mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-01 18:31:45 +01:00
2619 lines
91 KiB
Python
2619 lines
91 KiB
Python
from collections import defaultdict
|
|
from datetime import datetime, timedelta
|
|
from io import StringIO
|
|
import math
|
|
import operator
|
|
import re
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas._config.config as cf
|
|
|
|
from pandas._libs.tslib import Timestamp
|
|
from pandas.compat.numpy import np_datetime64_compat
|
|
from pandas.util._test_decorators import async_mark
|
|
|
|
from pandas.core.dtypes.generic import ABCIndex
|
|
|
|
import pandas as pd
|
|
from pandas import (
|
|
CategoricalIndex,
|
|
DataFrame,
|
|
DatetimeIndex,
|
|
Float64Index,
|
|
Int64Index,
|
|
PeriodIndex,
|
|
RangeIndex,
|
|
Series,
|
|
TimedeltaIndex,
|
|
UInt64Index,
|
|
date_range,
|
|
isna,
|
|
period_range,
|
|
)
|
|
import pandas._testing as tm
|
|
from pandas.core.indexes.api import (
|
|
Index,
|
|
MultiIndex,
|
|
_get_combined_index,
|
|
ensure_index,
|
|
ensure_index_from_sequences,
|
|
)
|
|
from pandas.tests.indexes.common import Base
|
|
|
|
|
|
class TestIndex(Base):
|
|
_holder = Index
|
|
|
|
def create_index(self) -> Index:
|
|
return Index(list("abcde"))
|
|
|
|
def test_can_hold_identifiers(self):
|
|
index = self.create_index()
|
|
key = index[0]
|
|
assert index._can_hold_identifiers_and_holds_name(key) is True
|
|
|
|
@pytest.mark.parametrize("index", ["datetime"], indirect=True)
|
|
def test_new_axis(self, index):
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
# GH#30588 multi-dimensional indexing deprecated
|
|
new_index = index[None, :]
|
|
assert new_index.ndim == 2
|
|
assert isinstance(new_index, np.ndarray)
|
|
|
|
@pytest.mark.parametrize("index", ["int", "uint", "float"], indirect=True)
|
|
def test_copy_and_deepcopy(self, index):
|
|
new_copy2 = index.copy(dtype=int)
|
|
assert new_copy2.dtype.kind == "i"
|
|
|
|
def test_constructor_regular(self, index):
|
|
tm.assert_contains_all(index, index)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_constructor_casting(self, index):
|
|
# casting
|
|
arr = np.array(index)
|
|
new_index = Index(arr)
|
|
tm.assert_contains_all(arr, new_index)
|
|
tm.assert_index_equal(index, new_index)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_constructor_copy(self, index):
|
|
# copy
|
|
# index = self.create_index()
|
|
arr = np.array(index)
|
|
new_index = Index(arr, copy=True, name="name")
|
|
assert isinstance(new_index, Index)
|
|
assert new_index.name == "name"
|
|
tm.assert_numpy_array_equal(arr, new_index.values)
|
|
arr[0] = "SOMEBIGLONGSTRING"
|
|
assert new_index[0] != "SOMEBIGLONGSTRING"
|
|
|
|
# FIXME: dont leave commented-out
|
|
# what to do here?
|
|
# arr = np.array(5.)
|
|
# pytest.raises(Exception, arr.view, Index)
|
|
|
|
@pytest.mark.parametrize("cast_as_obj", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
pd.date_range(
|
|
"2015-01-01 10:00",
|
|
freq="D",
|
|
periods=3,
|
|
tz="US/Eastern",
|
|
name="Green Eggs & Ham",
|
|
), # DTI with tz
|
|
pd.date_range("2015-01-01 10:00", freq="D", periods=3), # DTI no tz
|
|
pd.timedelta_range("1 days", freq="D", periods=3), # td
|
|
pd.period_range("2015-01-01", freq="D", periods=3), # period
|
|
],
|
|
)
|
|
def test_constructor_from_index_dtlike(self, cast_as_obj, index):
|
|
if cast_as_obj:
|
|
result = pd.Index(index.astype(object))
|
|
else:
|
|
result = pd.Index(index)
|
|
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if isinstance(index, pd.DatetimeIndex):
|
|
assert result.tz == index.tz
|
|
if cast_as_obj:
|
|
# GH#23524 check that Index(dti, dtype=object) does not
|
|
# incorrectly raise ValueError, and that nanoseconds are not
|
|
# dropped
|
|
index += pd.Timedelta(nanoseconds=50)
|
|
result = pd.Index(index, dtype=object)
|
|
assert result.dtype == np.object_
|
|
assert list(result) == list(index)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index,has_tz",
|
|
[
|
|
(
|
|
pd.date_range("2015-01-01 10:00", freq="D", periods=3, tz="US/Eastern"),
|
|
True,
|
|
), # datetimetz
|
|
(pd.timedelta_range("1 days", freq="D", periods=3), False), # td
|
|
(pd.period_range("2015-01-01", freq="D", periods=3), False), # period
|
|
],
|
|
)
|
|
def test_constructor_from_series_dtlike(self, index, has_tz):
|
|
result = pd.Index(pd.Series(index))
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if has_tz:
|
|
assert result.tz == index.tz
|
|
|
|
def test_constructor_from_series_freq(self):
|
|
# GH 6273
|
|
# create from a series, passing a freq
|
|
dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
|
|
expected = DatetimeIndex(dts, freq="MS")
|
|
|
|
s = Series(pd.to_datetime(dts))
|
|
result = DatetimeIndex(s, freq="MS")
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_constructor_from_frame_series_freq(self):
|
|
# GH 6273
|
|
# create from a series, passing a freq
|
|
dts = ["1-1-1990", "2-1-1990", "3-1-1990", "4-1-1990", "5-1-1990"]
|
|
expected = DatetimeIndex(dts, freq="MS")
|
|
|
|
df = pd.DataFrame(np.random.rand(5, 3))
|
|
df["date"] = dts
|
|
result = DatetimeIndex(df["date"], freq="MS")
|
|
|
|
assert df["date"].dtype == object
|
|
expected.name = "date"
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
expected = pd.Series(dts, name="date")
|
|
tm.assert_series_equal(df["date"], expected)
|
|
|
|
# GH 6274
|
|
# infer freq of same
|
|
freq = pd.infer_freq(df["date"])
|
|
assert freq == "MS"
|
|
|
|
@pytest.mark.parametrize(
|
|
"array",
|
|
[
|
|
np.arange(5),
|
|
np.array(["a", "b", "c"]),
|
|
date_range("2000-01-01", periods=3).values,
|
|
],
|
|
)
|
|
def test_constructor_ndarray_like(self, array):
|
|
# GH 5460#issuecomment-44474502
|
|
# it should be possible to convert any object that satisfies the numpy
|
|
# ndarray interface directly into an Index
|
|
class ArrayLike:
|
|
def __init__(self, array):
|
|
self.array = array
|
|
|
|
def __array__(self, dtype=None) -> np.ndarray:
|
|
return self.array
|
|
|
|
expected = pd.Index(array)
|
|
result = pd.Index(ArrayLike(array))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_constructor_int_dtype_nan(self):
|
|
# see gh-15187
|
|
data = [np.nan]
|
|
expected = Float64Index(data)
|
|
result = Index(data, dtype="float")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("dtype", ["int64", "uint64"])
|
|
def test_constructor_int_dtype_nan_raises(self, dtype):
|
|
# see gh-15187
|
|
data = [np.nan]
|
|
msg = "cannot convert"
|
|
with pytest.raises(ValueError, match=msg):
|
|
Index(data, dtype=dtype)
|
|
|
|
def test_constructor_no_pandas_array(self):
|
|
ser = pd.Series([1, 2, 3])
|
|
result = pd.Index(ser.array)
|
|
expected = pd.Index([1, 2, 3])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"klass,dtype,na_val",
|
|
[
|
|
(pd.Float64Index, np.float64, np.nan),
|
|
(pd.DatetimeIndex, "datetime64[ns]", pd.NaT),
|
|
],
|
|
)
|
|
def test_index_ctor_infer_nan_nat(self, klass, dtype, na_val):
|
|
# GH 13467
|
|
na_list = [na_val, na_val]
|
|
expected = klass(na_list)
|
|
assert expected.dtype == dtype
|
|
|
|
result = Index(na_list)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
result = Index(np.array(na_list))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals,dtype",
|
|
[
|
|
([1, 2, 3, 4, 5], "int"),
|
|
([1.1, np.nan, 2.2, 3.0], "float"),
|
|
(["A", "B", "C", np.nan], "obj"),
|
|
],
|
|
)
|
|
def test_constructor_simple_new(self, vals, dtype):
|
|
index = Index(vals, name=dtype)
|
|
result = index._simple_new(index.values, dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
[1, 2, 3],
|
|
np.array([1, 2, 3]),
|
|
np.array([1, 2, 3], dtype=int),
|
|
# below should coerce
|
|
[1.0, 2.0, 3.0],
|
|
np.array([1.0, 2.0, 3.0], dtype=float),
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_int64(self, vals):
|
|
index = Index(vals, dtype=int)
|
|
assert isinstance(index, Int64Index)
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
[1, 2, 3],
|
|
[1.0, 2.0, 3.0],
|
|
np.array([1.0, 2.0, 3.0]),
|
|
np.array([1, 2, 3], dtype=int),
|
|
np.array([1.0, 2.0, 3.0], dtype=float),
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_float64(self, vals):
|
|
index = Index(vals, dtype=float)
|
|
assert isinstance(index, Float64Index)
|
|
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
[1, 2, 3],
|
|
np.array([1, 2, 3], dtype=int),
|
|
np.array(
|
|
[np_datetime64_compat("2011-01-01"), np_datetime64_compat("2011-01-02")]
|
|
),
|
|
[datetime(2011, 1, 1), datetime(2011, 1, 2)],
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_categorical(self, vals):
|
|
index = Index(vals, dtype="category")
|
|
assert isinstance(index, CategoricalIndex)
|
|
|
|
@pytest.mark.parametrize("cast_index", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
Index(
|
|
np.array(
|
|
[
|
|
np_datetime64_compat("2011-01-01"),
|
|
np_datetime64_compat("2011-01-02"),
|
|
]
|
|
)
|
|
),
|
|
Index([datetime(2011, 1, 1), datetime(2011, 1, 2)]),
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_datetime(self, cast_index, vals):
|
|
if cast_index:
|
|
index = Index(vals, dtype=object)
|
|
assert isinstance(index, Index)
|
|
assert index.dtype == object
|
|
else:
|
|
index = Index(vals)
|
|
assert isinstance(index, DatetimeIndex)
|
|
|
|
@pytest.mark.parametrize("cast_index", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"vals",
|
|
[
|
|
np.array([np.timedelta64(1, "D"), np.timedelta64(1, "D")]),
|
|
[timedelta(1), timedelta(1)],
|
|
],
|
|
)
|
|
def test_constructor_dtypes_to_timedelta(self, cast_index, vals):
|
|
if cast_index:
|
|
index = Index(vals, dtype=object)
|
|
assert isinstance(index, Index)
|
|
assert index.dtype == object
|
|
else:
|
|
index = Index(vals)
|
|
assert isinstance(index, TimedeltaIndex)
|
|
|
|
@pytest.mark.parametrize("attr", ["values", "asi8"])
|
|
@pytest.mark.parametrize("klass", [pd.Index, pd.DatetimeIndex])
|
|
def test_constructor_dtypes_datetime(self, tz_naive_fixture, attr, klass):
|
|
# Test constructing with a datetimetz dtype
|
|
# .values produces numpy datetimes, so these are considered naive
|
|
# .asi8 produces integers, so these are considered epoch timestamps
|
|
# ^the above will be true in a later version. Right now we `.view`
|
|
# the i8 values as NS_DTYPE, effectively treating them as wall times.
|
|
index = pd.date_range("2011-01-01", periods=5)
|
|
arg = getattr(index, attr)
|
|
index = index.tz_localize(tz_naive_fixture)
|
|
dtype = index.dtype
|
|
|
|
if attr == "asi8":
|
|
result = pd.DatetimeIndex(arg).tz_localize(tz_naive_fixture)
|
|
else:
|
|
result = klass(arg, tz=tz_naive_fixture)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if attr == "asi8":
|
|
result = pd.DatetimeIndex(arg).astype(dtype)
|
|
else:
|
|
result = klass(arg, dtype=dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if attr == "asi8":
|
|
result = pd.DatetimeIndex(list(arg)).tz_localize(tz_naive_fixture)
|
|
else:
|
|
result = klass(list(arg), tz=tz_naive_fixture)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
if attr == "asi8":
|
|
result = pd.DatetimeIndex(list(arg)).astype(dtype)
|
|
else:
|
|
result = klass(list(arg), dtype=dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
@pytest.mark.parametrize("attr", ["values", "asi8"])
|
|
@pytest.mark.parametrize("klass", [pd.Index, pd.TimedeltaIndex])
|
|
def test_constructor_dtypes_timedelta(self, attr, klass):
|
|
index = pd.timedelta_range("1 days", periods=5)
|
|
index = index._with_freq(None) # wont be preserved by constructors
|
|
dtype = index.dtype
|
|
|
|
values = getattr(index, attr)
|
|
|
|
result = klass(values, dtype=dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
result = klass(list(values), dtype=dtype)
|
|
tm.assert_index_equal(result, index)
|
|
|
|
@pytest.mark.parametrize("value", [[], iter([]), (_ for _ in [])])
|
|
@pytest.mark.parametrize(
|
|
"klass",
|
|
[
|
|
Index,
|
|
Float64Index,
|
|
Int64Index,
|
|
UInt64Index,
|
|
CategoricalIndex,
|
|
DatetimeIndex,
|
|
TimedeltaIndex,
|
|
],
|
|
)
|
|
def test_constructor_empty(self, value, klass):
|
|
empty = klass(value)
|
|
assert isinstance(empty, klass)
|
|
assert not len(empty)
|
|
|
|
@pytest.mark.parametrize(
|
|
"empty,klass",
|
|
[
|
|
(PeriodIndex([], freq="B"), PeriodIndex),
|
|
(PeriodIndex(iter([]), freq="B"), PeriodIndex),
|
|
(PeriodIndex((_ for _ in []), freq="B"), PeriodIndex),
|
|
(RangeIndex(step=1), pd.RangeIndex),
|
|
(MultiIndex(levels=[[1, 2], ["blue", "red"]], codes=[[], []]), MultiIndex),
|
|
],
|
|
)
|
|
def test_constructor_empty_special(self, empty, klass):
|
|
assert isinstance(empty, klass)
|
|
assert not len(empty)
|
|
|
|
def test_constructor_overflow_int64(self):
|
|
# see gh-15832
|
|
msg = (
|
|
"The elements provided in the data cannot "
|
|
"all be casted to the dtype int64"
|
|
)
|
|
with pytest.raises(OverflowError, match=msg):
|
|
Index([np.iinfo(np.uint64).max - 1], dtype="int64")
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
"datetime",
|
|
"float",
|
|
"int",
|
|
"period",
|
|
"range",
|
|
"repeats",
|
|
"timedelta",
|
|
"tuples",
|
|
"uint",
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_view_with_args(self, index):
|
|
index.view("i8")
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
"unicode",
|
|
"string",
|
|
pytest.param("categorical", marks=pytest.mark.xfail(reason="gh-25464")),
|
|
"bool",
|
|
"empty",
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_view_with_args_object_array_raises(self, index):
|
|
msg = "Cannot change data-type for object array"
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.view("i8")
|
|
|
|
@pytest.mark.parametrize("index", ["int", "range"], indirect=True)
|
|
def test_astype(self, index):
|
|
casted = index.astype("i8")
|
|
|
|
# it works!
|
|
casted.get_loc(5)
|
|
|
|
# pass on name
|
|
index.name = "foobar"
|
|
casted = index.astype("i8")
|
|
assert casted.name == "foobar"
|
|
|
|
def test_equals_object(self):
|
|
# same
|
|
assert Index(["a", "b", "c"]).equals(Index(["a", "b", "c"]))
|
|
|
|
@pytest.mark.parametrize(
|
|
"comp", [Index(["a", "b"]), Index(["a", "b", "d"]), ["a", "b", "c"]]
|
|
)
|
|
def test_not_equals_object(self, comp):
|
|
assert not Index(["a", "b", "c"]).equals(comp)
|
|
|
|
def test_insert_missing(self, nulls_fixture):
|
|
# GH 22295
|
|
# test there is no mangling of NA values
|
|
expected = Index(["a", nulls_fixture, "b", "c"])
|
|
result = Index(list("abc")).insert(1, nulls_fixture)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_delete_raises(self):
|
|
index = Index(["a", "b", "c", "d"], name="index")
|
|
msg = "index 5 is out of bounds for axis 0 with size 4"
|
|
with pytest.raises(IndexError, match=msg):
|
|
index.delete(5)
|
|
|
|
def test_identical(self):
|
|
|
|
# index
|
|
i1 = Index(["a", "b", "c"])
|
|
i2 = Index(["a", "b", "c"])
|
|
|
|
assert i1.identical(i2)
|
|
|
|
i1 = i1.rename("foo")
|
|
assert i1.equals(i2)
|
|
assert not i1.identical(i2)
|
|
|
|
i2 = i2.rename("foo")
|
|
assert i1.identical(i2)
|
|
|
|
i3 = Index([("a", "a"), ("a", "b"), ("b", "a")])
|
|
i4 = Index([("a", "a"), ("a", "b"), ("b", "a")], tupleize_cols=False)
|
|
assert not i3.identical(i4)
|
|
|
|
def test_is_(self):
|
|
ind = Index(range(10))
|
|
assert ind.is_(ind)
|
|
assert ind.is_(ind.view().view().view().view())
|
|
assert not ind.is_(Index(range(10)))
|
|
assert not ind.is_(ind.copy())
|
|
assert not ind.is_(ind.copy(deep=False))
|
|
assert not ind.is_(ind[:])
|
|
assert not ind.is_(np.array(range(10)))
|
|
|
|
# quasi-implementation dependent
|
|
assert ind.is_(ind.view())
|
|
ind2 = ind.view()
|
|
ind2.name = "bob"
|
|
assert ind.is_(ind2)
|
|
assert ind2.is_(ind)
|
|
# doesn't matter if Indices are *actually* views of underlying data,
|
|
assert not ind.is_(Index(ind.values))
|
|
arr = np.array(range(1, 11))
|
|
ind1 = Index(arr, copy=False)
|
|
ind2 = Index(arr, copy=False)
|
|
assert not ind1.is_(ind2)
|
|
|
|
@pytest.mark.parametrize("index", ["datetime"], indirect=True)
|
|
def test_asof(self, index):
|
|
d = index[0]
|
|
assert index.asof(d) == d
|
|
assert isna(index.asof(d - timedelta(1)))
|
|
|
|
d = index[-1]
|
|
assert index.asof(d + timedelta(1)) == d
|
|
|
|
d = index[0].to_pydatetime()
|
|
assert isinstance(index.asof(d), Timestamp)
|
|
|
|
def test_asof_datetime_partial(self):
|
|
index = pd.date_range("2010-01-01", periods=2, freq="m")
|
|
expected = Timestamp("2010-02-28")
|
|
result = index.asof("2010-02")
|
|
assert result == expected
|
|
assert not isinstance(result, Index)
|
|
|
|
def test_nanosecond_index_access(self):
|
|
s = Series([Timestamp("20130101")]).values.view("i8")[0]
|
|
r = DatetimeIndex([s + 50 + i for i in range(100)])
|
|
x = Series(np.random.randn(100), index=r)
|
|
|
|
first_value = x.asof(x.index[0])
|
|
|
|
# this does not yet work, as parsing strings is done via dateutil
|
|
# assert first_value == x['2013-01-01 00:00:00.000000050+0000']
|
|
|
|
expected_ts = np_datetime64_compat("2013-01-01 00:00:00.000000050+0000", "ns")
|
|
assert first_value == x[Timestamp(expected_ts)]
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_booleanindex(self, index):
|
|
bool_index = np.ones(len(index), dtype=bool)
|
|
bool_index[5:30:2] = False
|
|
|
|
sub_index = index[bool_index]
|
|
|
|
for i, val in enumerate(sub_index):
|
|
assert sub_index.get_loc(val) == i
|
|
|
|
sub_index = index[list(bool_index)]
|
|
for i, val in enumerate(sub_index):
|
|
assert sub_index.get_loc(val) == i
|
|
|
|
def test_fancy(self):
|
|
index = self.create_index()
|
|
sl = index[[1, 2, 3]]
|
|
for i in sl:
|
|
assert i == sl[sl.get_loc(i)]
|
|
|
|
@pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True)
|
|
@pytest.mark.parametrize("dtype", [np.int_, np.bool_])
|
|
def test_empty_fancy(self, index, dtype):
|
|
empty_arr = np.array([], dtype=dtype)
|
|
empty_index = type(index)([])
|
|
|
|
assert index[[]].identical(empty_index)
|
|
assert index[empty_arr].identical(empty_index)
|
|
|
|
@pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True)
|
|
def test_empty_fancy_raises(self, index):
|
|
# pd.DatetimeIndex is excluded, because it overrides getitem and should
|
|
# be tested separately.
|
|
empty_farr = np.array([], dtype=np.float_)
|
|
empty_index = type(index)([])
|
|
|
|
assert index[[]].identical(empty_index)
|
|
# np.ndarray only accepts ndarray of int & bool dtypes, so should Index
|
|
msg = r"arrays used as indices must be of integer \(or boolean\) type"
|
|
with pytest.raises(IndexError, match=msg):
|
|
index[empty_farr]
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_intersection(self, index, sort):
|
|
first = index[:20]
|
|
second = index[:10]
|
|
intersect = first.intersection(second, sort=sort)
|
|
if sort is None:
|
|
tm.assert_index_equal(intersect, second.sort_values())
|
|
assert tm.equalContents(intersect, second)
|
|
|
|
# Corner cases
|
|
inter = first.intersection(first, sort=sort)
|
|
assert inter is first
|
|
|
|
@pytest.mark.parametrize(
|
|
"index2,keeps_name",
|
|
[
|
|
(Index([3, 4, 5, 6, 7], name="index"), True), # preserve same name
|
|
(Index([3, 4, 5, 6, 7], name="other"), False), # drop diff names
|
|
(Index([3, 4, 5, 6, 7]), False),
|
|
],
|
|
)
|
|
def test_intersection_name_preservation(self, index2, keeps_name, sort):
|
|
index1 = Index([1, 2, 3, 4, 5], name="index")
|
|
expected = Index([3, 4, 5])
|
|
result = index1.intersection(index2, sort)
|
|
|
|
if keeps_name:
|
|
expected.name = "index"
|
|
|
|
assert result.name == expected.name
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
@pytest.mark.parametrize(
|
|
"first_name,second_name,expected_name",
|
|
[("A", "A", "A"), ("A", "B", None), (None, "B", None)],
|
|
)
|
|
def test_intersection_name_preservation2(
|
|
self, index, first_name, second_name, expected_name, sort
|
|
):
|
|
first = index[5:20]
|
|
second = index[:10]
|
|
first.name = first_name
|
|
second.name = second_name
|
|
intersect = first.intersection(second, sort=sort)
|
|
assert intersect.name == expected_name
|
|
|
|
@pytest.mark.parametrize(
|
|
"index2,keeps_name",
|
|
[
|
|
(Index([4, 7, 6, 5, 3], name="index"), True),
|
|
(Index([4, 7, 6, 5, 3], name="other"), False),
|
|
],
|
|
)
|
|
def test_intersection_monotonic(self, index2, keeps_name, sort):
|
|
index1 = Index([5, 3, 2, 4, 1], name="index")
|
|
expected = Index([5, 3, 4])
|
|
|
|
if keeps_name:
|
|
expected.name = "index"
|
|
|
|
result = index1.intersection(index2, sort=sort)
|
|
if sort is None:
|
|
expected = expected.sort_values()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index2,expected_arr",
|
|
[(Index(["B", "D"]), ["B"]), (Index(["B", "D", "A"]), ["A", "B"])],
|
|
)
|
|
def test_intersection_non_monotonic_non_unique(self, index2, expected_arr, sort):
|
|
# non-monotonic non-unique
|
|
index1 = Index(["A", "B", "A", "C"])
|
|
expected = Index(expected_arr, dtype="object")
|
|
result = index1.intersection(index2, sort=sort)
|
|
if sort is None:
|
|
expected = expected.sort_values()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_intersect_str_dates(self, sort):
|
|
dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)]
|
|
|
|
i1 = Index(dt_dates, dtype=object)
|
|
i2 = Index(["aa"], dtype=object)
|
|
result = i2.intersection(i1, sort=sort)
|
|
|
|
assert len(result) == 0
|
|
|
|
@pytest.mark.xfail(reason="Not implemented")
|
|
def test_intersection_equal_sort_true(self):
|
|
# TODO decide on True behaviour
|
|
idx = pd.Index(["c", "a", "b"])
|
|
sorted_ = pd.Index(["a", "b", "c"])
|
|
tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_)
|
|
|
|
def test_chained_union(self, sort):
|
|
# Chained unions handles names correctly
|
|
i1 = Index([1, 2], name="i1")
|
|
i2 = Index([5, 6], name="i2")
|
|
i3 = Index([3, 4], name="i3")
|
|
union = i1.union(i2.union(i3, sort=sort), sort=sort)
|
|
expected = i1.union(i2, sort=sort).union(i3, sort=sort)
|
|
tm.assert_index_equal(union, expected)
|
|
|
|
j1 = Index([1, 2], name="j1")
|
|
j2 = Index([], name="j2")
|
|
j3 = Index([], name="j3")
|
|
union = j1.union(j2.union(j3, sort=sort), sort=sort)
|
|
expected = j1.union(j2, sort=sort).union(j3, sort=sort)
|
|
tm.assert_index_equal(union, expected)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_union(self, index, sort):
|
|
first = index[5:20]
|
|
second = index[:10]
|
|
everything = index[:20]
|
|
|
|
union = first.union(second, sort=sort)
|
|
if sort is None:
|
|
tm.assert_index_equal(union, everything.sort_values())
|
|
assert tm.equalContents(union, everything)
|
|
|
|
@pytest.mark.parametrize("slice_", [slice(None), slice(0)])
|
|
def test_union_sort_other_special(self, slice_):
|
|
# https://github.com/pandas-dev/pandas/issues/24959
|
|
|
|
idx = pd.Index([1, 0, 2])
|
|
# default, sort=None
|
|
other = idx[slice_]
|
|
tm.assert_index_equal(idx.union(other), idx)
|
|
tm.assert_index_equal(other.union(idx), idx)
|
|
|
|
# sort=False
|
|
tm.assert_index_equal(idx.union(other, sort=False), idx)
|
|
|
|
@pytest.mark.xfail(reason="Not implemented")
|
|
@pytest.mark.parametrize("slice_", [slice(None), slice(0)])
|
|
def test_union_sort_special_true(self, slice_):
|
|
# TODO decide on True behaviour
|
|
# sort=True
|
|
idx = pd.Index([1, 0, 2])
|
|
# default, sort=None
|
|
other = idx[slice_]
|
|
|
|
result = idx.union(other, sort=True)
|
|
expected = pd.Index([0, 1, 2])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("klass", [np.array, Series, list])
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_union_from_iterables(self, index, klass, sort):
|
|
# GH 10149
|
|
first = index[5:20]
|
|
second = index[:10]
|
|
everything = index[:20]
|
|
|
|
case = klass(second.values)
|
|
result = first.union(case, sort=sort)
|
|
if sort is None:
|
|
tm.assert_index_equal(result, everything.sort_values())
|
|
assert tm.equalContents(result, everything)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_union_identity(self, index, sort):
|
|
first = index[5:20]
|
|
|
|
union = first.union(first, sort=sort)
|
|
# i.e. identity is not preserved when sort is True
|
|
assert (union is first) is (not sort)
|
|
|
|
# This should no longer be the same object, since [] is not consistent,
|
|
# both objects will be recast to dtype('O')
|
|
union = first.union([], sort=sort)
|
|
assert (union is first) is (not sort)
|
|
|
|
union = Index([]).union(first, sort=sort)
|
|
assert (union is first) is (not sort)
|
|
|
|
@pytest.mark.parametrize("first_list", [list("ba"), list()])
|
|
@pytest.mark.parametrize("second_list", [list("ab"), list()])
|
|
@pytest.mark.parametrize(
|
|
"first_name, second_name, expected_name",
|
|
[("A", "B", None), (None, "B", None), ("A", None, None)],
|
|
)
|
|
def test_union_name_preservation(
|
|
self, first_list, second_list, first_name, second_name, expected_name, sort
|
|
):
|
|
first = Index(first_list, name=first_name)
|
|
second = Index(second_list, name=second_name)
|
|
union = first.union(second, sort=sort)
|
|
|
|
vals = set(first_list).union(second_list)
|
|
|
|
if sort is None and len(first_list) > 0 and len(second_list) > 0:
|
|
expected = Index(sorted(vals), name=expected_name)
|
|
tm.assert_index_equal(union, expected)
|
|
else:
|
|
expected = Index(vals, name=expected_name)
|
|
assert tm.equalContents(union, expected)
|
|
|
|
def test_union_dt_as_obj(self, sort):
|
|
# TODO: Replace with fixturesult
|
|
index = self.create_index()
|
|
date_index = pd.date_range("2019-01-01", periods=10)
|
|
first_cat = index.union(date_index)
|
|
second_cat = index.union(index)
|
|
|
|
if date_index.dtype == np.object_:
|
|
appended = np.append(index, date_index)
|
|
else:
|
|
appended = np.append(index, date_index.astype("O"))
|
|
|
|
assert tm.equalContents(first_cat, appended)
|
|
assert tm.equalContents(second_cat, index)
|
|
tm.assert_contains_all(index, first_cat)
|
|
tm.assert_contains_all(index, second_cat)
|
|
tm.assert_contains_all(date_index, first_cat)
|
|
|
|
def test_map_identity_mapping(self, index):
|
|
# GH 12766
|
|
tm.assert_index_equal(index, index.map(lambda x: x))
|
|
|
|
def test_map_with_tuples(self):
|
|
# GH 12766
|
|
|
|
# Test that returning a single tuple from an Index
|
|
# returns an Index.
|
|
index = tm.makeIntIndex(3)
|
|
result = tm.makeIntIndex(3).map(lambda x: (x,))
|
|
expected = Index([(i,) for i in index])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# Test that returning a tuple from a map of a single index
|
|
# returns a MultiIndex object.
|
|
result = index.map(lambda x: (x, x == 1))
|
|
expected = MultiIndex.from_tuples([(i, i == 1) for i in index])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_map_with_tuples_mi(self):
|
|
# Test that returning a single object from a MultiIndex
|
|
# returns an Index.
|
|
first_level = ["foo", "bar", "baz"]
|
|
multi_index = MultiIndex.from_tuples(zip(first_level, [1, 2, 3]))
|
|
reduced_index = multi_index.map(lambda x: x[0])
|
|
tm.assert_index_equal(reduced_index, Index(first_level))
|
|
|
|
@pytest.mark.parametrize(
|
|
"attr", ["makeDateIndex", "makePeriodIndex", "makeTimedeltaIndex"]
|
|
)
|
|
def test_map_tseries_indices_return_index(self, attr):
|
|
index = getattr(tm, attr)(10)
|
|
expected = Index([1] * 10)
|
|
result = index.map(lambda x: 1)
|
|
tm.assert_index_equal(expected, result)
|
|
|
|
def test_map_tseries_indices_accsr_return_index(self):
|
|
date_index = tm.makeDateIndex(24, freq="h", name="hourly")
|
|
expected = Index(range(24), name="hourly")
|
|
tm.assert_index_equal(expected, date_index.map(lambda x: x.hour))
|
|
|
|
@pytest.mark.parametrize(
|
|
"mapper",
|
|
[
|
|
lambda values, index: {i: e for e, i in zip(values, index)},
|
|
lambda values, index: pd.Series(values, index),
|
|
],
|
|
)
|
|
def test_map_dictlike_simple(self, mapper):
|
|
# GH 12756
|
|
expected = Index(["foo", "bar", "baz"])
|
|
index = tm.makeIntIndex(3)
|
|
result = index.map(mapper(expected.values, index))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"mapper",
|
|
[
|
|
lambda values, index: {i: e for e, i in zip(values, index)},
|
|
lambda values, index: pd.Series(values, index),
|
|
],
|
|
)
|
|
def test_map_dictlike(self, index, mapper):
|
|
# GH 12756
|
|
if isinstance(index, CategoricalIndex):
|
|
# Tested in test_categorical
|
|
return
|
|
elif not index.is_unique:
|
|
# Cannot map duplicated index
|
|
return
|
|
|
|
if index.empty:
|
|
# to match proper result coercion for uints
|
|
expected = Index([])
|
|
else:
|
|
expected = Index(np.arange(len(index), 0, -1))
|
|
|
|
result = index.map(mapper(expected, index))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"mapper",
|
|
[Series(["foo", 2.0, "baz"], index=[0, 2, -1]), {0: "foo", 2: 2.0, -1: "baz"}],
|
|
)
|
|
def test_map_with_non_function_missing_values(self, mapper):
|
|
# GH 12756
|
|
expected = Index([2.0, np.nan, "foo"])
|
|
result = Index([2, 1, 0]).map(mapper)
|
|
|
|
tm.assert_index_equal(expected, result)
|
|
|
|
def test_map_na_exclusion(self):
|
|
index = Index([1.5, np.nan, 3, np.nan, 5])
|
|
|
|
result = index.map(lambda x: x * 2, na_action="ignore")
|
|
expected = index * 2
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_map_defaultdict(self):
|
|
index = Index([1, 2, 3])
|
|
default_dict = defaultdict(lambda: "blank")
|
|
default_dict[1] = "stuff"
|
|
result = index.map(default_dict)
|
|
expected = Index(["stuff", "blank", "blank"])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("name,expected", [("foo", "foo"), ("bar", None)])
|
|
def test_append_empty_preserve_name(self, name, expected):
|
|
left = Index([], name="foo")
|
|
right = Index([1, 2, 3], name=name)
|
|
|
|
result = left.append(right)
|
|
assert result.name == expected
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
@pytest.mark.parametrize("second_name,expected", [(None, None), ("name", "name")])
|
|
def test_difference_name_preservation(self, index, second_name, expected, sort):
|
|
first = index[5:20]
|
|
second = index[:10]
|
|
answer = index[10:20]
|
|
|
|
first.name = "name"
|
|
second.name = second_name
|
|
result = first.difference(second, sort=sort)
|
|
|
|
assert tm.equalContents(result, answer)
|
|
|
|
if expected is None:
|
|
assert result.name is None
|
|
else:
|
|
assert result.name == expected
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_difference_empty_arg(self, index, sort):
|
|
first = index[5:20]
|
|
first.name = "name"
|
|
result = first.difference([], sort)
|
|
|
|
assert tm.equalContents(result, first)
|
|
assert result.name == first.name
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_difference_identity(self, index, sort):
|
|
first = index[5:20]
|
|
first.name = "name"
|
|
result = first.difference(first, sort)
|
|
|
|
assert len(result) == 0
|
|
assert result.name == first.name
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
def test_difference_sort(self, index, sort):
|
|
first = index[5:20]
|
|
second = index[:10]
|
|
|
|
result = first.difference(second, sort)
|
|
expected = index[10:20]
|
|
|
|
if sort is None:
|
|
expected = expected.sort_values()
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_symmetric_difference(self, sort):
|
|
# smoke
|
|
index1 = Index([5, 2, 3, 4], name="index1")
|
|
index2 = Index([2, 3, 4, 1])
|
|
result = index1.symmetric_difference(index2, sort=sort)
|
|
expected = Index([5, 1])
|
|
assert tm.equalContents(result, expected)
|
|
assert result.name is None
|
|
if sort is None:
|
|
expected = expected.sort_values()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# __xor__ syntax
|
|
expected = index1 ^ index2
|
|
assert tm.equalContents(result, expected)
|
|
assert result.name is None
|
|
|
|
@pytest.mark.parametrize("opname", ["difference", "symmetric_difference"])
|
|
def test_difference_incomparable(self, opname):
|
|
a = pd.Index([3, pd.Timestamp("2000"), 1])
|
|
b = pd.Index([2, pd.Timestamp("1999"), 1])
|
|
op = operator.methodcaller(opname, b)
|
|
|
|
# sort=None, the default
|
|
result = op(a)
|
|
expected = pd.Index([3, pd.Timestamp("2000"), 2, pd.Timestamp("1999")])
|
|
if opname == "difference":
|
|
expected = expected[:2]
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# sort=False
|
|
op = operator.methodcaller(opname, b, sort=False)
|
|
result = op(a)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.xfail(reason="Not implemented")
|
|
@pytest.mark.parametrize("opname", ["difference", "symmetric_difference"])
|
|
def test_difference_incomparable_true(self, opname):
|
|
# TODO decide on True behaviour
|
|
# # sort=True, raises
|
|
a = pd.Index([3, pd.Timestamp("2000"), 1])
|
|
b = pd.Index([2, pd.Timestamp("1999"), 1])
|
|
op = operator.methodcaller(opname, b, sort=True)
|
|
|
|
with pytest.raises(TypeError, match="Cannot compare"):
|
|
op(a)
|
|
|
|
def test_symmetric_difference_mi(self, sort):
|
|
index1 = MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3]))
|
|
index2 = MultiIndex.from_tuples([("foo", 1), ("bar", 3)])
|
|
result = index1.symmetric_difference(index2, sort=sort)
|
|
expected = MultiIndex.from_tuples([("bar", 2), ("baz", 3), ("bar", 3)])
|
|
if sort is None:
|
|
expected = expected.sort_values()
|
|
tm.assert_index_equal(result, expected)
|
|
assert tm.equalContents(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index2,expected",
|
|
[
|
|
(Index([0, 1, np.nan]), Index([2.0, 3.0, 0.0])),
|
|
(Index([0, 1]), Index([np.nan, 2.0, 3.0, 0.0])),
|
|
],
|
|
)
|
|
def test_symmetric_difference_missing(self, index2, expected, sort):
|
|
# GH 13514 change: {nan} - {nan} == {}
|
|
# (GH 6444, sorting of nans, is no longer an issue)
|
|
index1 = Index([1, np.nan, 2, 3])
|
|
|
|
result = index1.symmetric_difference(index2, sort=sort)
|
|
if sort is None:
|
|
expected = expected.sort_values()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_symmetric_difference_non_index(self, sort):
|
|
index1 = Index([1, 2, 3, 4], name="index1")
|
|
index2 = np.array([2, 3, 4, 5])
|
|
expected = Index([1, 5])
|
|
result = index1.symmetric_difference(index2, sort=sort)
|
|
assert tm.equalContents(result, expected)
|
|
assert result.name == "index1"
|
|
|
|
result = index1.symmetric_difference(index2, result_name="new_name", sort=sort)
|
|
assert tm.equalContents(result, expected)
|
|
assert result.name == "new_name"
|
|
|
|
def test_difference_type(self, index, sort):
|
|
# GH 20040
|
|
# If taking difference of a set and itself, it
|
|
# needs to preserve the type of the index
|
|
if not index.is_unique:
|
|
return
|
|
result = index.difference(index, sort=sort)
|
|
expected = index.drop(index)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_intersection_difference(self, index, sort):
|
|
# GH 20040
|
|
# Test that the intersection of an index with an
|
|
# empty index produces the same index as the difference
|
|
# of an index with itself. Test for all types
|
|
if not index.is_unique:
|
|
return
|
|
inter = index.intersection(index.drop(index))
|
|
diff = index.difference(index, sort=sort)
|
|
tm.assert_index_equal(inter, diff)
|
|
|
|
def test_is_mixed_deprecated(self):
|
|
# GH#32922
|
|
index = self.create_index()
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
index.is_mixed()
|
|
|
|
@pytest.mark.parametrize(
|
|
"index, expected",
|
|
[
|
|
("string", False),
|
|
("bool", False),
|
|
("categorical", False),
|
|
("int", True),
|
|
("datetime", False),
|
|
("float", True),
|
|
],
|
|
indirect=["index"],
|
|
)
|
|
def test_is_numeric(self, index, expected):
|
|
assert index.is_numeric() is expected
|
|
|
|
@pytest.mark.parametrize(
|
|
"index, expected",
|
|
[
|
|
("string", True),
|
|
("bool", True),
|
|
("categorical", False),
|
|
("int", False),
|
|
("datetime", False),
|
|
("float", False),
|
|
],
|
|
indirect=["index"],
|
|
)
|
|
def test_is_object(self, index, expected):
|
|
assert index.is_object() is expected
|
|
|
|
@pytest.mark.parametrize(
|
|
"index, expected",
|
|
[
|
|
("string", False),
|
|
("bool", False),
|
|
("categorical", False),
|
|
("int", False),
|
|
("datetime", True),
|
|
("float", False),
|
|
],
|
|
indirect=["index"],
|
|
)
|
|
def test_is_all_dates(self, index, expected):
|
|
assert index.is_all_dates is expected
|
|
|
|
def test_summary(self, index):
|
|
self._check_method_works(Index._summary, index)
|
|
|
|
def test_summary_bug(self):
|
|
# GH3869`
|
|
ind = Index(["{other}%s", "~:{range}:0"], name="A")
|
|
result = ind._summary()
|
|
# shouldn't be formatted accidentally.
|
|
assert "~:{range}:0" in result
|
|
assert "{other}%s" in result
|
|
|
|
def test_format_different_scalar_lengths(self):
|
|
# GH35439
|
|
idx = Index(["aaaaaaaaa", "b"])
|
|
expected = ["aaaaaaaaa", "b"]
|
|
assert idx.format() == expected
|
|
|
|
def test_format_bug(self):
|
|
# GH 14626
|
|
# windows has different precision on datetime.datetime.now (it doesn't
|
|
# include us since the default for Timestamp shows these but Index
|
|
# formatting does not we are skipping)
|
|
now = datetime.now()
|
|
if not str(now).endswith("000"):
|
|
index = Index([now])
|
|
formatted = index.format()
|
|
expected = [str(index[0])]
|
|
assert formatted == expected
|
|
|
|
Index([]).format()
|
|
|
|
@pytest.mark.parametrize("vals", [[1, 2.0 + 3.0j, 4.0], ["a", "b", "c"]])
|
|
def test_format_missing(self, vals, nulls_fixture):
|
|
# 2845
|
|
vals = list(vals) # Copy for each iteration
|
|
vals.append(nulls_fixture)
|
|
index = Index(vals)
|
|
|
|
formatted = index.format()
|
|
expected = [str(index[0]), str(index[1]), str(index[2]), "NaN"]
|
|
|
|
assert formatted == expected
|
|
assert index[3] is nulls_fixture
|
|
|
|
def test_format_with_name_time_info(self):
|
|
# bug I fixed 12/20/2011
|
|
dates = date_range("2011-01-01 04:00:00", periods=10, name="something")
|
|
|
|
formatted = dates.format(name=True)
|
|
assert formatted[0] == "something"
|
|
|
|
def test_format_datetime_with_time(self):
|
|
t = Index([datetime(2012, 2, 7), datetime(2012, 2, 7, 23)])
|
|
|
|
result = t.format()
|
|
expected = ["2012-02-07 00:00:00", "2012-02-07 23:00:00"]
|
|
assert len(result) == 2
|
|
assert result == expected
|
|
|
|
@pytest.mark.parametrize("op", ["any", "all"])
|
|
def test_logical_compat(self, op):
|
|
index = self.create_index()
|
|
assert getattr(index, op)() == getattr(index.values, op)()
|
|
|
|
def _check_method_works(self, method, index):
|
|
method(index)
|
|
|
|
def test_get_indexer(self):
|
|
index1 = Index([1, 2, 3, 4, 5])
|
|
index2 = Index([2, 4, 6])
|
|
|
|
r1 = index1.get_indexer(index2)
|
|
e1 = np.array([1, 3, -1], dtype=np.intp)
|
|
tm.assert_almost_equal(r1, e1)
|
|
|
|
@pytest.mark.parametrize("reverse", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"expected,method",
|
|
[
|
|
(np.array([-1, 0, 0, 1, 1], dtype=np.intp), "pad"),
|
|
(np.array([-1, 0, 0, 1, 1], dtype=np.intp), "ffill"),
|
|
(np.array([0, 0, 1, 1, 2], dtype=np.intp), "backfill"),
|
|
(np.array([0, 0, 1, 1, 2], dtype=np.intp), "bfill"),
|
|
],
|
|
)
|
|
def test_get_indexer_methods(self, reverse, expected, method):
|
|
index1 = Index([1, 2, 3, 4, 5])
|
|
index2 = Index([2, 4, 6])
|
|
|
|
if reverse:
|
|
index1 = index1[::-1]
|
|
expected = expected[::-1]
|
|
|
|
result = index2.get_indexer(index1, method=method)
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
def test_get_indexer_invalid(self):
|
|
# GH10411
|
|
index = Index(np.arange(10))
|
|
|
|
with pytest.raises(ValueError, match="tolerance argument"):
|
|
index.get_indexer([1, 0], tolerance=1)
|
|
|
|
with pytest.raises(ValueError, match="limit argument"):
|
|
index.get_indexer([1, 0], limit=1)
|
|
|
|
@pytest.mark.parametrize(
|
|
"method, tolerance, indexer, expected",
|
|
[
|
|
("pad", None, [0, 5, 9], [0, 5, 9]),
|
|
("backfill", None, [0, 5, 9], [0, 5, 9]),
|
|
("nearest", None, [0, 5, 9], [0, 5, 9]),
|
|
("pad", 0, [0, 5, 9], [0, 5, 9]),
|
|
("backfill", 0, [0, 5, 9], [0, 5, 9]),
|
|
("nearest", 0, [0, 5, 9], [0, 5, 9]),
|
|
("pad", None, [0.2, 1.8, 8.5], [0, 1, 8]),
|
|
("backfill", None, [0.2, 1.8, 8.5], [1, 2, 9]),
|
|
("nearest", None, [0.2, 1.8, 8.5], [0, 2, 9]),
|
|
("pad", 1, [0.2, 1.8, 8.5], [0, 1, 8]),
|
|
("backfill", 1, [0.2, 1.8, 8.5], [1, 2, 9]),
|
|
("nearest", 1, [0.2, 1.8, 8.5], [0, 2, 9]),
|
|
("pad", 0.2, [0.2, 1.8, 8.5], [0, -1, -1]),
|
|
("backfill", 0.2, [0.2, 1.8, 8.5], [-1, 2, -1]),
|
|
("nearest", 0.2, [0.2, 1.8, 8.5], [0, 2, -1]),
|
|
],
|
|
)
|
|
def test_get_indexer_nearest(self, method, tolerance, indexer, expected):
|
|
index = Index(np.arange(10))
|
|
|
|
actual = index.get_indexer(indexer, method=method, tolerance=tolerance)
|
|
tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp))
|
|
|
|
@pytest.mark.parametrize("listtype", [list, tuple, Series, np.array])
|
|
@pytest.mark.parametrize(
|
|
"tolerance, expected",
|
|
list(
|
|
zip(
|
|
[[0.3, 0.3, 0.1], [0.2, 0.1, 0.1], [0.1, 0.5, 0.5]],
|
|
[[0, 2, -1], [0, -1, -1], [-1, 2, 9]],
|
|
)
|
|
),
|
|
)
|
|
def test_get_indexer_nearest_listlike_tolerance(
|
|
self, tolerance, expected, listtype
|
|
):
|
|
index = Index(np.arange(10))
|
|
|
|
actual = index.get_indexer(
|
|
[0.2, 1.8, 8.5], method="nearest", tolerance=listtype(tolerance)
|
|
)
|
|
tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp))
|
|
|
|
def test_get_indexer_nearest_error(self):
|
|
index = Index(np.arange(10))
|
|
with pytest.raises(ValueError, match="limit argument"):
|
|
index.get_indexer([1, 0], method="nearest", limit=1)
|
|
|
|
with pytest.raises(ValueError, match="tolerance size must match"):
|
|
index.get_indexer([1, 0], method="nearest", tolerance=[1, 2, 3])
|
|
|
|
@pytest.mark.parametrize(
|
|
"method,expected",
|
|
[("pad", [8, 7, 0]), ("backfill", [9, 8, 1]), ("nearest", [9, 7, 0])],
|
|
)
|
|
def test_get_indexer_nearest_decreasing(self, method, expected):
|
|
index = Index(np.arange(10))[::-1]
|
|
|
|
actual = index.get_indexer([0, 5, 9], method=method)
|
|
tm.assert_numpy_array_equal(actual, np.array([9, 4, 0], dtype=np.intp))
|
|
|
|
actual = index.get_indexer([0.2, 1.8, 8.5], method=method)
|
|
tm.assert_numpy_array_equal(actual, np.array(expected, dtype=np.intp))
|
|
|
|
@pytest.mark.parametrize(
|
|
"method,expected",
|
|
[
|
|
("pad", np.array([-1, 0, 1, 1], dtype=np.intp)),
|
|
("backfill", np.array([0, 0, 1, -1], dtype=np.intp)),
|
|
],
|
|
)
|
|
def test_get_indexer_strings(self, method, expected):
|
|
index = pd.Index(["b", "c"])
|
|
actual = index.get_indexer(["a", "b", "c", "d"], method=method)
|
|
|
|
tm.assert_numpy_array_equal(actual, expected)
|
|
|
|
def test_get_indexer_strings_raises(self):
|
|
index = pd.Index(["b", "c"])
|
|
|
|
msg = r"unsupported operand type\(s\) for -: 'str' and 'str'"
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.get_indexer(["a", "b", "c", "d"], method="nearest")
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.get_indexer(["a", "b", "c", "d"], method="pad", tolerance=2)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.get_indexer(
|
|
["a", "b", "c", "d"], method="pad", tolerance=[2, 2, 2, 2]
|
|
)
|
|
|
|
@pytest.mark.parametrize("idx_class", [Int64Index, RangeIndex, Float64Index])
|
|
def test_get_indexer_numeric_index_boolean_target(self, idx_class):
|
|
# GH 16877
|
|
|
|
numeric_index = idx_class(RangeIndex((4)))
|
|
result = numeric_index.get_indexer([True, False, True])
|
|
expected = np.array([-1, -1, -1], dtype=np.intp)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_get_indexer_with_NA_values(
|
|
self, unique_nulls_fixture, unique_nulls_fixture2
|
|
):
|
|
# GH 22332
|
|
# check pairwise, that no pair of na values
|
|
# is mangled
|
|
if unique_nulls_fixture is unique_nulls_fixture2:
|
|
return # skip it, values are not unique
|
|
arr = np.array([unique_nulls_fixture, unique_nulls_fixture2], dtype=object)
|
|
index = pd.Index(arr, dtype=object)
|
|
result = index.get_indexer(
|
|
[unique_nulls_fixture, unique_nulls_fixture2, "Unknown"]
|
|
)
|
|
expected = np.array([0, 1, -1], dtype=np.intp)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("method", [None, "pad", "backfill", "nearest"])
|
|
def test_get_loc(self, method):
|
|
index = pd.Index([0, 1, 2])
|
|
assert index.get_loc(1, method=method) == 1
|
|
|
|
if method:
|
|
assert index.get_loc(1, method=method, tolerance=0) == 1
|
|
|
|
@pytest.mark.parametrize("method", [None, "pad", "backfill", "nearest"])
|
|
def test_get_loc_raises_bad_label(self, method):
|
|
index = pd.Index([0, 1, 2])
|
|
if method:
|
|
msg = "not supported between"
|
|
else:
|
|
msg = "invalid key"
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
index.get_loc([1, 2], method=method)
|
|
|
|
@pytest.mark.parametrize(
|
|
"method,loc", [("pad", 1), ("backfill", 2), ("nearest", 1)]
|
|
)
|
|
def test_get_loc_tolerance(self, method, loc):
|
|
index = pd.Index([0, 1, 2])
|
|
assert index.get_loc(1.1, method) == loc
|
|
assert index.get_loc(1.1, method, tolerance=1) == loc
|
|
|
|
@pytest.mark.parametrize("method", ["pad", "backfill", "nearest"])
|
|
def test_get_loc_outside_tolerance_raises(self, method):
|
|
index = pd.Index([0, 1, 2])
|
|
with pytest.raises(KeyError, match="1.1"):
|
|
index.get_loc(1.1, method, tolerance=0.05)
|
|
|
|
def test_get_loc_bad_tolerance_raises(self):
|
|
index = pd.Index([0, 1, 2])
|
|
with pytest.raises(ValueError, match="must be numeric"):
|
|
index.get_loc(1.1, "nearest", tolerance="invalid")
|
|
|
|
def test_get_loc_tolerance_no_method_raises(self):
|
|
index = pd.Index([0, 1, 2])
|
|
with pytest.raises(ValueError, match="tolerance .* valid if"):
|
|
index.get_loc(1.1, tolerance=1)
|
|
|
|
def test_get_loc_raises_missized_tolerance(self):
|
|
index = pd.Index([0, 1, 2])
|
|
with pytest.raises(ValueError, match="tolerance size must match"):
|
|
index.get_loc(1.1, "nearest", tolerance=[1, 1])
|
|
|
|
def test_get_loc_raises_object_nearest(self):
|
|
index = pd.Index(["a", "c"])
|
|
with pytest.raises(TypeError, match="unsupported operand type"):
|
|
index.get_loc("a", method="nearest")
|
|
|
|
def test_get_loc_raises_object_tolerance(self):
|
|
index = pd.Index(["a", "c"])
|
|
with pytest.raises(TypeError, match="unsupported operand type"):
|
|
index.get_loc("a", method="pad", tolerance="invalid")
|
|
|
|
@pytest.mark.parametrize("dtype", [int, float])
|
|
def test_slice_locs(self, dtype):
|
|
index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype))
|
|
n = len(index)
|
|
|
|
assert index.slice_locs(start=2) == (2, n)
|
|
assert index.slice_locs(start=3) == (3, n)
|
|
assert index.slice_locs(3, 8) == (3, 6)
|
|
assert index.slice_locs(5, 10) == (3, n)
|
|
assert index.slice_locs(end=8) == (0, 6)
|
|
assert index.slice_locs(end=9) == (0, 7)
|
|
|
|
# reversed
|
|
index2 = index[::-1]
|
|
assert index2.slice_locs(8, 2) == (2, 6)
|
|
assert index2.slice_locs(7, 3) == (2, 5)
|
|
|
|
@pytest.mark.parametrize("dtype", [int, float])
|
|
def test_slice_float_locs(self, dtype):
|
|
index = Index(np.array([0, 1, 2, 5, 6, 7, 9, 10], dtype=dtype))
|
|
n = len(index)
|
|
assert index.slice_locs(5.0, 10.0) == (3, n)
|
|
assert index.slice_locs(4.5, 10.5) == (3, 8)
|
|
|
|
index2 = index[::-1]
|
|
assert index2.slice_locs(8.5, 1.5) == (2, 6)
|
|
assert index2.slice_locs(10.5, -1) == (0, n)
|
|
|
|
def test_slice_locs_dup(self):
|
|
index = Index(["a", "a", "b", "c", "d", "d"])
|
|
assert index.slice_locs("a", "d") == (0, 6)
|
|
assert index.slice_locs(end="d") == (0, 6)
|
|
assert index.slice_locs("a", "c") == (0, 4)
|
|
assert index.slice_locs("b", "d") == (2, 6)
|
|
|
|
index2 = index[::-1]
|
|
assert index2.slice_locs("d", "a") == (0, 6)
|
|
assert index2.slice_locs(end="a") == (0, 6)
|
|
assert index2.slice_locs("d", "b") == (0, 4)
|
|
assert index2.slice_locs("c", "a") == (2, 6)
|
|
|
|
@pytest.mark.parametrize("dtype", [int, float])
|
|
def test_slice_locs_dup_numeric(self, dtype):
|
|
index = Index(np.array([10, 12, 12, 14], dtype=dtype))
|
|
assert index.slice_locs(12, 12) == (1, 3)
|
|
assert index.slice_locs(11, 13) == (1, 3)
|
|
|
|
index2 = index[::-1]
|
|
assert index2.slice_locs(12, 12) == (1, 3)
|
|
assert index2.slice_locs(13, 11) == (1, 3)
|
|
|
|
def test_slice_locs_na(self):
|
|
index = Index([np.nan, 1, 2])
|
|
assert index.slice_locs(1) == (1, 3)
|
|
assert index.slice_locs(np.nan) == (0, 3)
|
|
|
|
index = Index([0, np.nan, np.nan, 1, 2])
|
|
assert index.slice_locs(np.nan) == (1, 5)
|
|
|
|
def test_slice_locs_na_raises(self):
|
|
index = Index([np.nan, 1, 2])
|
|
with pytest.raises(KeyError, match=""):
|
|
index.slice_locs(start=1.5)
|
|
|
|
with pytest.raises(KeyError, match=""):
|
|
index.slice_locs(end=1.5)
|
|
|
|
@pytest.mark.parametrize(
|
|
"in_slice,expected",
|
|
[
|
|
(pd.IndexSlice[::-1], "yxdcb"),
|
|
(pd.IndexSlice["b":"y":-1], ""), # type: ignore
|
|
(pd.IndexSlice["b"::-1], "b"), # type: ignore
|
|
(pd.IndexSlice[:"b":-1], "yxdcb"), # type: ignore
|
|
(pd.IndexSlice[:"y":-1], "y"), # type: ignore
|
|
(pd.IndexSlice["y"::-1], "yxdcb"), # type: ignore
|
|
(pd.IndexSlice["y"::-4], "yb"), # type: ignore
|
|
# absent labels
|
|
(pd.IndexSlice[:"a":-1], "yxdcb"), # type: ignore
|
|
(pd.IndexSlice[:"a":-2], "ydb"), # type: ignore
|
|
(pd.IndexSlice["z"::-1], "yxdcb"), # type: ignore
|
|
(pd.IndexSlice["z"::-3], "yc"), # type: ignore
|
|
(pd.IndexSlice["m"::-1], "dcb"), # type: ignore
|
|
(pd.IndexSlice[:"m":-1], "yx"), # type: ignore
|
|
(pd.IndexSlice["a":"a":-1], ""), # type: ignore
|
|
(pd.IndexSlice["z":"z":-1], ""), # type: ignore
|
|
(pd.IndexSlice["m":"m":-1], ""), # type: ignore
|
|
],
|
|
)
|
|
def test_slice_locs_negative_step(self, in_slice, expected):
|
|
index = Index(list("bcdxy"))
|
|
|
|
s_start, s_stop = index.slice_locs(in_slice.start, in_slice.stop, in_slice.step)
|
|
result = index[s_start : s_stop : in_slice.step]
|
|
expected = pd.Index(list(expected))
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True)
|
|
def test_drop_by_str_label(self, index):
|
|
n = len(index)
|
|
drop = index[list(range(5, 10))]
|
|
dropped = index.drop(drop)
|
|
|
|
expected = index[list(range(5)) + list(range(10, n))]
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
dropped = index.drop(index[0])
|
|
expected = index[1:]
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
@pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True)
|
|
@pytest.mark.parametrize("keys", [["foo", "bar"], ["1", "bar"]])
|
|
def test_drop_by_str_label_raises_missing_keys(self, index, keys):
|
|
with pytest.raises(KeyError, match=""):
|
|
index.drop(keys)
|
|
|
|
@pytest.mark.parametrize("index", ["string", "int", "float"], indirect=True)
|
|
def test_drop_by_str_label_errors_ignore(self, index):
|
|
n = len(index)
|
|
drop = index[list(range(5, 10))]
|
|
mixed = drop.tolist() + ["foo"]
|
|
dropped = index.drop(mixed, errors="ignore")
|
|
|
|
expected = index[list(range(5)) + list(range(10, n))]
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
dropped = index.drop(["foo", "bar"], errors="ignore")
|
|
expected = index[list(range(n))]
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
def test_drop_by_numeric_label_loc(self):
|
|
# TODO: Parametrize numeric and str tests after self.strIndex fixture
|
|
index = Index([1, 2, 3])
|
|
dropped = index.drop(1)
|
|
expected = Index([2, 3])
|
|
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
def test_drop_by_numeric_label_raises_missing_keys(self):
|
|
index = Index([1, 2, 3])
|
|
with pytest.raises(KeyError, match=""):
|
|
index.drop([3, 4])
|
|
|
|
@pytest.mark.parametrize(
|
|
"key,expected", [(4, Index([1, 2, 3])), ([3, 4, 5], Index([1, 2]))]
|
|
)
|
|
def test_drop_by_numeric_label_errors_ignore(self, key, expected):
|
|
index = Index([1, 2, 3])
|
|
dropped = index.drop(key, errors="ignore")
|
|
|
|
tm.assert_index_equal(dropped, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"values",
|
|
[["a", "b", ("c", "d")], ["a", ("c", "d"), "b"], [("c", "d"), "a", "b"]],
|
|
)
|
|
@pytest.mark.parametrize("to_drop", [[("c", "d"), "a"], ["a", ("c", "d")]])
|
|
def test_drop_tuple(self, values, to_drop):
|
|
# GH 18304
|
|
index = pd.Index(values)
|
|
expected = pd.Index(["b"])
|
|
|
|
result = index.drop(to_drop)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
removed = index.drop(to_drop[0])
|
|
for drop_me in to_drop[1], [to_drop[1]]:
|
|
result = removed.drop(drop_me)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
removed = index.drop(to_drop[1])
|
|
msg = fr"\"\[{re.escape(to_drop[1].__repr__())}\] not found in axis\""
|
|
for drop_me in to_drop[1], [to_drop[1]]:
|
|
with pytest.raises(KeyError, match=msg):
|
|
removed.drop(drop_me)
|
|
|
|
@pytest.mark.parametrize(
|
|
"method,expected,sort",
|
|
[
|
|
(
|
|
"intersection",
|
|
np.array(
|
|
[(1, "A"), (2, "A"), (1, "B"), (2, "B")],
|
|
dtype=[("num", int), ("let", "a1")],
|
|
),
|
|
False,
|
|
),
|
|
(
|
|
"intersection",
|
|
np.array(
|
|
[(1, "A"), (1, "B"), (2, "A"), (2, "B")],
|
|
dtype=[("num", int), ("let", "a1")],
|
|
),
|
|
None,
|
|
),
|
|
(
|
|
"union",
|
|
np.array(
|
|
[(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")],
|
|
dtype=[("num", int), ("let", "a1")],
|
|
),
|
|
None,
|
|
),
|
|
],
|
|
)
|
|
def test_tuple_union_bug(self, method, expected, sort):
|
|
index1 = Index(
|
|
np.array(
|
|
[(1, "A"), (2, "A"), (1, "B"), (2, "B")],
|
|
dtype=[("num", int), ("let", "a1")],
|
|
)
|
|
)
|
|
index2 = Index(
|
|
np.array(
|
|
[(1, "A"), (2, "A"), (1, "B"), (2, "B"), (1, "C"), (2, "C")],
|
|
dtype=[("num", int), ("let", "a1")],
|
|
)
|
|
)
|
|
|
|
result = getattr(index1, method)(index2, sort=sort)
|
|
assert result.ndim == 1
|
|
|
|
expected = Index(expected)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"attr",
|
|
[
|
|
"is_monotonic_increasing",
|
|
"is_monotonic_decreasing",
|
|
"_is_strictly_monotonic_increasing",
|
|
"_is_strictly_monotonic_decreasing",
|
|
],
|
|
)
|
|
def test_is_monotonic_incomparable(self, attr):
|
|
index = Index([5, datetime.now(), 7])
|
|
assert not getattr(index, attr)
|
|
|
|
def test_set_value_deprecated(self):
|
|
# GH 28621
|
|
idx = self.create_index()
|
|
arr = np.array([1, 2, 3])
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
idx.set_value(arr, idx[1], 80)
|
|
assert arr[1] == 80
|
|
|
|
@pytest.mark.parametrize(
|
|
"index", ["string", "int", "datetime", "timedelta"], indirect=True
|
|
)
|
|
def test_get_value(self, index):
|
|
# TODO: Remove function? GH 19728
|
|
values = np.random.randn(100)
|
|
value = index[67]
|
|
|
|
with pytest.raises(AttributeError, match="has no attribute '_values'"):
|
|
# Index.get_value requires a Series, not an ndarray
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
index.get_value(values, value)
|
|
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
result = index.get_value(Series(values, index=values), value)
|
|
tm.assert_almost_equal(result, values[67])
|
|
|
|
@pytest.mark.parametrize("values", [["foo", "bar", "quux"], {"foo", "bar", "quux"}])
|
|
@pytest.mark.parametrize(
|
|
"index,expected",
|
|
[
|
|
(Index(["qux", "baz", "foo", "bar"]), np.array([False, False, True, True])),
|
|
(Index([]), np.array([], dtype=bool)), # empty
|
|
],
|
|
)
|
|
def test_isin(self, values, index, expected):
|
|
result = index.isin(values)
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_isin_nan_common_object(self, nulls_fixture, nulls_fixture2):
|
|
# Test cartesian product of null fixtures and ensure that we don't
|
|
# mangle the various types (save a corner case with PyPy)
|
|
|
|
# all nans are the same
|
|
if (
|
|
isinstance(nulls_fixture, float)
|
|
and isinstance(nulls_fixture2, float)
|
|
and math.isnan(nulls_fixture)
|
|
and math.isnan(nulls_fixture2)
|
|
):
|
|
tm.assert_numpy_array_equal(
|
|
Index(["a", nulls_fixture]).isin([nulls_fixture2]),
|
|
np.array([False, True]),
|
|
)
|
|
|
|
elif nulls_fixture is nulls_fixture2: # should preserve NA type
|
|
tm.assert_numpy_array_equal(
|
|
Index(["a", nulls_fixture]).isin([nulls_fixture2]),
|
|
np.array([False, True]),
|
|
)
|
|
|
|
else:
|
|
tm.assert_numpy_array_equal(
|
|
Index(["a", nulls_fixture]).isin([nulls_fixture2]),
|
|
np.array([False, False]),
|
|
)
|
|
|
|
def test_isin_nan_common_float64(self, nulls_fixture):
|
|
if nulls_fixture is pd.NaT:
|
|
pytest.skip("pd.NaT not compatible with Float64Index")
|
|
|
|
# Float64Index overrides isin, so must be checked separately
|
|
if nulls_fixture is pd.NA:
|
|
pytest.xfail("Float64Index cannot contain pd.NA")
|
|
|
|
tm.assert_numpy_array_equal(
|
|
Float64Index([1.0, nulls_fixture]).isin([np.nan]), np.array([False, True])
|
|
)
|
|
|
|
# we cannot compare NaT with NaN
|
|
tm.assert_numpy_array_equal(
|
|
Float64Index([1.0, nulls_fixture]).isin([pd.NaT]), np.array([False, False])
|
|
)
|
|
|
|
@pytest.mark.parametrize("level", [0, -1])
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index(["qux", "baz", "foo", "bar"]),
|
|
# Float64Index overrides isin, so must be checked separately
|
|
Float64Index([1.0, 2.0, 3.0, 4.0]),
|
|
],
|
|
)
|
|
def test_isin_level_kwarg(self, level, index):
|
|
values = index.tolist()[-2:] + ["nonexisting"]
|
|
|
|
expected = np.array([False, False, True, True])
|
|
tm.assert_numpy_array_equal(expected, index.isin(values, level=level))
|
|
|
|
index.name = "foobar"
|
|
tm.assert_numpy_array_equal(expected, index.isin(values, level="foobar"))
|
|
|
|
def test_isin_level_kwarg_bad_level_raises(self, index):
|
|
for level in [10, index.nlevels, -(index.nlevels + 1)]:
|
|
with pytest.raises(IndexError, match="Too many levels"):
|
|
index.isin([], level=level)
|
|
|
|
@pytest.mark.parametrize("label", [1.0, "foobar", "xyzzy", np.nan])
|
|
def test_isin_level_kwarg_bad_label_raises(self, label, index):
|
|
if isinstance(index, MultiIndex):
|
|
index = index.rename(["foo", "bar"] + index.names[2:])
|
|
msg = f"'Level {label} not found'"
|
|
else:
|
|
index = index.rename("foo")
|
|
msg = fr"Requested level \({label}\) does not match index name \(foo\)"
|
|
with pytest.raises(KeyError, match=msg):
|
|
index.isin([], level=label)
|
|
|
|
@pytest.mark.parametrize("empty", [[], Series(dtype=object), np.array([])])
|
|
def test_isin_empty(self, empty):
|
|
# see gh-16991
|
|
index = Index(["a", "b"])
|
|
expected = np.array([False, False])
|
|
|
|
result = index.isin(empty)
|
|
tm.assert_numpy_array_equal(expected, result)
|
|
|
|
@pytest.mark.parametrize(
|
|
"values",
|
|
[
|
|
[1, 2, 3, 4],
|
|
[1.0, 2.0, 3.0, 4.0],
|
|
[True, True, True, True],
|
|
["foo", "bar", "baz", "qux"],
|
|
pd.date_range("2018-01-01", freq="D", periods=4),
|
|
],
|
|
)
|
|
def test_boolean_cmp(self, values):
|
|
index = Index(values)
|
|
result = index == values
|
|
expected = np.array([True, True, True, True], dtype=bool)
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("index", ["string"], indirect=True)
|
|
@pytest.mark.parametrize("name,level", [(None, 0), ("a", "a")])
|
|
def test_get_level_values(self, index, name, level):
|
|
expected = index.copy()
|
|
if name:
|
|
expected.name = name
|
|
|
|
result = expected.get_level_values(level)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_slice_keep_name(self):
|
|
index = Index(["a", "b"], name="asdf")
|
|
assert index.name == index[1:].name
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
["unicode", "string", "datetime", "int", "uint", "float"],
|
|
indirect=True,
|
|
)
|
|
def test_join_self(self, index, join_type):
|
|
joined = index.join(index, how=join_type)
|
|
assert index is joined
|
|
|
|
@pytest.mark.parametrize("method", ["strip", "rstrip", "lstrip"])
|
|
def test_str_attribute(self, method):
|
|
# GH9068
|
|
index = Index([" jack", "jill ", " jesse ", "frank"])
|
|
expected = Index([getattr(str, method)(x) for x in index.values])
|
|
|
|
result = getattr(index.str, method)()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
Index(range(5)),
|
|
tm.makeDateIndex(10),
|
|
MultiIndex.from_tuples([("foo", "1"), ("bar", "3")]),
|
|
period_range(start="2000", end="2010", freq="A"),
|
|
],
|
|
)
|
|
def test_str_attribute_raises(self, index):
|
|
with pytest.raises(AttributeError, match="only use .str accessor"):
|
|
index.str.repeat(2)
|
|
|
|
@pytest.mark.parametrize(
|
|
"expand,expected",
|
|
[
|
|
(None, Index([["a", "b", "c"], ["d", "e"], ["f"]])),
|
|
(False, Index([["a", "b", "c"], ["d", "e"], ["f"]])),
|
|
(
|
|
True,
|
|
MultiIndex.from_tuples(
|
|
[("a", "b", "c"), ("d", "e", np.nan), ("f", np.nan, np.nan)]
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_str_split(self, expand, expected):
|
|
index = Index(["a b c", "d e", "f"])
|
|
if expand is not None:
|
|
result = index.str.split(expand=expand)
|
|
else:
|
|
result = index.str.split()
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_str_bool_return(self):
|
|
# test boolean case, should return np.array instead of boolean Index
|
|
index = Index(["a1", "a2", "b1", "b2"])
|
|
result = index.str.startswith("a")
|
|
expected = np.array([True, True, False, False])
|
|
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
assert isinstance(result, np.ndarray)
|
|
|
|
def test_str_bool_series_indexing(self):
|
|
index = Index(["a1", "a2", "b1", "b2"])
|
|
s = Series(range(4), index=index)
|
|
|
|
result = s[s.index.str.startswith("a")]
|
|
expected = Series(range(2), index=["a1", "a2"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index,expected", [(Index(list("abcd")), True), (Index(range(4)), False)]
|
|
)
|
|
def test_tab_completion(self, index, expected):
|
|
# GH 9910
|
|
result = "str" in dir(index)
|
|
assert result == expected
|
|
|
|
def test_indexing_doesnt_change_class(self):
|
|
index = Index([1, 2, 3, "a", "b", "c"])
|
|
|
|
assert index[1:3].identical(pd.Index([2, 3], dtype=np.object_))
|
|
assert index[[0, 1]].identical(pd.Index([1, 2], dtype=np.object_))
|
|
|
|
def test_outer_join_sort(self):
|
|
left_index = Index(np.random.permutation(15))
|
|
right_index = tm.makeDateIndex(10)
|
|
|
|
with tm.assert_produces_warning(RuntimeWarning):
|
|
result = left_index.join(right_index, how="outer")
|
|
|
|
# right_index in this case because DatetimeIndex has join precedence
|
|
# over Int64Index
|
|
with tm.assert_produces_warning(RuntimeWarning):
|
|
expected = right_index.astype(object).union(left_index.astype(object))
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_nan_first_take_datetime(self):
|
|
index = Index([pd.NaT, Timestamp("20130101"), Timestamp("20130102")])
|
|
result = index.take([-1, 0, 1])
|
|
expected = Index([index[-1], index[0], index[1]])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_take_fill_value(self):
|
|
# GH 12631
|
|
index = pd.Index(list("ABC"), name="xxx")
|
|
result = index.take(np.array([1, 0, -1]))
|
|
expected = pd.Index(list("BAC"), name="xxx")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# fill_value
|
|
result = index.take(np.array([1, 0, -1]), fill_value=True)
|
|
expected = pd.Index(["B", "A", np.nan], name="xxx")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
# allow_fill=False
|
|
result = index.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
|
|
expected = pd.Index(["B", "A", "C"], name="xxx")
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_take_fill_value_none_raises(self):
|
|
index = pd.Index(list("ABC"), name="xxx")
|
|
msg = (
|
|
"When allow_fill=True and fill_value is not None, "
|
|
"all indices must be >= -1"
|
|
)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
index.take(np.array([1, 0, -2]), fill_value=True)
|
|
with pytest.raises(ValueError, match=msg):
|
|
index.take(np.array([1, 0, -5]), fill_value=True)
|
|
|
|
def test_take_bad_bounds_raises(self):
|
|
index = pd.Index(list("ABC"), name="xxx")
|
|
with pytest.raises(IndexError, match="out of bounds"):
|
|
index.take(np.array([1, -5]))
|
|
|
|
@pytest.mark.parametrize("name", [None, "foobar"])
|
|
@pytest.mark.parametrize(
|
|
"labels",
|
|
[
|
|
[],
|
|
np.array([]),
|
|
["A", "B", "C"],
|
|
["C", "B", "A"],
|
|
np.array(["A", "B", "C"]),
|
|
np.array(["C", "B", "A"]),
|
|
# Must preserve name even if dtype changes
|
|
pd.date_range("20130101", periods=3).values,
|
|
pd.date_range("20130101", periods=3).tolist(),
|
|
],
|
|
)
|
|
def test_reindex_preserves_name_if_target_is_list_or_ndarray(self, name, labels):
|
|
# GH6552
|
|
index = pd.Index([0, 1, 2])
|
|
index.name = name
|
|
assert index.reindex(labels)[0].name == name
|
|
|
|
@pytest.mark.parametrize("labels", [[], np.array([]), np.array([], dtype=np.int64)])
|
|
def test_reindex_preserves_type_if_target_is_empty_list_or_array(self, labels):
|
|
# GH7774
|
|
index = pd.Index(list("abc"))
|
|
assert index.reindex(labels)[0].dtype.type == np.object_
|
|
|
|
@pytest.mark.parametrize(
|
|
"labels,dtype",
|
|
[
|
|
(pd.Int64Index([]), np.int64),
|
|
(pd.Float64Index([]), np.float64),
|
|
(pd.DatetimeIndex([]), np.datetime64),
|
|
],
|
|
)
|
|
def test_reindex_doesnt_preserve_type_if_target_is_empty_index(self, labels, dtype):
|
|
# GH7774
|
|
index = pd.Index(list("abc"))
|
|
assert index.reindex(labels)[0].dtype.type == dtype
|
|
|
|
def test_reindex_no_type_preserve_target_empty_mi(self):
|
|
index = pd.Index(list("abc"))
|
|
result = index.reindex(
|
|
pd.MultiIndex([pd.Int64Index([]), pd.Float64Index([])], [[], []])
|
|
)[0]
|
|
assert result.levels[0].dtype.type == np.int64
|
|
assert result.levels[1].dtype.type == np.float64
|
|
|
|
def test_groupby(self):
|
|
index = Index(range(5))
|
|
result = index.groupby(np.array([1, 1, 2, 2, 2]))
|
|
expected = {1: pd.Index([0, 1]), 2: pd.Index([2, 3, 4])}
|
|
|
|
tm.assert_dict_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"mi,expected",
|
|
[
|
|
(MultiIndex.from_tuples([(1, 2), (4, 5)]), np.array([True, True])),
|
|
(MultiIndex.from_tuples([(1, 2), (4, 6)]), np.array([True, False])),
|
|
],
|
|
)
|
|
def test_equals_op_multiindex(self, mi, expected):
|
|
# GH9785
|
|
# test comparisons of multiindex
|
|
df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1])
|
|
|
|
result = df.index == mi
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
def test_equals_op_multiindex_identify(self):
|
|
df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1])
|
|
|
|
result = df.index == df.index
|
|
expected = np.array([True, True])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)]),
|
|
Index(["foo", "bar", "baz"]),
|
|
],
|
|
)
|
|
def test_equals_op_mismatched_multiindex_raises(self, index):
|
|
df = pd.read_csv(StringIO("a,b,c\n1,2,3\n4,5,6"), index_col=[0, 1])
|
|
|
|
with pytest.raises(ValueError, match="Lengths must match"):
|
|
df.index == index
|
|
|
|
def test_equals_op_index_vs_mi_same_length(self):
|
|
mi = MultiIndex.from_tuples([(1, 2), (4, 5), (8, 9)])
|
|
index = Index(["foo", "bar", "baz"])
|
|
|
|
result = mi == index
|
|
expected = np.array([False, False, False])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("dt_conv", [pd.to_datetime, pd.to_timedelta])
|
|
def test_dt_conversion_preserves_name(self, dt_conv):
|
|
# GH 10875
|
|
index = pd.Index(["01:02:03", "01:02:04"], name="label")
|
|
assert index.name == dt_conv(index).name
|
|
|
|
@pytest.mark.parametrize(
|
|
"index,expected",
|
|
[
|
|
# ASCII
|
|
# short
|
|
(
|
|
pd.Index(["a", "bb", "ccc"]),
|
|
"""Index(['a', 'bb', 'ccc'], dtype='object')""",
|
|
),
|
|
# multiple lines
|
|
(
|
|
pd.Index(["a", "bb", "ccc"] * 10),
|
|
"""\
|
|
Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc',
|
|
'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc',
|
|
'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
|
|
dtype='object')""",
|
|
),
|
|
# truncated
|
|
(
|
|
pd.Index(["a", "bb", "ccc"] * 100),
|
|
"""\
|
|
Index(['a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a',
|
|
...
|
|
'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc', 'a', 'bb', 'ccc'],
|
|
dtype='object', length=300)""",
|
|
),
|
|
# Non-ASCII
|
|
# short
|
|
(
|
|
pd.Index(["あ", "いい", "ううう"]),
|
|
"""Index(['あ', 'いい', 'ううう'], dtype='object')""",
|
|
),
|
|
# multiple lines
|
|
(
|
|
pd.Index(["あ", "いい", "ううう"] * 10),
|
|
(
|
|
"Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', "
|
|
"'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n"
|
|
" 'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', "
|
|
"'あ', 'いい', 'ううう', 'あ', 'いい', 'ううう',\n"
|
|
" 'あ', 'いい', 'ううう', 'あ', 'いい', "
|
|
"'ううう'],\n"
|
|
" dtype='object')"
|
|
),
|
|
),
|
|
# truncated
|
|
(
|
|
pd.Index(["あ", "いい", "ううう"] * 100),
|
|
(
|
|
"Index(['あ', 'いい', 'ううう', 'あ', 'いい', 'ううう', "
|
|
"'あ', 'いい', 'ううう', 'あ',\n"
|
|
" ...\n"
|
|
" 'ううう', 'あ', 'いい', 'ううう', 'あ', 'いい', "
|
|
"'ううう', 'あ', 'いい', 'ううう'],\n"
|
|
" dtype='object', length=300)"
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_string_index_repr(self, index, expected):
|
|
result = repr(index)
|
|
assert result == expected
|
|
|
|
@pytest.mark.parametrize(
|
|
"index,expected",
|
|
[
|
|
# short
|
|
(
|
|
pd.Index(["あ", "いい", "ううう"]),
|
|
("Index(['あ', 'いい', 'ううう'], dtype='object')"),
|
|
),
|
|
# multiple lines
|
|
(
|
|
pd.Index(["あ", "いい", "ううう"] * 10),
|
|
(
|
|
"Index(['あ', 'いい', 'ううう', 'あ', 'いい', "
|
|
"'ううう', 'あ', 'いい', 'ううう',\n"
|
|
" 'あ', 'いい', 'ううう', 'あ', 'いい', "
|
|
"'ううう', 'あ', 'いい', 'ううう',\n"
|
|
" 'あ', 'いい', 'ううう', 'あ', 'いい', "
|
|
"'ううう', 'あ', 'いい', 'ううう',\n"
|
|
" 'あ', 'いい', 'ううう'],\n"
|
|
" dtype='object')"
|
|
""
|
|
),
|
|
),
|
|
# truncated
|
|
(
|
|
pd.Index(["あ", "いい", "ううう"] * 100),
|
|
(
|
|
"Index(['あ', 'いい', 'ううう', 'あ', 'いい', "
|
|
"'ううう', 'あ', 'いい', 'ううう',\n"
|
|
" 'あ',\n"
|
|
" ...\n"
|
|
" 'ううう', 'あ', 'いい', 'ううう', 'あ', "
|
|
"'いい', 'ううう', 'あ', 'いい',\n"
|
|
" 'ううう'],\n"
|
|
" dtype='object', length=300)"
|
|
),
|
|
),
|
|
],
|
|
)
|
|
def test_string_index_repr_with_unicode_option(self, index, expected):
|
|
# Enable Unicode option -----------------------------------------
|
|
with cf.option_context("display.unicode.east_asian_width", True):
|
|
result = repr(index)
|
|
assert result == expected
|
|
|
|
def test_cached_properties_not_settable(self):
|
|
index = pd.Index([1, 2, 3])
|
|
with pytest.raises(AttributeError, match="Can't set attribute"):
|
|
index.is_unique = False
|
|
|
|
@async_mark()
|
|
async def test_tab_complete_warning(self, ip):
|
|
# https://github.com/pandas-dev/pandas/issues/16409
|
|
pytest.importorskip("IPython", minversion="6.0.0")
|
|
from IPython.core.completer import provisionalcompleter
|
|
|
|
code = "import pandas as pd; idx = pd.Index([1, 2])"
|
|
await ip.run_code(code)
|
|
|
|
# GH 31324 newer jedi version raises Deprecation warning
|
|
import jedi
|
|
|
|
if jedi.__version__ < "0.16.0":
|
|
warning = tm.assert_produces_warning(None)
|
|
else:
|
|
warning = tm.assert_produces_warning(
|
|
DeprecationWarning, check_stacklevel=False
|
|
)
|
|
with warning:
|
|
with provisionalcompleter("ignore"):
|
|
list(ip.Completer.completions("idx.", 4))
|
|
|
|
def test_contains_method_removed(self, index):
|
|
# GH#30103 method removed for all types except IntervalIndex
|
|
if isinstance(index, pd.IntervalIndex):
|
|
index.contains(1)
|
|
else:
|
|
msg = f"'{type(index).__name__}' object has no attribute 'contains'"
|
|
with pytest.raises(AttributeError, match=msg):
|
|
index.contains(1)
|
|
|
|
|
|
class TestMixedIntIndex(Base):
|
|
# Mostly the tests from common.py for which the results differ
|
|
# in py2 and py3 because ints and strings are uncomparable in py3
|
|
# (GH 13514)
|
|
_holder = Index
|
|
|
|
@pytest.fixture(params=[[0, "a", 1, "b", 2, "c"]], ids=["mixedIndex"])
|
|
def index(self, request):
|
|
return Index(request.param)
|
|
|
|
def create_index(self) -> Index:
|
|
return Index([0, "a", 1, "b", 2, "c"])
|
|
|
|
def test_argsort(self):
|
|
index = self.create_index()
|
|
with pytest.raises(TypeError, match="'>|<' not supported"):
|
|
index.argsort()
|
|
|
|
def test_numpy_argsort(self):
|
|
index = self.create_index()
|
|
with pytest.raises(TypeError, match="'>|<' not supported"):
|
|
np.argsort(index)
|
|
|
|
def test_copy_name(self):
|
|
# Check that "name" argument passed at initialization is honoured
|
|
# GH12309
|
|
index = self.create_index()
|
|
|
|
first = type(index)(index, copy=True, name="mario")
|
|
second = type(first)(first, copy=False)
|
|
|
|
# Even though "copy=False", we want a new object.
|
|
assert first is not second
|
|
tm.assert_index_equal(first, second)
|
|
|
|
assert first.name == "mario"
|
|
assert second.name == "mario"
|
|
|
|
s1 = Series(2, index=first)
|
|
s2 = Series(3, index=second[:-1])
|
|
|
|
s3 = s1 * s2
|
|
|
|
assert s3.index.name == "mario"
|
|
|
|
def test_copy_name2(self):
|
|
# Check that adding a "name" parameter to the copy is honored
|
|
# GH14302
|
|
index = pd.Index([1, 2], name="MyName")
|
|
index1 = index.copy()
|
|
|
|
tm.assert_index_equal(index, index1)
|
|
|
|
index2 = index.copy(name="NewName")
|
|
tm.assert_index_equal(index, index2, check_names=False)
|
|
assert index.name == "MyName"
|
|
assert index2.name == "NewName"
|
|
|
|
index3 = index.copy(names=["NewName"])
|
|
tm.assert_index_equal(index, index3, check_names=False)
|
|
assert index.name == "MyName"
|
|
assert index.names == ["MyName"]
|
|
assert index3.name == "NewName"
|
|
assert index3.names == ["NewName"]
|
|
|
|
def test_unique_na(self):
|
|
idx = pd.Index([2, np.nan, 2, 1], name="my_index")
|
|
expected = pd.Index([2, np.nan, 1], name="my_index")
|
|
result = idx.unique()
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_logical_compat(self):
|
|
index = self.create_index()
|
|
assert index.all() == index.values.all()
|
|
assert index.any() == index.values.any()
|
|
|
|
@pytest.mark.parametrize("how", ["any", "all"])
|
|
@pytest.mark.parametrize("dtype", [None, object, "category"])
|
|
@pytest.mark.parametrize(
|
|
"vals,expected",
|
|
[
|
|
([1, 2, 3], [1, 2, 3]),
|
|
([1.0, 2.0, 3.0], [1.0, 2.0, 3.0]),
|
|
([1.0, 2.0, np.nan, 3.0], [1.0, 2.0, 3.0]),
|
|
(["A", "B", "C"], ["A", "B", "C"]),
|
|
(["A", np.nan, "B", "C"], ["A", "B", "C"]),
|
|
],
|
|
)
|
|
def test_dropna(self, how, dtype, vals, expected):
|
|
# GH 6194
|
|
index = pd.Index(vals, dtype=dtype)
|
|
result = index.dropna(how=how)
|
|
expected = pd.Index(expected, dtype=dtype)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize("how", ["any", "all"])
|
|
@pytest.mark.parametrize(
|
|
"index,expected",
|
|
[
|
|
(
|
|
pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
|
|
pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
|
|
),
|
|
(
|
|
pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03", pd.NaT]),
|
|
pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"]),
|
|
),
|
|
(
|
|
pd.TimedeltaIndex(["1 days", "2 days", "3 days"]),
|
|
pd.TimedeltaIndex(["1 days", "2 days", "3 days"]),
|
|
),
|
|
(
|
|
pd.TimedeltaIndex([pd.NaT, "1 days", "2 days", "3 days", pd.NaT]),
|
|
pd.TimedeltaIndex(["1 days", "2 days", "3 days"]),
|
|
),
|
|
(
|
|
pd.PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
|
|
pd.PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
|
|
),
|
|
(
|
|
pd.PeriodIndex(["2012-02", "2012-04", "NaT", "2012-05"], freq="M"),
|
|
pd.PeriodIndex(["2012-02", "2012-04", "2012-05"], freq="M"),
|
|
),
|
|
],
|
|
)
|
|
def test_dropna_dt_like(self, how, index, expected):
|
|
result = index.dropna(how=how)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_dropna_invalid_how_raises(self):
|
|
msg = "invalid how option: xxx"
|
|
with pytest.raises(ValueError, match=msg):
|
|
pd.Index([1, 2, 3]).dropna(how="xxx")
|
|
|
|
def test_get_combined_index(self):
|
|
result = _get_combined_index([])
|
|
expected = Index([])
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"index",
|
|
[
|
|
pd.Index([np.nan]),
|
|
pd.Index([np.nan, 1]),
|
|
pd.Index([1, 2, np.nan]),
|
|
pd.Index(["a", "b", np.nan]),
|
|
pd.to_datetime(["NaT"]),
|
|
pd.to_datetime(["NaT", "2000-01-01"]),
|
|
pd.to_datetime(["2000-01-01", "NaT", "2000-01-02"]),
|
|
pd.to_timedelta(["1 day", "NaT"]),
|
|
],
|
|
)
|
|
def test_is_monotonic_na(self, index):
|
|
assert index.is_monotonic_increasing is False
|
|
assert index.is_monotonic_decreasing is False
|
|
assert index._is_strictly_monotonic_increasing is False
|
|
assert index._is_strictly_monotonic_decreasing is False
|
|
|
|
def test_repr_summary(self):
|
|
with cf.option_context("display.max_seq_items", 10):
|
|
result = repr(pd.Index(np.arange(1000)))
|
|
assert len(result) < 200
|
|
assert "..." in result
|
|
|
|
@pytest.mark.parametrize("klass", [Series, DataFrame])
|
|
def test_int_name_format(self, klass):
|
|
index = Index(["a", "b", "c"], name=0)
|
|
result = klass(list(range(3)), index=index)
|
|
assert "0" in repr(result)
|
|
|
|
def test_str_to_bytes_raises(self):
|
|
# GH 26447
|
|
index = Index([str(x) for x in range(10)])
|
|
msg = "^'str' object cannot be interpreted as an integer$"
|
|
with pytest.raises(TypeError, match=msg):
|
|
bytes(index)
|
|
|
|
def test_intersect_str_dates(self):
|
|
dt_dates = [datetime(2012, 2, 9), datetime(2012, 2, 22)]
|
|
|
|
index1 = Index(dt_dates, dtype=object)
|
|
index2 = Index(["aa"], dtype=object)
|
|
result = index2.intersection(index1)
|
|
|
|
expected = Index([], dtype=object)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_index_repr_bool_nan(self):
|
|
# GH32146
|
|
arr = Index([True, False, np.nan], dtype=object)
|
|
exp1 = arr.format()
|
|
out1 = ["True", "False", "NaN"]
|
|
assert out1 == exp1
|
|
|
|
exp2 = repr(arr)
|
|
out2 = "Index([True, False, nan], dtype='object')"
|
|
assert out2 == exp2
|
|
|
|
@pytest.mark.filterwarnings("ignore:elementwise comparison failed:FutureWarning")
|
|
def test_index_with_tuple_bool(self):
|
|
# GH34123
|
|
# TODO: remove tupleize_cols=False once correct behaviour is restored
|
|
# TODO: also this op right now produces FutureWarning from numpy
|
|
idx = Index([("a", "b"), ("b", "c"), ("c", "a")], tupleize_cols=False)
|
|
result = idx == ("c", "a",)
|
|
expected = np.array([False, False, True])
|
|
tm.assert_numpy_array_equal(result, expected)
|
|
|
|
|
|
class TestIndexUtils:
|
|
@pytest.mark.parametrize(
|
|
"data, names, expected",
|
|
[
|
|
([[1, 2, 3]], None, Index([1, 2, 3])),
|
|
([[1, 2, 3]], ["name"], Index([1, 2, 3], name="name")),
|
|
(
|
|
[["a", "a"], ["c", "d"]],
|
|
None,
|
|
MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]]),
|
|
),
|
|
(
|
|
[["a", "a"], ["c", "d"]],
|
|
["L1", "L2"],
|
|
MultiIndex([["a"], ["c", "d"]], [[0, 0], [0, 1]], names=["L1", "L2"]),
|
|
),
|
|
],
|
|
)
|
|
def test_ensure_index_from_sequences(self, data, names, expected):
|
|
result = ensure_index_from_sequences(data, names)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_ensure_index_mixed_closed_intervals(self):
|
|
# GH27172
|
|
intervals = [
|
|
pd.Interval(0, 1, closed="left"),
|
|
pd.Interval(1, 2, closed="right"),
|
|
pd.Interval(2, 3, closed="neither"),
|
|
pd.Interval(3, 4, closed="both"),
|
|
]
|
|
result = ensure_index(intervals)
|
|
expected = Index(intervals, dtype=object)
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"opname",
|
|
[
|
|
"eq",
|
|
"ne",
|
|
"le",
|
|
"lt",
|
|
"ge",
|
|
"gt",
|
|
"add",
|
|
"radd",
|
|
"sub",
|
|
"rsub",
|
|
"mul",
|
|
"rmul",
|
|
"truediv",
|
|
"rtruediv",
|
|
"floordiv",
|
|
"rfloordiv",
|
|
"pow",
|
|
"rpow",
|
|
"mod",
|
|
"divmod",
|
|
],
|
|
)
|
|
def test_generated_op_names(opname, index):
|
|
if isinstance(index, ABCIndex) and opname == "rsub":
|
|
# pd.Index.__rsub__ does not exist; though the method does exist
|
|
# for subclasses. see GH#19723
|
|
return
|
|
opname = f"__{opname}__"
|
|
method = getattr(index, opname)
|
|
assert method.__name__ == opname
|
|
|
|
|
|
@pytest.mark.parametrize("index_maker", tm.index_subclass_makers_generator())
|
|
def test_index_subclass_constructor_wrong_kwargs(index_maker):
|
|
# GH #19348
|
|
with pytest.raises(TypeError, match="unexpected keyword argument"):
|
|
index_maker(foo="bar")
|
|
|
|
|
|
def test_deprecated_fastpath():
|
|
msg = "[Uu]nexpected keyword argument"
|
|
with pytest.raises(TypeError, match=msg):
|
|
pd.Index(np.array(["a", "b"], dtype=object), name="test", fastpath=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
pd.Int64Index(np.array([1, 2, 3], dtype="int64"), name="test", fastpath=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
pd.RangeIndex(0, 5, 2, name="test", fastpath=True)
|
|
|
|
with pytest.raises(TypeError, match=msg):
|
|
pd.CategoricalIndex(["a", "b", "c"], name="test", fastpath=True)
|
|
|
|
|
|
def test_shape_of_invalid_index():
|
|
# Currently, it is possible to create "invalid" index objects backed by
|
|
# a multi-dimensional array (see https://github.com/pandas-dev/pandas/issues/27125
|
|
# about this). However, as long as this is not solved in general,this test ensures
|
|
# that the returned shape is consistent with this underlying array for
|
|
# compat with matplotlib (see https://github.com/pandas-dev/pandas/issues/27775)
|
|
idx = pd.Index([0, 1, 2, 3])
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
# GH#30588 multi-dimensional indexing deprecated
|
|
assert idx[:, None].shape == (4, 1)
|
|
|
|
|
|
def test_validate_1d_input():
|
|
# GH#27125 check that we do not have >1-dimensional input
|
|
msg = "Index data must be 1-dimensional"
|
|
|
|
arr = np.arange(8).reshape(2, 2, 2)
|
|
with pytest.raises(ValueError, match=msg):
|
|
pd.Index(arr)
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
pd.Float64Index(arr.astype(np.float64))
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
pd.Int64Index(arr.astype(np.int64))
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
pd.UInt64Index(arr.astype(np.uint64))
|
|
|
|
df = pd.DataFrame(arr.reshape(4, 2))
|
|
with pytest.raises(ValueError, match=msg):
|
|
pd.Index(df)
|
|
|
|
# GH#13601 trying to assign a multi-dimensional array to an index is not
|
|
# allowed
|
|
ser = pd.Series(0, range(4))
|
|
with pytest.raises(ValueError, match=msg):
|
|
ser.index = np.array([[2, 3]] * 4)
|
|
|
|
|
|
def test_convert_almost_null_slice(index):
|
|
# slice with None at both ends, but not step
|
|
|
|
key = slice(None, None, "foo")
|
|
|
|
if isinstance(index, pd.IntervalIndex):
|
|
msg = "label-based slicing with step!=1 is not supported for IntervalIndex"
|
|
with pytest.raises(ValueError, match=msg):
|
|
index._convert_slice_indexer(key, "loc")
|
|
else:
|
|
msg = "'>=' not supported between instances of 'str' and 'int'"
|
|
with pytest.raises(TypeError, match=msg):
|
|
index._convert_slice_indexer(key, "loc")
|
|
|
|
|
|
dtlike_dtypes = [
|
|
np.dtype("timedelta64[ns]"),
|
|
np.dtype("datetime64[ns]"),
|
|
pd.DatetimeTZDtype("ns", "Asia/Tokyo"),
|
|
pd.PeriodDtype("ns"),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("ldtype", dtlike_dtypes)
|
|
@pytest.mark.parametrize("rdtype", dtlike_dtypes)
|
|
def test_get_indexer_non_unique_wrong_dtype(ldtype, rdtype):
|
|
|
|
vals = np.tile(3600 * 10 ** 9 * np.arange(3), 2)
|
|
|
|
def construct(dtype):
|
|
if dtype is dtlike_dtypes[-1]:
|
|
# PeriodArray will try to cast ints to strings
|
|
return pd.DatetimeIndex(vals).astype(dtype)
|
|
return pd.Index(vals, dtype=dtype)
|
|
|
|
left = construct(ldtype)
|
|
right = construct(rdtype)
|
|
|
|
result = left.get_indexer_non_unique(right)
|
|
|
|
if ldtype is rdtype:
|
|
ex1 = np.array([0, 3, 1, 4, 2, 5] * 2, dtype=np.intp)
|
|
ex2 = np.array([], dtype=np.intp)
|
|
tm.assert_numpy_array_equal(result[0], ex1)
|
|
tm.assert_numpy_array_equal(result[1], ex2.astype(np.int64))
|
|
|
|
else:
|
|
no_matches = np.array([-1] * 6, dtype=np.intp)
|
|
tm.assert_numpy_array_equal(result[0], no_matches)
|
|
tm.assert_numpy_array_equal(result[1], no_matches)
|