"""This module is designed for community supported date conversion functions""" import numpy as np from pandas._libs.tslibs import parsing def parse_date_time(date_col, time_col): date_col = _maybe_cast(date_col) time_col = _maybe_cast(time_col) return parsing.try_parse_date_and_time(date_col, time_col) def parse_date_fields(year_col, month_col, day_col): year_col = _maybe_cast(year_col) month_col = _maybe_cast(month_col) day_col = _maybe_cast(day_col) return parsing.try_parse_year_month_day(year_col, month_col, day_col) def parse_all_fields(year_col, month_col, day_col, hour_col, minute_col, second_col): year_col = _maybe_cast(year_col) month_col = _maybe_cast(month_col) day_col = _maybe_cast(day_col) hour_col = _maybe_cast(hour_col) minute_col = _maybe_cast(minute_col) second_col = _maybe_cast(second_col) return parsing.try_parse_datetime_components( year_col, month_col, day_col, hour_col, minute_col, second_col ) def generic_parser(parse_func, *cols): N = _check_columns(cols) results = np.empty(N, dtype=object) for i in range(N): args = [c[i] for c in cols] results[i] = parse_func(*args) return results def _maybe_cast(arr): if not arr.dtype.type == np.object_: arr = np.array(arr, dtype=object) return arr def _check_columns(cols): if not len(cols): raise AssertionError("There must be at least 1 column") head, tail = cols[0], cols[1:] N = len(head) for i, n in enumerate(map(len, tail)): if n != N: raise AssertionError( f"All columns must have the same length: {N}; column {i} has length {n}" ) return N