from datetime import datetime, timedelta, tzinfo from pathlib import Path from typing import ( IO, TYPE_CHECKING, Any, AnyStr, Callable, Collection, Dict, Hashable, List, Mapping, Optional, Type, TypeVar, Union, ) import numpy as np # To prevent import cycles place any internal imports in the branch below # and use a string literal forward reference to it in subsequent types # https://mypy.readthedocs.io/en/latest/common_issues.html#import-cycles if TYPE_CHECKING: from pandas._libs import Period, Timedelta, Timestamp # noqa: F401 from pandas.core.dtypes.dtypes import ExtensionDtype # noqa: F401 from pandas import Interval # noqa: F401 from pandas.core.arrays.base import ExtensionArray # noqa: F401 from pandas.core.frame import DataFrame # noqa: F401 from pandas.core.generic import NDFrame # noqa: F401 from pandas.core.indexes.base import Index # noqa: F401 from pandas.core.series import Series # noqa: F401 # array-like AnyArrayLike = TypeVar("AnyArrayLike", "ExtensionArray", "Index", "Series", np.ndarray) ArrayLike = TypeVar("ArrayLike", "ExtensionArray", np.ndarray) # scalars PythonScalar = Union[str, int, float, bool] DatetimeLikeScalar = TypeVar("DatetimeLikeScalar", "Period", "Timestamp", "Timedelta") PandasScalar = Union["Period", "Timestamp", "Timedelta", "Interval"] Scalar = Union[PythonScalar, PandasScalar] # timestamp and timedelta convertible types TimestampConvertibleTypes = Union[ "Timestamp", datetime, np.datetime64, int, np.int64, float, str ] TimedeltaConvertibleTypes = Union[ "Timedelta", timedelta, np.timedelta64, int, np.int64, float, str ] Timezone = Union[str, tzinfo] # other Dtype = Union[ "ExtensionDtype", str, np.dtype, Type[Union[str, float, int, complex, bool]] ] DtypeObj = Union[np.dtype, "ExtensionDtype"] FilePathOrBuffer = Union[str, Path, IO[AnyStr]] # FrameOrSeriesUnion means either a DataFrame or a Series. E.g. # `def func(a: FrameOrSeriesUnion) -> FrameOrSeriesUnion: ...` means that if a Series # is passed in, either a Series or DataFrame is returned, and if a DataFrame is passed # in, either a DataFrame or a Series is returned. FrameOrSeriesUnion = Union["DataFrame", "Series"] # FrameOrSeries is stricter and ensures that the same subclass of NDFrame always is # used. E.g. `def func(a: FrameOrSeries) -> FrameOrSeries: ...` means that if a # Series is passed into a function, a Series is always returned and if a DataFrame is # passed in, a DataFrame is always returned. FrameOrSeries = TypeVar("FrameOrSeries", bound="NDFrame") Axis = Union[str, int] Label = Optional[Hashable] Level = Union[Label, int] Ordered = Optional[bool] JSONSerializable = Optional[Union[PythonScalar, List, Dict]] Axes = Collection # For functions like rename that convert one label to another Renamer = Union[Mapping[Label, Any], Callable[[Label], Label]] # to maintain type information across generic functions and parametrization T = TypeVar("T") # used in decorators to preserve the signature of the function it decorates # see https://mypy.readthedocs.io/en/stable/generics.html#declaring-decorators FuncType = Callable[..., Any] F = TypeVar("F", bound=FuncType) # types of vectorized key functions for DataFrame::sort_values and # DataFrame::sort_index, among others ValueKeyFunc = Optional[Callable[["Series"], Union["Series", AnyArrayLike]]] IndexKeyFunc = Optional[Callable[["Index"], Union["Index", AnyArrayLike]]] # types of `func` kwarg for DataFrame.aggregate and Series.aggregate AggFuncTypeBase = Union[Callable, str] AggFuncType = Union[ AggFuncTypeBase, List[AggFuncTypeBase], Dict[Label, Union[AggFuncTypeBase, List[AggFuncTypeBase]]], ]