mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2024-12-29 17:01:44 +01:00
203 lines
6 KiB
Python
203 lines
6 KiB
Python
import sys
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from pandas.compat import PYPY
|
|
|
|
from pandas.core.dtypes.common import (
|
|
is_categorical_dtype,
|
|
is_datetime64_dtype,
|
|
is_datetime64tz_dtype,
|
|
is_object_dtype,
|
|
)
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, Index, IntervalIndex, Series
|
|
import pandas._testing as tm
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"op_name, op",
|
|
[
|
|
("add", "+"),
|
|
("sub", "-"),
|
|
("mul", "*"),
|
|
("mod", "%"),
|
|
("pow", "**"),
|
|
("truediv", "/"),
|
|
("floordiv", "//"),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("klass", [Series, DataFrame])
|
|
def test_binary_ops_docstring(klass, op_name, op):
|
|
# not using the all_arithmetic_functions fixture with _get_opstr
|
|
# as _get_opstr is used internally in the dynamic implementation of the docstring
|
|
operand1 = klass.__name__.lower()
|
|
operand2 = "other"
|
|
expected_str = " ".join([operand1, op, operand2])
|
|
assert expected_str in getattr(klass, op_name).__doc__
|
|
|
|
# reverse version of the binary ops
|
|
expected_str = " ".join([operand2, op, operand1])
|
|
assert expected_str in getattr(klass, "r" + op_name).__doc__
|
|
|
|
|
|
def test_none_comparison(series_with_simple_index):
|
|
series = series_with_simple_index
|
|
if isinstance(series.index, IntervalIndex):
|
|
# IntervalIndex breaks on "series[0] = np.nan" below
|
|
pytest.skip("IntervalIndex doesn't support assignment")
|
|
if len(series) < 1:
|
|
pytest.skip("Test doesn't make sense on empty data")
|
|
|
|
# bug brought up by #1079
|
|
# changed from TypeError in 0.17.0
|
|
series[0] = np.nan
|
|
|
|
# noinspection PyComparisonWithNone
|
|
result = series == None # noqa
|
|
assert not result.iat[0]
|
|
assert not result.iat[1]
|
|
|
|
# noinspection PyComparisonWithNone
|
|
result = series != None # noqa
|
|
assert result.iat[0]
|
|
assert result.iat[1]
|
|
|
|
result = None == series # noqa
|
|
assert not result.iat[0]
|
|
assert not result.iat[1]
|
|
|
|
result = None != series # noqa
|
|
assert result.iat[0]
|
|
assert result.iat[1]
|
|
|
|
if is_datetime64_dtype(series.dtype) or is_datetime64tz_dtype(series.dtype):
|
|
# Following DatetimeIndex (and Timestamp) convention,
|
|
# inequality comparisons with Series[datetime64] raise
|
|
msg = "Invalid comparison"
|
|
with pytest.raises(TypeError, match=msg):
|
|
None > series
|
|
with pytest.raises(TypeError, match=msg):
|
|
series > None
|
|
else:
|
|
result = None > series
|
|
assert not result.iat[0]
|
|
assert not result.iat[1]
|
|
|
|
result = series < None
|
|
assert not result.iat[0]
|
|
assert not result.iat[1]
|
|
|
|
|
|
def test_ndarray_compat_properties(index_or_series_obj):
|
|
obj = index_or_series_obj
|
|
|
|
# Check that we work.
|
|
for p in ["shape", "dtype", "T", "nbytes"]:
|
|
assert getattr(obj, p, None) is not None
|
|
|
|
# deprecated properties
|
|
for p in ["flags", "strides", "itemsize", "base", "data"]:
|
|
assert not hasattr(obj, p)
|
|
|
|
msg = "can only convert an array of size 1 to a Python scalar"
|
|
with pytest.raises(ValueError, match=msg):
|
|
obj.item() # len > 1
|
|
|
|
assert obj.ndim == 1
|
|
assert obj.size == len(obj)
|
|
|
|
assert Index([1]).item() == 1
|
|
assert Series([1]).item() == 1
|
|
|
|
|
|
@pytest.mark.skipif(PYPY, reason="not relevant for PyPy")
|
|
def test_memory_usage(index_or_series_obj):
|
|
obj = index_or_series_obj
|
|
res = obj.memory_usage()
|
|
res_deep = obj.memory_usage(deep=True)
|
|
|
|
is_object = is_object_dtype(obj) or (
|
|
isinstance(obj, Series) and is_object_dtype(obj.index)
|
|
)
|
|
is_categorical = is_categorical_dtype(obj.dtype) or (
|
|
isinstance(obj, Series) and is_categorical_dtype(obj.index.dtype)
|
|
)
|
|
|
|
if len(obj) == 0:
|
|
assert res_deep == res == 0
|
|
elif is_object or is_categorical:
|
|
# only deep will pick them up
|
|
assert res_deep > res
|
|
else:
|
|
assert res == res_deep
|
|
|
|
# sys.getsizeof will call the .memory_usage with
|
|
# deep=True, and add on some GC overhead
|
|
diff = res_deep - sys.getsizeof(obj)
|
|
assert abs(diff) < 100
|
|
|
|
|
|
def test_memory_usage_components_series(series_with_simple_index):
|
|
series = series_with_simple_index
|
|
total_usage = series.memory_usage(index=True)
|
|
non_index_usage = series.memory_usage(index=False)
|
|
index_usage = series.index.memory_usage()
|
|
assert total_usage == non_index_usage + index_usage
|
|
|
|
|
|
def test_memory_usage_components_narrow_series(narrow_series):
|
|
series = narrow_series
|
|
total_usage = series.memory_usage(index=True)
|
|
non_index_usage = series.memory_usage(index=False)
|
|
index_usage = series.index.memory_usage()
|
|
assert total_usage == non_index_usage + index_usage
|
|
|
|
|
|
def test_searchsorted(index_or_series_obj):
|
|
# numpy.searchsorted calls obj.searchsorted under the hood.
|
|
# See gh-12238
|
|
obj = index_or_series_obj
|
|
|
|
if isinstance(obj, pd.MultiIndex):
|
|
# See gh-14833
|
|
pytest.skip("np.searchsorted doesn't work on pd.MultiIndex")
|
|
|
|
max_obj = max(obj, default=0)
|
|
index = np.searchsorted(obj, max_obj)
|
|
assert 0 <= index <= len(obj)
|
|
|
|
index = np.searchsorted(obj, max_obj, sorter=range(len(obj)))
|
|
assert 0 <= index <= len(obj)
|
|
|
|
|
|
def test_access_by_position(index):
|
|
|
|
if len(index) == 0:
|
|
pytest.skip("Test doesn't make sense on empty data")
|
|
elif isinstance(index, pd.MultiIndex):
|
|
pytest.skip("Can't instantiate Series from MultiIndex")
|
|
|
|
series = pd.Series(index)
|
|
assert index[0] == series.iloc[0]
|
|
assert index[5] == series.iloc[5]
|
|
assert index[-1] == series.iloc[-1]
|
|
|
|
size = len(index)
|
|
assert index[-1] == index[size - 1]
|
|
|
|
msg = f"index {size} is out of bounds for axis 0 with size {size}"
|
|
with pytest.raises(IndexError, match=msg):
|
|
index[size]
|
|
msg = "single positional indexer is out-of-bounds"
|
|
with pytest.raises(IndexError, match=msg):
|
|
series.iloc[size]
|
|
|
|
|
|
def test_get_indexer_non_unique_dtype_mismatch():
|
|
# GH 25459
|
|
indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0]))
|
|
tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes)
|
|
tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing)
|