# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs import IncompatibleFrequency, Period, Timestamp, to_offset from pandas.errors import PerformanceWarning import pandas as pd from pandas import PeriodIndex, Series, TimedeltaIndex, period_range import pandas._testing as tm from pandas.core import ops from pandas.core.arrays import TimedeltaArray from .common import assert_invalid_comparison # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "scalar", ["foo", pd.Timestamp.now(), pd.Timedelta(days=4)] ) def test_compare_invalid_scalar(self, box_with_array, scalar): # comparison with scalar that cannot be interpreted as a Period pi = pd.period_range("2000", periods=4) parr = tm.box_expected(pi, box_with_array) assert_invalid_comparison(parr, scalar, box_with_array) @pytest.mark.parametrize( "other", [ pd.date_range("2000", periods=4).array, pd.timedelta_range("1D", periods=4).array, np.arange(4), np.arange(4).astype(np.float64), list(range(4)), ], ) def test_compare_invalid_listlike(self, box_with_array, other): pi = pd.period_range("2000", periods=4) parr = tm.box_expected(pi, box_with_array) assert_invalid_comparison(parr, other, box_with_array) @pytest.mark.parametrize("other_box", [list, np.array, lambda x: x.astype(object)]) def test_compare_object_dtype(self, box_with_array, other_box): pi = pd.period_range("2000", periods=5) parr = tm.box_expected(pi, box_with_array) xbox = np.ndarray if box_with_array is pd.Index else box_with_array other = other_box(pi) expected = np.array([True, True, True, True, True]) expected = tm.box_expected(expected, xbox) result = parr == other tm.assert_equal(result, expected) result = parr <= other tm.assert_equal(result, expected) result = parr >= other tm.assert_equal(result, expected) result = parr != other tm.assert_equal(result, ~expected) result = parr < other tm.assert_equal(result, ~expected) result = parr > other tm.assert_equal(result, ~expected) other = other_box(pi[::-1]) expected = np.array([False, False, True, False, False]) expected = tm.box_expected(expected, xbox) result = parr == other tm.assert_equal(result, expected) expected = np.array([True, True, True, False, False]) expected = tm.box_expected(expected, xbox) result = parr <= other tm.assert_equal(result, expected) expected = np.array([False, False, True, True, True]) expected = tm.box_expected(expected, xbox) result = parr >= other tm.assert_equal(result, expected) expected = np.array([True, True, False, True, True]) expected = tm.box_expected(expected, xbox) result = parr != other tm.assert_equal(result, expected) expected = np.array([True, True, False, False, False]) expected = tm.box_expected(expected, xbox) result = parr < other tm.assert_equal(result, expected) expected = np.array([False, False, False, True, True]) expected = tm.box_expected(expected, xbox) result = parr > other tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", pd.Period("2017", freq="D")]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ 2017, [2017, 2017, 2017], np.array([2017, 2017, 2017]), np.array([2017, 2017, 2017], dtype=object), pd.Index([2017, 2017, 2017]), ], ) def test_eq_integer_disallowed(self, other): # match Period semantics by not treating integers as Periods idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([False, False, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) msg = "|".join( [ "not supported between instances of 'Period' and 'int'", r"Invalid comparison between dtype=period\[D\] and ", ] ) with pytest.raises(TypeError, match=msg): idx < other with pytest.raises(TypeError, match=msg): idx > other with pytest.raises(TypeError, match=msg): idx <= other with pytest.raises(TypeError, match=msg): idx >= other def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = r"Input has different freq=(M|2M|3M) from PeriodArray\(freq=A-DEC\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool_) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool_) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool_) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. msg = r"unsupported operand type\(s\) for \+: .* and .*" with pytest.raises(TypeError, match=msg): rng + other with pytest.raises(TypeError, match=msg): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) msg = r"Input has different freq=[HD] from PeriodArray\(freq=[DH]\)" with pytest.raises(IncompatibleFrequency, match=msg): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) msg = ( r"unsupported operand type\(s\) for [+-]: .* and .*|" "Concatenation operation is not implemented for NumPy arrays" ) with pytest.raises(TypeError, match=msg): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) msg = ( r"(:?cannot add PeriodArray and .*)" r"|(:?cannot subtract .* from (:?a\s)?.*)" r"|(:?unsupported operand type\(s\) for \+: .* and .*)" ) with pytest.raises(TypeError, match=msg): rng + other with pytest.raises(TypeError, match=msg): other + rng with pytest.raises(TypeError, match=msg): rng - other with pytest.raises(TypeError, match=msg): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng = pd.period_range("1/1/2000", freq="Q", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values msg = r"Cannot add or subtract timedelta64\[ns\] dtype from period\[Q-DEC\]" with pytest.raises(TypeError, match=msg): rng + tdarr with pytest.raises(TypeError, match=msg): tdarr + rng with pytest.raises(TypeError, match=msg): rng - tdarr msg = r"cannot subtract PeriodArray from timedelta64\[ns\]" with pytest.raises(TypeError, match=msg): tdarr - rng def test_pi_add_sub_td64_array_tick(self): # PeriodIndex + Timedelta-like is allowed only with # tick-like frequencies rng = pd.period_range("1/1/2000", freq="90D", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.period_range("12/31/1999", freq="90D", periods=3) result = rng + tdi tm.assert_index_equal(result, expected) result = rng + tdarr tm.assert_index_equal(result, expected) result = tdi + rng tm.assert_index_equal(result, expected) result = tdarr + rng tm.assert_index_equal(result, expected) expected = pd.period_range("1/2/2000", freq="90D", periods=3) result = rng - tdi tm.assert_index_equal(result, expected) result = rng - tdarr tm.assert_index_equal(result, expected) msg = r"cannot subtract .* from .*" with pytest.raises(TypeError, match=msg): tdarr - rng with pytest.raises(TypeError, match=msg): tdi - rng @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("tdi_freq", [None, "H"]) def test_parr_sub_td64array(self, box_with_array, tdi_freq, pi_freq): box = box_with_array xbox = box if box is not tm.to_array else pd.Index tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq) dti = Timestamp("2018-03-07 17:16:40") + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? td64obj = tm.box_expected(tdi, box) if pi_freq == "H": result = pi - td64obj expected = (pi.to_timestamp("S") - tdi).to_period(pi_freq) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) # Subtract from scalar result = pi[0] - td64obj expected = (pi[0].to_timestamp("S") - tdi).to_period(pi_freq) expected = tm.box_expected(expected, box) tm.assert_equal(result, expected) elif pi_freq == "D": # Tick, but non-compatible msg = "Input has different freq=None from PeriodArray" with pytest.raises(IncompatibleFrequency, match=msg): pi - td64obj with pytest.raises(IncompatibleFrequency, match=msg): pi[0] - td64obj else: # With non-Tick freq, we could not add timedelta64 array regardless # of what its resolution is msg = "Cannot add or subtract timedelta64" with pytest.raises(TypeError, match=msg): pi - td64obj with pytest.raises(TypeError, match=msg): pi[0] - td64obj # ----------------------------------------------------------------- # operations with array/Index of DateOffset objects @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_add_offset_array(self, box): # GH#18849 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) offs = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = pd.PeriodIndex([pd.Period("2015Q2"), pd.Period("2015Q4")]) with tm.assert_produces_warning(PerformanceWarning): res = pi + offs tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = offs + pi tm.assert_index_equal(res2, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) # addition/subtraction ops with incompatible offsets should issue # a PerformanceWarning and _then_ raise a TypeError. msg = r"Input cannot be converted to Period\(freq=Q-DEC\)" with pytest.raises(IncompatibleFrequency, match=msg): with tm.assert_produces_warning(PerformanceWarning): pi + unanchored with pytest.raises(IncompatibleFrequency, match=msg): with tm.assert_produces_warning(PerformanceWarning): unanchored + pi @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_sub_offset_array(self, box): # GH#18824 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) other = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))]) with tm.assert_produces_warning(PerformanceWarning): res = pi - other tm.assert_index_equal(res, expected) anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. msg = r"Input has different freq=-1M from Period\(freq=Q-DEC\)" with pytest.raises(IncompatibleFrequency, match=msg): with tm.assert_produces_warning(PerformanceWarning): pi - anchored with pytest.raises(IncompatibleFrequency, match=msg): with tm.assert_produces_warning(PerformanceWarning): anchored - pi def test_pi_add_iadd_int(self, one): # Variants of `one` for #19012 rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng + one expected = pd.period_range("2000-01-01 10:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) def test_pi_sub_isub_int(self, one): """ PeriodIndex.__sub__ and __isub__ with several representations of the integer 1, e.g. int, np.int64, np.uint8, ... """ rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng - one expected = pd.period_range("2000-01-01 08:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng -= one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)]) def test_pi_sub_intlike(self, five): rng = period_range("2007-01", periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_pi_sub_isub_offset(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng - pd.offsets.YearEnd(5) expected = pd.period_range("2009", "2019", freq="A") tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) rng = pd.period_range("2014-01", "2016-12", freq="M") result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range("2013-08", "2016-07", freq="M") tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("transpose", [True, False]) def test_pi_add_offset_n_gt1(self, box_with_array, transpose): # GH#23215 # add offset to PeriodIndex with freq.n > 1 per = pd.Period("2016-01", freq="2M") pi = pd.PeriodIndex([per]) expected = pd.PeriodIndex(["2016-03"], freq="2M") pi = tm.box_expected(pi, box_with_array, transpose=transpose) expected = tm.box_expected(expected, box_with_array, transpose=transpose) result = pi + per.freq tm.assert_equal(result, expected) result = per.freq + pi tm.assert_equal(result, expected) def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array): # GH#23215 # PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0 pi = pd.PeriodIndex(["2016-01"], freq="2M") expected = pd.PeriodIndex(["2016-04"], freq="2M") pi = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = pi + to_offset("3M") tm.assert_equal(result, expected) result = to_offset("3M") + pi tm.assert_equal(result, expected) # --------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_pi_add_intarray(self, int_holder, op): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = op(pi, other) expected = pd.PeriodIndex([pd.Period("2016Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_pi_sub_intarray(self, int_holder): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = pi - other expected = pd.PeriodIndex([pd.Period("2014Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) msg = r"bad operand type for unary -: 'PeriodArray'" with pytest.raises(TypeError, match=msg): other - pi # --------------------------------------------------------------- # Timedelta-like (timedelta, timedelta64, Timedelta, Tick) # TODO: Some of these are misnomers because of non-Tick DateOffsets def test_pi_add_timedeltalike_minute_gt1(self, three_days): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # minute frequency with n != 1. A more general case is tested below # in test_pi_add_timedeltalike_tick_gt1, but here we write out the # expected result more explicitly. other = three_days rng = pd.period_range("2014-05-01", periods=3, freq="2D") expected = pd.PeriodIndex(["2014-05-04", "2014-05-06", "2014-05-08"], freq="2D") result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.PeriodIndex(["2014-04-28", "2014-04-30", "2014-05-02"], freq="2D") result = rng - other tm.assert_index_equal(result, expected) msg = ( r"(:?bad operand type for unary -: 'PeriodArray')" r"|(:?cannot subtract PeriodArray from timedelta64\[[hD]\])" ) with pytest.raises(TypeError, match=msg): other - rng @pytest.mark.parametrize("freqstr", ["5ns", "5us", "5ms", "5s", "5T", "5h", "5d"]) def test_pi_add_timedeltalike_tick_gt1(self, three_days, freqstr): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # tick-like frequency with n != 1 other = three_days rng = pd.period_range("2014-05-01", periods=6, freq=freqstr) expected = pd.period_range(rng[0] + other, periods=6, freq=freqstr) result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.period_range(rng[0] - other, periods=6, freq=freqstr) result = rng - other tm.assert_index_equal(result, expected) msg = ( r"(:?bad operand type for unary -: 'PeriodArray')" r"|(:?cannot subtract PeriodArray from timedelta64\[[hD]\])" ) with pytest.raises(TypeError, match=msg): other - rng def test_pi_add_iadd_timedeltalike_daily(self, three_days): # Tick other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-05-04", "2014-05-18", freq="D") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_sub_isub_timedeltalike_daily(self, three_days): # Tick-like 3 Days other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-04-28", "2014-05-12", freq="D") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_daily(self, not_daily): other = not_daily rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") msg = "Input has different freq(=.+)? from Period.*?\\(freq=D\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 12:00", "2014-01-05 12:00", freq="H") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_add_timedeltalike_mismatched_freq_hourly(self, not_hourly): other = not_hourly rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") msg = "Input has different freq(=.+)? from Period.*?\\(freq=H\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other def test_pi_sub_isub_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 08:00", "2014-01-05 08:00", freq="H") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_add_iadd_timedeltalike_annual(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng + pd.offsets.YearEnd(5) expected = pd.period_range("2019", "2029", freq="A") tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_annual(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014", "2024", freq="A") msg = "Input has different freq(=.+)? from Period.*?\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_M(self): rng = pd.period_range("2014-01", "2016-12", freq="M") expected = pd.period_range("2014-06", "2017-05", freq="M") result = rng + pd.offsets.MonthEnd(5) tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_monthly(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014-01", "2016-12", freq="M") msg = "Input has different freq(=.+)? from Period.*?\\(freq=M\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other @pytest.mark.parametrize("transpose", [True, False]) def test_parr_add_sub_td64_nat(self, box_with_array, transpose): # GH#23320 special handling for timedelta64("NaT") pi = pd.period_range("1994-04-01", periods=9, freq="19D") other = np.timedelta64("NaT") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box_with_array, transpose=transpose) expected = tm.box_expected(expected, box_with_array, transpose=transpose) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = r"cannot subtract .* from .*" with pytest.raises(TypeError, match=msg): other - obj @pytest.mark.parametrize( "other", [ np.array(["NaT"] * 9, dtype="m8[ns]"), TimedeltaArray._from_sequence(["NaT"] * 9), ], ) def test_parr_add_sub_tdt64_nat_array(self, box_with_array, other): pi = pd.period_range("1994-04-01", periods=9, freq="19D") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = r"cannot subtract .* from .*" with pytest.raises(TypeError, match=msg): other - obj # --------------------------------------------------------------- # Unsorted def test_parr_add_sub_index(self): # Check that PeriodArray defers to Index on arithmetic ops pi = pd.period_range("2000-12-31", periods=3) parr = pi.array result = parr - pi expected = pi - pi tm.assert_index_equal(result, expected) def test_parr_add_sub_object_array(self): pi = pd.period_range("2000-12-31", periods=3, freq="D") parr = pi.array other = np.array([pd.Timedelta(days=1), pd.offsets.Day(2), 3]) with tm.assert_produces_warning(PerformanceWarning): result = parr + other expected = pd.PeriodIndex( ["2001-01-01", "2001-01-03", "2001-01-05"], freq="D" ).array tm.assert_equal(result, expected) with tm.assert_produces_warning(PerformanceWarning): result = parr - other expected = pd.PeriodIndex(["2000-12-30"] * 3, freq="D").array tm.assert_equal(result, expected) class TestPeriodSeriesArithmetic: def test_ops_series_timedelta(self): # GH#13043 ser = pd.Series( [pd.Period("2015-01-01", freq="D"), pd.Period("2015-01-02", freq="D")], name="xxx", ) assert ser.dtype == "Period[D]" expected = pd.Series( [pd.Period("2015-01-02", freq="D"), pd.Period("2015-01-03", freq="D")], name="xxx", ) result = ser + pd.Timedelta("1 days") tm.assert_series_equal(result, expected) result = pd.Timedelta("1 days") + ser tm.assert_series_equal(result, expected) result = ser + pd.tseries.offsets.Day() tm.assert_series_equal(result, expected) result = pd.tseries.offsets.Day() + ser tm.assert_series_equal(result, expected) def test_ops_series_period(self): # GH#13043 ser = pd.Series( [pd.Period("2015-01-01", freq="D"), pd.Period("2015-01-02", freq="D")], name="xxx", ) assert ser.dtype == "Period[D]" per = pd.Period("2015-01-10", freq="D") off = per.freq # dtype will be object because of original dtype expected = pd.Series([9 * off, 8 * off], name="xxx", dtype=object) tm.assert_series_equal(per - ser, expected) tm.assert_series_equal(ser - per, -1 * expected) s2 = pd.Series( [pd.Period("2015-01-05", freq="D"), pd.Period("2015-01-04", freq="D")], name="xxx", ) assert s2.dtype == "Period[D]" expected = pd.Series([4 * off, 2 * off], name="xxx", dtype=object) tm.assert_series_equal(s2 - ser, expected) tm.assert_series_equal(ser - s2, -1 * expected) class TestPeriodIndexSeriesMethods: """ Test PeriodIndex and Period Series Ops consistency """ def _check(self, values, func, expected): idx = pd.PeriodIndex(values) result = func(idx) tm.assert_equal(result, expected) ser = pd.Series(values) result = func(ser) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_ops(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) expected = PeriodIndex( ["2011-03", "2011-04", "2011-05", "2011-06"], freq="M", name="idx" ) self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx + 2, lambda x: x - 2, idx) result = idx - Period("2011-01", freq="M") off = idx.freq exp = pd.Index([0 * off, 1 * off, 2 * off, 3 * off], name="idx") tm.assert_index_equal(result, exp) result = Period("2011-01", freq="M") - idx exp = pd.Index([0 * off, -1 * off, -2 * off, -3 * off], name="idx") tm.assert_index_equal(result, exp) @pytest.mark.parametrize("ng", ["str", 1.5]) @pytest.mark.parametrize( "func", [ lambda obj, ng: obj + ng, lambda obj, ng: ng + obj, lambda obj, ng: obj - ng, lambda obj, ng: ng - obj, lambda obj, ng: np.add(obj, ng), lambda obj, ng: np.add(ng, obj), lambda obj, ng: np.subtract(obj, ng), lambda obj, ng: np.subtract(ng, obj), ], ) def test_parr_ops_errors(self, ng, func, box_with_array): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) obj = tm.box_expected(idx, box_with_array) msg = ( r"unsupported operand type\(s\)|can only concatenate|" r"must be str|object to str implicitly" ) with pytest.raises(TypeError, match=msg): func(obj, ng) def test_pi_ops_nat(self): idx = PeriodIndex( ["2011-01", "2011-02", "NaT", "2011-04"], freq="M", name="idx" ) expected = PeriodIndex( ["2011-03", "2011-04", "NaT", "2011-06"], freq="M", name="idx" ) self._check(idx, lambda x: x + 2, expected) self._check(idx, lambda x: 2 + x, expected) self._check(idx, lambda x: np.add(x, 2), expected) self._check(idx + 2, lambda x: x - 2, idx) self._check(idx + 2, lambda x: np.subtract(x, 2), idx) # freq with mult idx = PeriodIndex( ["2011-01", "2011-02", "NaT", "2011-04"], freq="2M", name="idx" ) expected = PeriodIndex( ["2011-07", "2011-08", "NaT", "2011-10"], freq="2M", name="idx" ) self._check(idx, lambda x: x + 3, expected) self._check(idx, lambda x: 3 + x, expected) self._check(idx, lambda x: np.add(x, 3), expected) self._check(idx + 3, lambda x: x - 3, idx) self._check(idx + 3, lambda x: np.subtract(x, 3), idx) def test_pi_ops_array_int(self): idx = PeriodIndex( ["2011-01", "2011-02", "NaT", "2011-04"], freq="M", name="idx" ) f = lambda x: x + np.array([1, 2, 3, 4]) exp = PeriodIndex( ["2011-02", "2011-04", "NaT", "2011-08"], freq="M", name="idx" ) self._check(idx, f, exp) f = lambda x: np.add(x, np.array([4, -1, 1, 2])) exp = PeriodIndex( ["2011-05", "2011-01", "NaT", "2011-06"], freq="M", name="idx" ) self._check(idx, f, exp) f = lambda x: x - np.array([1, 2, 3, 4]) exp = PeriodIndex( ["2010-12", "2010-12", "NaT", "2010-12"], freq="M", name="idx" ) self._check(idx, f, exp) f = lambda x: np.subtract(x, np.array([3, 2, 3, -2])) exp = PeriodIndex( ["2010-10", "2010-12", "NaT", "2011-06"], freq="M", name="idx" ) self._check(idx, f, exp) def test_pi_ops_offset(self): idx = PeriodIndex( ["2011-01-01", "2011-02-01", "2011-03-01", "2011-04-01"], freq="D", name="idx", ) f = lambda x: x + pd.offsets.Day() exp = PeriodIndex( ["2011-01-02", "2011-02-02", "2011-03-02", "2011-04-02"], freq="D", name="idx", ) self._check(idx, f, exp) f = lambda x: x + pd.offsets.Day(2) exp = PeriodIndex( ["2011-01-03", "2011-02-03", "2011-03-03", "2011-04-03"], freq="D", name="idx", ) self._check(idx, f, exp) f = lambda x: x - pd.offsets.Day(2) exp = PeriodIndex( ["2010-12-30", "2011-01-30", "2011-02-27", "2011-03-30"], freq="D", name="idx", ) self._check(idx, f, exp) def test_pi_offset_errors(self): idx = PeriodIndex( ["2011-01-01", "2011-02-01", "2011-03-01", "2011-04-01"], freq="D", name="idx", ) ser = pd.Series(idx) # Series op is applied per Period instance, thus error is raised # from Period for obj in [idx, ser]: msg = r"Input has different freq=2H from Period.*?\(freq=D\)" with pytest.raises(IncompatibleFrequency, match=msg): obj + pd.offsets.Hour(2) with pytest.raises(IncompatibleFrequency, match=msg): pd.offsets.Hour(2) + obj msg = r"Input has different freq=-2H from Period.*?\(freq=D\)" with pytest.raises(IncompatibleFrequency, match=msg): obj - pd.offsets.Hour(2) def test_pi_sub_period(self): # GH#13071 idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) result = idx - pd.Period("2012-01", freq="M") off = idx.freq exp = pd.Index([-12 * off, -11 * off, -10 * off, -9 * off], name="idx") tm.assert_index_equal(result, exp) result = np.subtract(idx, pd.Period("2012-01", freq="M")) tm.assert_index_equal(result, exp) result = pd.Period("2012-01", freq="M") - idx exp = pd.Index([12 * off, 11 * off, 10 * off, 9 * off], name="idx") tm.assert_index_equal(result, exp) result = np.subtract(pd.Period("2012-01", freq="M"), idx) tm.assert_index_equal(result, exp) exp = pd.TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name="idx") result = idx - pd.Period("NaT", freq="M") tm.assert_index_equal(result, exp) assert result.freq == exp.freq result = pd.Period("NaT", freq="M") - idx tm.assert_index_equal(result, exp) assert result.freq == exp.freq def test_pi_sub_pdnat(self): # GH#13071 idx = PeriodIndex( ["2011-01", "2011-02", "NaT", "2011-04"], freq="M", name="idx" ) exp = pd.TimedeltaIndex([pd.NaT] * 4, name="idx") tm.assert_index_equal(pd.NaT - idx, exp) tm.assert_index_equal(idx - pd.NaT, exp) def test_pi_sub_period_nat(self): # GH#13071 idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) result = idx - pd.Period("2012-01", freq="M") off = idx.freq exp = pd.Index([-12 * off, pd.NaT, -10 * off, -9 * off], name="idx") tm.assert_index_equal(result, exp) result = pd.Period("2012-01", freq="M") - idx exp = pd.Index([12 * off, pd.NaT, 10 * off, 9 * off], name="idx") tm.assert_index_equal(result, exp) exp = pd.TimedeltaIndex([np.nan, np.nan, np.nan, np.nan], name="idx") tm.assert_index_equal(idx - pd.Period("NaT", freq="M"), exp) tm.assert_index_equal(pd.Period("NaT", freq="M") - idx, exp) @pytest.mark.parametrize("scalars", ["a", False, 1, 1.0, None]) def test_comparison_operations(self, scalars): # GH 28980 expected = Series([False, False]) s = Series([pd.Period("2019"), pd.Period("2020")], dtype="period[A-DEC]") result = s == scalars tm.assert_series_equal(result, expected)