4, np.NaN, 3, 0]}) res = df.groupby(["B"]).count() expected = DataFrame( index=Index([0.0, 3.0, 4.0, 5.0], name="B"), data={"A": [1, 1, 1, 1]} ) tm.assert_frame_equal(expected, res) def test_groupby_timedelta_cython_count(): df = DataFrame( {"g": list("ab" * 2), "delt": np.arange(4).astype("timedelta64[ns]")} ) expected = Series([2, 2], index=pd.Index(["a", "b"], name="g"), name="delt") result = df.groupby("g").delt.count() tm.assert_series_equal(expected, result) def test_count(): n = 1 << 15 dr = date_range("2015-08-30", periods=n // 10, freq="T") df = DataFrame( { "1st": np.random.choice(list(ascii_lowercase), n), "2nd": np.random.randint(0, 5, n), "3rd": np.random.randn(n).round(3), "4th": np.random.randint(-10, 10, n), "5th": np.random.choice(dr, n), "6th": np.random.randn(n).round(3), "7th": np.random.randn(n).round(3), "8th": np.random.choice(dr, n) - np.random.choice(dr, 1), "9th": np.random.choice(list(ascii_lowercase), n), } ) for col in df.columns.drop(["1st", "2nd", "4th"]): df.loc[np.random.choice(n, n // 10), col] = np.nan df["9th"] = df["9th"].astype("category") for key in ["1st", "2nd", ["1st", "2nd"]]: left = df.groupby(key).count() right = df.groupby(key).apply(DataFrame.count).drop(key, axis=1) tm.assert_frame_equal(left, right) def test_count_non_nulls(): # GH#5610 # count counts non-nulls df = pd.DataFrame( [[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, np.nan]], columns=["A", "B", "C"], ) count_as = df.groupby("A").count() count_not_as = df.groupby("A", as_index=False).count() expected = DataFrame([[1, 2], [0, 0]], columns=["B", "C"], index=[1, 3]) expected.index.name = "A" tm.assert_frame_equal(count_not_as, expected.reset_index()) tm.assert_frame_equal(count_as, expected) count_B = df.groupby("A")["B"].count() tm.assert_series_equal(count_B, expected["B"]) def test_count_object(): df = pd.DataFrame({"a": ["a"] * 3 + ["b"] * 3, "c": [2] * 3 + [3] * 3}) result = df.groupby("c").a.count() expected = pd.Series([3, 3], index=pd.Index([2, 3], name="c"), name="a") tm.assert_series_equal(result, expected) df = pd.DataFrame({"a": ["a", np.nan, np.nan] + ["b"] * 3, "c": [2] * 3 + [3] * 3}) result = df.groupby("c").a.count() expected = pd.Series([1, 3], index=pd.Index([2, 3], name="c"), name="a") tm.assert_series_equal(result, expected) def test_count_cross_type(): # GH8169 vals = np.hstack( (np.random.randint(0, 5, (100, 2)), np.random.randint(0, 2, (100, 2))) ) df = pd.DataFrame(vals, columns=["a", "b", "c", "d"]) df[df == 2] = np.nan expected = df.groupby(["c", "d"]).count() for t in ["float32", "object"]: df["a"] = df["a"].astype(t) df["b"] = df["b"].astype(t) result = df.groupby(["c", "d"]).count() tm.assert_frame_equal(result, expected) def test_lower_int_prec_count(): df = DataFrame( { "a": np.array([0, 1, 2, 100], np.int8), "b": np.array([1, 2, 3, 6], np.uint32), "c": np.array([4, 5, 6, 8], np.int16), "grp": list("ab" * 2), } ) result = df.groupby("grp").count() expected = DataFrame( {"a": [2, 2], "b": [2, 2], "c": [2, 2]}, index=pd.Index(list("ab"), name="grp") ) tm.assert_frame_equal(result, expected) def test_count_uses_size_on_exception(): class RaisingObjectException(Exception): pass class RaisingObject: def __init__(self, msg="I will raise inside Cython"): super().__init__() self.msg = msg def __eq__(self, other): # gets called in Cython to check that raising calls the method raise RaisingObjectException(self.msg) df = DataFrame({"a": [RaisingObject() for _ in range(4)], "grp": list("ab" * 2)}) result = df.groupby("grp").count() expected = DataFrame({"a": [2, 2]}, index=pd.Index(list("ab"), name="grp")) tm.assert_frame_equal(result, expected)