mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-23 04:46:11 +01:00
176 lines
6.3 KiB
Python
176 lines
6.3 KiB
Python
"""
|
|
A sub-package for efficiently dealing with polynomials.
|
|
|
|
Within the documentation for this sub-package, a "finite power series,"
|
|
i.e., a polynomial (also referred to simply as a "series") is represented
|
|
by a 1-D numpy array of the polynomial's coefficients, ordered from lowest
|
|
order term to highest. For example, array([1,2,3]) represents
|
|
``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial
|
|
applicable to the specific module in question, e.g., `polynomial` (which
|
|
"wraps" the "standard" basis) or `chebyshev`. For optimal performance,
|
|
all operations on polynomials, including evaluation at an argument, are
|
|
implemented as operations on the coefficients. Additional (module-specific)
|
|
information can be found in the docstring for the module of interest.
|
|
|
|
This package provides *convenience classes* for each of six different kinds
|
|
of polynomials:
|
|
|
|
============ ================
|
|
**Name** **Provides**
|
|
============ ================
|
|
Polynomial Power series
|
|
Chebyshev Chebyshev series
|
|
Legendre Legendre series
|
|
Laguerre Laguerre series
|
|
Hermite Hermite series
|
|
HermiteE HermiteE series
|
|
============ ================
|
|
|
|
These *convenience classes* provide a consistent interface for creating,
|
|
manipulating, and fitting data with polynomials of different bases.
|
|
The convenience classes are the preferred interface for the `~numpy.polynomial`
|
|
package, and are available from the `numpy.polynomial` namespace.
|
|
This eliminates the need to
|
|
navigate to the corresponding submodules, e.g. ``np.polynomial.Polynomial``
|
|
or ``np.polynomial.Chebyshev`` instead of
|
|
``np.polynomial.polynomial.Polynomial`` or
|
|
``np.polynomial.chebyshev.Chebyshev``, respectively.
|
|
The classes provide a more consistent and concise interface than the
|
|
type-specific functions defined in the submodules for each type of polynomial.
|
|
For example, to fit a Chebyshev polynomial with degree ``1`` to data given
|
|
by arrays ``xdata`` and ``ydata``, the
|
|
`~chebyshev.Chebyshev.fit` class method::
|
|
|
|
>>> from numpy.polynomial import Chebyshev
|
|
>>> c = Chebyshev.fit(xdata, ydata, deg=1)
|
|
|
|
is preferred over the `chebyshev.chebfit` function from the
|
|
`numpy.polynomial.chebyshev` module::
|
|
|
|
>>> from numpy.polynomial.chebyshev import chebfit
|
|
>>> c = chebfit(xdata, ydata, deg=1)
|
|
|
|
See :doc:`routines.polynomials.classes` for more details.
|
|
|
|
Convenience Classes
|
|
===================
|
|
|
|
The following lists the various constants and methods common to all of
|
|
the classes representing the various kinds of polynomials. In the following,
|
|
the term ``Poly`` represents any one of the convenience classes (e.g.
|
|
``Polynomial``, ``Chebyshev``, ``Hermite``, etc.) while the lowercase ``p``
|
|
represents an **instance** of a polynomial class.
|
|
|
|
Constants
|
|
---------
|
|
|
|
- ``Poly.domain`` -- Default domain
|
|
- ``Poly.window`` -- Default window
|
|
- ``Poly.basis_name`` -- String used to represent the basis
|
|
- ``Poly.maxpower`` -- Maximum value ``n`` such that ``p**n`` is allowed
|
|
- ``Poly.nickname`` -- String used in printing
|
|
|
|
Creation
|
|
--------
|
|
|
|
Methods for creating polynomial instances.
|
|
|
|
- ``Poly.basis(degree)`` -- Basis polynomial of given degree
|
|
- ``Poly.identity()`` -- ``p`` where ``p(x) = x`` for all ``x``
|
|
- ``Poly.fit(x, y, deg)`` -- ``p`` of degree ``deg`` with coefficients
|
|
determined by the least-squares fit to the data ``x``, ``y``
|
|
- ``Poly.fromroots(roots)`` -- ``p`` with specified roots
|
|
- ``p.copy()`` -- Create a copy of ``p``
|
|
|
|
Conversion
|
|
----------
|
|
|
|
Methods for converting a polynomial instance of one kind to another.
|
|
|
|
- ``p.cast(Poly)`` -- Convert ``p`` to instance of kind ``Poly``
|
|
- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map
|
|
between ``domain`` and ``window``
|
|
|
|
Calculus
|
|
--------
|
|
- ``p.deriv()`` -- Take the derivative of ``p``
|
|
- ``p.integ()`` -- Integrate ``p``
|
|
|
|
Validation
|
|
----------
|
|
- ``Poly.has_samecoef(p1, p2)`` -- Check if coefficients match
|
|
- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match
|
|
- ``Poly.has_sametype(p1, p2)`` -- Check if types match
|
|
- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match
|
|
|
|
Misc
|
|
----
|
|
- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain``
|
|
- ``p.mapparms()`` -- Return the parameters for the linear mapping between
|
|
``domain`` and ``window``.
|
|
- ``p.roots()`` -- Return the roots of `p`.
|
|
- ``p.trim()`` -- Remove trailing coefficients.
|
|
- ``p.cutdeg(degree)`` -- Truncate p to given degree
|
|
- ``p.truncate(size)`` -- Truncate p to given size
|
|
|
|
"""
|
|
from .polynomial import Polynomial
|
|
from .chebyshev import Chebyshev
|
|
from .legendre import Legendre
|
|
from .hermite import Hermite
|
|
from .hermite_e import HermiteE
|
|
from .laguerre import Laguerre
|
|
|
|
|
|
def set_default_printstyle(style):
|
|
"""
|
|
Set the default format for the string representation of polynomials.
|
|
|
|
Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii'
|
|
or 'unicode'.
|
|
|
|
Parameters
|
|
----------
|
|
style : str
|
|
Format string for default printing style. Must be either 'ascii' or
|
|
'unicode'.
|
|
|
|
Notes
|
|
-----
|
|
The default format depends on the platform: 'unicode' is used on
|
|
Unix-based systems and 'ascii' on Windows. This determination is based on
|
|
default font support for the unicode superscript and subscript ranges.
|
|
|
|
Examples
|
|
--------
|
|
>>> p = np.polynomial.Polynomial([1, 2, 3])
|
|
>>> c = np.polynomial.Chebyshev([1, 2, 3])
|
|
>>> np.polynomial.set_default_printstyle('unicode')
|
|
>>> print(p)
|
|
1.0 + 2.0·x¹ + 3.0·x²
|
|
>>> print(c)
|
|
1.0 + 2.0·T₁(x) + 3.0·T₂(x)
|
|
>>> np.polynomial.set_default_printstyle('ascii')
|
|
>>> print(p)
|
|
1.0 + 2.0 x**1 + 3.0 x**2
|
|
>>> print(c)
|
|
1.0 + 2.0 T_1(x) + 3.0 T_2(x)
|
|
>>> # Formatting supercedes all class/package-level defaults
|
|
>>> print(f"{p:unicode}")
|
|
1.0 + 2.0·x¹ + 3.0·x²
|
|
"""
|
|
if style not in ('unicode', 'ascii'):
|
|
raise ValueError(
|
|
f"Unsupported format string '{style}'. Valid options are 'ascii' "
|
|
f"and 'unicode'"
|
|
)
|
|
_use_unicode = True
|
|
if style == 'ascii':
|
|
_use_unicode = False
|
|
from ._polybase import ABCPolyBase
|
|
ABCPolyBase._use_unicode = _use_unicode
|
|
|
|
|
|
from numpy._pytesttester import PytestTester
|
|
test = PytestTester(__name__)
|
|
del PytestTester
|