import numpy as np import pytest from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas.core.arrays import DatetimeArray from pandas.tests.extension import base @pytest.fixture(params=["US/Central"]) def dtype(request): return DatetimeTZDtype(unit="ns", tz=request.param) @pytest.fixture def data(dtype): data = DatetimeArray(pd.date_range("2000", periods=100, tz=dtype.tz), dtype=dtype) return data @pytest.fixture def data_missing(dtype): return DatetimeArray( np.array(["NaT", "2000-01-01"], dtype="datetime64[ns]"), dtype=dtype ) @pytest.fixture def data_for_sorting(dtype): a = pd.Timestamp("2000-01-01") b = pd.Timestamp("2000-01-02") c = pd.Timestamp("2000-01-03") return DatetimeArray(np.array([b, c, a], dtype="datetime64[ns]"), dtype=dtype) @pytest.fixture def data_missing_for_sorting(dtype): a = pd.Timestamp("2000-01-01") b = pd.Timestamp("2000-01-02") return DatetimeArray(np.array([b, "NaT", a], dtype="datetime64[ns]"), dtype=dtype) @pytest.fixture def data_for_grouping(dtype): """ Expected to be like [B, B, NA, NA, A, A, B, C] Where A < B < C and NA is missing """ a = pd.Timestamp("2000-01-01") b = pd.Timestamp("2000-01-02") c = pd.Timestamp("2000-01-03") na = "NaT" return DatetimeArray( np.array([b, b, na, na, a, a, b, c], dtype="datetime64[ns]"), dtype=dtype ) @pytest.fixture def na_cmp(): def cmp(a, b): return a is pd.NaT and a is b return cmp @pytest.fixture def na_value(): return pd.NaT # ---------------------------------------------------------------------------- class BaseDatetimeTests: pass # ---------------------------------------------------------------------------- # Tests class TestDatetimeDtype(BaseDatetimeTests, base.BaseDtypeTests): pass class TestConstructors(BaseDatetimeTests, base.BaseConstructorsTests): pass class TestGetitem(BaseDatetimeTests, base.BaseGetitemTests): pass class TestMethods(BaseDatetimeTests, base.BaseMethodsTests): @pytest.mark.skip(reason="Incorrect expected") def test_value_counts(self, all_data, dropna): pass def test_combine_add(self, data_repeated): # Timestamp.__add__(Timestamp) not defined pass class TestInterface(BaseDatetimeTests, base.BaseInterfaceTests): def test_array_interface(self, data): if data.tz: # np.asarray(DTA) is currently always tz-naive. pytest.skip("GH-23569") else: super().test_array_interface(data) class TestArithmeticOps(BaseDatetimeTests, base.BaseArithmeticOpsTests): implements = {"__sub__", "__rsub__"} def test_arith_frame_with_scalar(self, data, all_arithmetic_operators): # frame & scalar if all_arithmetic_operators in self.implements: df = pd.DataFrame({"A": data}) self.check_opname(df, all_arithmetic_operators, data[0], exc=None) else: # ... but not the rest. super().test_arith_frame_with_scalar(data, all_arithmetic_operators) def test_arith_series_with_scalar(self, data, all_arithmetic_operators): if all_arithmetic_operators in self.implements: s = pd.Series(data) self.check_opname(s, all_arithmetic_operators, s.iloc[0], exc=None) else: # ... but not the rest. super().test_arith_series_with_scalar(data, all_arithmetic_operators) def test_add_series_with_extension_array(self, data): # Datetime + Datetime not implemented s = pd.Series(data) msg = "cannot add DatetimeArray and DatetimeArray" with pytest.raises(TypeError, match=msg): s + data def test_arith_series_with_array(self, data, all_arithmetic_operators): if all_arithmetic_operators in self.implements: s = pd.Series(data) self.check_opname(s, all_arithmetic_operators, s.iloc[0], exc=None) else: # ... but not the rest. super().test_arith_series_with_scalar(data, all_arithmetic_operators) def test_error(self, data, all_arithmetic_operators): pass def test_divmod_series_array(self): # GH 23287 # skipping because it is not implemented pass class TestCasting(BaseDatetimeTests, base.BaseCastingTests): pass class TestComparisonOps(BaseDatetimeTests, base.BaseComparisonOpsTests): def _compare_other(self, s, data, op_name, other): # the base test is not appropriate for us. We raise on comparison # with (some) integers, depending on the value. pass class TestMissing(BaseDatetimeTests, base.BaseMissingTests): pass class TestReshaping(BaseDatetimeTests, base.BaseReshapingTests): @pytest.mark.skip(reason="We have DatetimeTZBlock") def test_concat(self, data, in_frame): pass def test_concat_mixed_dtypes(self, data): # concat(Series[datetimetz], Series[category]) uses a # plain np.array(values) on the DatetimeArray, which # drops the tz. super().test_concat_mixed_dtypes(data) @pytest.mark.parametrize("obj", ["series", "frame"]) def test_unstack(self, obj): # GH-13287: can't use base test, since building the expected fails. dtype = DatetimeTZDtype(tz="US/Central") data = DatetimeArray._from_sequence( ["2000", "2001", "2002", "2003"], dtype=dtype, ) index = pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"]) if obj == "series": ser = pd.Series(data, index=index) expected = pd.DataFrame( {"A": data.take([0, 1]), "B": data.take([2, 3])}, index=pd.Index(["a", "b"], name="b"), ) expected.columns.name = "a" else: ser = pd.DataFrame({"A": data, "B": data}, index=index) expected = pd.DataFrame( { ("A", "A"): data.take([0, 1]), ("A", "B"): data.take([2, 3]), ("B", "A"): data.take([0, 1]), ("B", "B"): data.take([2, 3]), }, index=pd.Index(["a", "b"], name="b"), ) expected.columns.names = [None, "a"] result = ser.unstack(0) self.assert_equal(result, expected) class TestSetitem(BaseDatetimeTests, base.BaseSetitemTests): pass class TestGroupby(BaseDatetimeTests, base.BaseGroupbyTests): pass class TestPrinting(BaseDatetimeTests, base.BasePrintingTests): pass