import numpy as np import pytest from pandas import Categorical, Series import pandas._testing as tm from pandas.core.construction import create_series_with_explicit_dtype def test_nunique(): # basics.rst doc example series = Series(np.random.randn(500)) series[20:500] = np.nan series[10:20] = 5000 result = series.nunique() assert result == 11 # GH 18051 s = Series(Categorical([])) assert s.nunique() == 0 s = Series(Categorical([np.nan])) assert s.nunique() == 0 def test_numpy_unique(datetime_series): # it works! np.unique(datetime_series) def test_unique(): # GH714 also, dtype=float s = Series([1.2345] * 100) s[::2] = np.nan result = s.unique() assert len(result) == 2 s = Series([1.2345] * 100, dtype="f4") s[::2] = np.nan result = s.unique() assert len(result) == 2 # NAs in object arrays #714 s = Series(["foo"] * 100, dtype="O") s[::2] = np.nan result = s.unique() assert len(result) == 2 # decision about None s = Series([1, 2, 3, None, None, None], dtype=object) result = s.unique() expected = np.array([1, 2, 3, None], dtype=object) tm.assert_numpy_array_equal(result, expected) # GH 18051 s = Series(Categorical([])) tm.assert_categorical_equal(s.unique(), Categorical([])) s = Series(Categorical([np.nan])) tm.assert_categorical_equal(s.unique(), Categorical([np.nan])) def test_unique_data_ownership(): # it works! #1807 Series(Series(["a", "c", "b"]).unique()).sort_values() @pytest.mark.parametrize( "data, expected", [ (np.random.randint(0, 10, size=1000), False), (np.arange(1000), True), ([], True), ([np.nan], True), (["foo", "bar", np.nan], True), (["foo", "foo", np.nan], False), (["foo", "bar", np.nan, np.nan], False), ], ) def test_is_unique(data, expected): # GH11946 / GH25180 s = create_series_with_explicit_dtype(data, dtype_if_empty=object) assert s.is_unique is expected def test_is_unique_class_ne(capsys): # GH 20661 class Foo: def __init__(self, val): self._value = val def __ne__(self, other): raise Exception("NEQ not supported") with capsys.disabled(): li = [Foo(i) for i in range(5)] s = Series(li, index=list(range(5))) s.is_unique captured = capsys.readouterr() assert len(captured.err) == 0