mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-07 21:31:45 +01:00
492 lines
16 KiB
Python
492 lines
16 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays.numpy_ import PandasArray, PandasDtype
|
|
|
|
from . import base
|
|
|
|
|
|
@pytest.fixture(params=["float", "object"])
|
|
def dtype(request):
|
|
return PandasDtype(np.dtype(request.param))
|
|
|
|
|
|
@pytest.fixture
|
|
def allow_in_pandas(monkeypatch):
|
|
"""
|
|
A monkeypatch to tells pandas to let us in.
|
|
|
|
By default, passing a PandasArray to an index / series / frame
|
|
constructor will unbox that PandasArray to an ndarray, and treat
|
|
it as a non-EA column. We don't want people using EAs without
|
|
reason.
|
|
|
|
The mechanism for this is a check against ABCPandasArray
|
|
in each constructor.
|
|
|
|
But, for testing, we need to allow them in pandas. So we patch
|
|
the _typ of PandasArray, so that we evade the ABCPandasArray
|
|
check.
|
|
"""
|
|
with monkeypatch.context() as m:
|
|
m.setattr(PandasArray, "_typ", "extension")
|
|
yield
|
|
|
|
|
|
@pytest.fixture
|
|
def data(allow_in_pandas, dtype):
|
|
if dtype.numpy_dtype == "object":
|
|
return pd.Series([(i,) for i in range(100)]).array
|
|
return PandasArray(np.arange(1, 101, dtype=dtype._dtype))
|
|
|
|
|
|
@pytest.fixture
|
|
def data_missing(allow_in_pandas, dtype):
|
|
if dtype.numpy_dtype == "object":
|
|
return PandasArray(np.array([np.nan, (1,)], dtype=object))
|
|
return PandasArray(np.array([np.nan, 1.0]))
|
|
|
|
|
|
@pytest.fixture
|
|
def na_value():
|
|
return np.nan
|
|
|
|
|
|
@pytest.fixture
|
|
def na_cmp():
|
|
def cmp(a, b):
|
|
return np.isnan(a) and np.isnan(b)
|
|
|
|
return cmp
|
|
|
|
|
|
@pytest.fixture
|
|
def data_for_sorting(allow_in_pandas, dtype):
|
|
"""Length-3 array with a known sort order.
|
|
|
|
This should be three items [B, C, A] with
|
|
A < B < C
|
|
"""
|
|
if dtype.numpy_dtype == "object":
|
|
# Use an empty tuple for first element, then remove,
|
|
# to disable np.array's shape inference.
|
|
return PandasArray(np.array([(), (2,), (3,), (1,)], dtype=object)[1:])
|
|
return PandasArray(np.array([1, 2, 0]))
|
|
|
|
|
|
@pytest.fixture
|
|
def data_missing_for_sorting(allow_in_pandas, dtype):
|
|
"""Length-3 array with a known sort order.
|
|
|
|
This should be three items [B, NA, A] with
|
|
A < B and NA missing.
|
|
"""
|
|
if dtype.numpy_dtype == "object":
|
|
return PandasArray(np.array([(1,), np.nan, (0,)], dtype=object))
|
|
return PandasArray(np.array([1, np.nan, 0]))
|
|
|
|
|
|
@pytest.fixture
|
|
def data_for_grouping(allow_in_pandas, dtype):
|
|
"""Data for factorization, grouping, and unique tests.
|
|
|
|
Expected to be like [B, B, NA, NA, A, A, B, C]
|
|
|
|
Where A < B < C and NA is missing
|
|
"""
|
|
if dtype.numpy_dtype == "object":
|
|
a, b, c = (1,), (2,), (3,)
|
|
else:
|
|
a, b, c = np.arange(3)
|
|
return PandasArray(
|
|
np.array([b, b, np.nan, np.nan, a, a, b, c], dtype=dtype.numpy_dtype)
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def skip_numpy_object(dtype):
|
|
"""
|
|
Tests for PandasArray with nested data. Users typically won't create
|
|
these objects via `pd.array`, but they can show up through `.array`
|
|
on a Series with nested data. Many of the base tests fail, as they aren't
|
|
appropriate for nested data.
|
|
|
|
This fixture allows these tests to be skipped when used as a usefixtures
|
|
marker to either an individual test or a test class.
|
|
"""
|
|
if dtype == "object":
|
|
raise pytest.skip("Skipping for object dtype.")
|
|
|
|
|
|
skip_nested = pytest.mark.usefixtures("skip_numpy_object")
|
|
|
|
|
|
class BaseNumPyTests:
|
|
pass
|
|
|
|
|
|
class TestCasting(BaseNumPyTests, base.BaseCastingTests):
|
|
@skip_nested
|
|
def test_astype_str(self, data):
|
|
# ValueError: setting an array element with a sequence
|
|
super().test_astype_str(data)
|
|
|
|
@skip_nested
|
|
def test_astype_string(self, data):
|
|
# GH-33465
|
|
# ValueError: setting an array element with a sequence
|
|
super().test_astype_string(data)
|
|
|
|
|
|
class TestConstructors(BaseNumPyTests, base.BaseConstructorsTests):
|
|
@pytest.mark.skip(reason="We don't register our dtype")
|
|
# We don't want to register. This test should probably be split in two.
|
|
def test_from_dtype(self, data):
|
|
pass
|
|
|
|
@skip_nested
|
|
def test_array_from_scalars(self, data):
|
|
# ValueError: PandasArray must be 1-dimensional.
|
|
super().test_array_from_scalars(data)
|
|
|
|
@skip_nested
|
|
def test_series_constructor_scalar_with_index(self, data, dtype):
|
|
# ValueError: Length of passed values is 1, index implies 3.
|
|
super().test_series_constructor_scalar_with_index(data, dtype)
|
|
|
|
|
|
class TestDtype(BaseNumPyTests, base.BaseDtypeTests):
|
|
@pytest.mark.skip(reason="Incorrect expected.")
|
|
# we unsurprisingly clash with a NumPy name.
|
|
def test_check_dtype(self, data):
|
|
pass
|
|
|
|
|
|
class TestGetitem(BaseNumPyTests, base.BaseGetitemTests):
|
|
@skip_nested
|
|
def test_getitem_scalar(self, data):
|
|
# AssertionError
|
|
super().test_getitem_scalar(data)
|
|
|
|
@skip_nested
|
|
def test_take_series(self, data):
|
|
# ValueError: PandasArray must be 1-dimensional.
|
|
super().test_take_series(data)
|
|
|
|
def test_loc_iloc_frame_single_dtype(self, data, request):
|
|
npdtype = data.dtype.numpy_dtype
|
|
if npdtype == object:
|
|
# GH#33125
|
|
mark = pytest.mark.xfail(
|
|
reason="GH#33125 astype doesn't recognize data.dtype"
|
|
)
|
|
request.node.add_marker(mark)
|
|
super().test_loc_iloc_frame_single_dtype(data)
|
|
|
|
|
|
class TestGroupby(BaseNumPyTests, base.BaseGroupbyTests):
|
|
@skip_nested
|
|
def test_groupby_extension_apply(
|
|
self, data_for_grouping, groupby_apply_op, request
|
|
):
|
|
super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)
|
|
|
|
|
|
class TestInterface(BaseNumPyTests, base.BaseInterfaceTests):
|
|
@skip_nested
|
|
def test_array_interface(self, data):
|
|
# NumPy array shape inference
|
|
super().test_array_interface(data)
|
|
|
|
|
|
class TestMethods(BaseNumPyTests, base.BaseMethodsTests):
|
|
@pytest.mark.skip(reason="TODO: remove?")
|
|
def test_value_counts(self, all_data, dropna):
|
|
pass
|
|
|
|
@pytest.mark.xfail(reason="not working. will be covered by #32028")
|
|
def test_value_counts_with_normalize(self, data):
|
|
return super().test_value_counts_with_normalize(data)
|
|
|
|
@pytest.mark.skip(reason="Incorrect expected")
|
|
# We have a bool dtype, so the result is an ExtensionArray
|
|
# but expected is not
|
|
def test_combine_le(self, data_repeated):
|
|
super().test_combine_le(data_repeated)
|
|
|
|
@skip_nested
|
|
def test_combine_add(self, data_repeated):
|
|
# Not numeric
|
|
super().test_combine_add(data_repeated)
|
|
|
|
@skip_nested
|
|
def test_shift_fill_value(self, data):
|
|
# np.array shape inference. Shift implementation fails.
|
|
super().test_shift_fill_value(data)
|
|
|
|
@skip_nested
|
|
@pytest.mark.parametrize("box", [pd.Series, lambda x: x])
|
|
@pytest.mark.parametrize("method", [lambda x: x.unique(), pd.unique])
|
|
def test_unique(self, data, box, method):
|
|
# Fails creating expected
|
|
super().test_unique(data, box, method)
|
|
|
|
@skip_nested
|
|
def test_fillna_copy_frame(self, data_missing):
|
|
# The "scalar" for this array isn't a scalar.
|
|
super().test_fillna_copy_frame(data_missing)
|
|
|
|
@skip_nested
|
|
def test_fillna_copy_series(self, data_missing):
|
|
# The "scalar" for this array isn't a scalar.
|
|
super().test_fillna_copy_series(data_missing)
|
|
|
|
@skip_nested
|
|
def test_hash_pandas_object_works(self, data, as_frame):
|
|
# ndarray of tuples not hashable
|
|
super().test_hash_pandas_object_works(data, as_frame)
|
|
|
|
@skip_nested
|
|
def test_searchsorted(self, data_for_sorting, as_series):
|
|
# Test setup fails.
|
|
super().test_searchsorted(data_for_sorting, as_series)
|
|
|
|
@skip_nested
|
|
def test_where_series(self, data, na_value, as_frame):
|
|
# Test setup fails.
|
|
super().test_where_series(data, na_value, as_frame)
|
|
|
|
@skip_nested
|
|
@pytest.mark.parametrize("repeats", [0, 1, 2, [1, 2, 3]])
|
|
def test_repeat(self, data, repeats, as_series, use_numpy):
|
|
# Fails creating expected
|
|
super().test_repeat(data, repeats, as_series, use_numpy)
|
|
|
|
@pytest.mark.xfail(reason="PandasArray.diff may fail on dtype")
|
|
def test_diff(self, data, periods):
|
|
return super().test_diff(data, periods)
|
|
|
|
@skip_nested
|
|
@pytest.mark.parametrize("box", [pd.array, pd.Series, pd.DataFrame])
|
|
def test_equals(self, data, na_value, as_series, box):
|
|
# Fails creating with _from_sequence
|
|
super().test_equals(data, na_value, as_series, box)
|
|
|
|
|
|
@skip_nested
|
|
class TestArithmetics(BaseNumPyTests, base.BaseArithmeticOpsTests):
|
|
divmod_exc = None
|
|
series_scalar_exc = None
|
|
frame_scalar_exc = None
|
|
series_array_exc = None
|
|
|
|
def test_divmod_series_array(self, data):
|
|
s = pd.Series(data)
|
|
self._check_divmod_op(s, divmod, data, exc=None)
|
|
|
|
@pytest.mark.skip("We implement ops")
|
|
def test_error(self, data, all_arithmetic_operators):
|
|
pass
|
|
|
|
def test_arith_series_with_scalar(self, data, all_arithmetic_operators):
|
|
super().test_arith_series_with_scalar(data, all_arithmetic_operators)
|
|
|
|
def test_arith_series_with_array(self, data, all_arithmetic_operators):
|
|
super().test_arith_series_with_array(data, all_arithmetic_operators)
|
|
|
|
|
|
class TestPrinting(BaseNumPyTests, base.BasePrintingTests):
|
|
pass
|
|
|
|
|
|
@skip_nested
|
|
class TestNumericReduce(BaseNumPyTests, base.BaseNumericReduceTests):
|
|
def check_reduce(self, s, op_name, skipna):
|
|
result = getattr(s, op_name)(skipna=skipna)
|
|
# avoid coercing int -> float. Just cast to the actual numpy type.
|
|
expected = getattr(s.astype(s.dtype._dtype), op_name)(skipna=skipna)
|
|
tm.assert_almost_equal(result, expected)
|
|
|
|
|
|
@skip_nested
|
|
class TestBooleanReduce(BaseNumPyTests, base.BaseBooleanReduceTests):
|
|
pass
|
|
|
|
|
|
class TestMissing(BaseNumPyTests, base.BaseMissingTests):
|
|
@skip_nested
|
|
def test_fillna_scalar(self, data_missing):
|
|
# Non-scalar "scalar" values.
|
|
super().test_fillna_scalar(data_missing)
|
|
|
|
@skip_nested
|
|
def test_fillna_series_method(self, data_missing, fillna_method):
|
|
# Non-scalar "scalar" values.
|
|
super().test_fillna_series_method(data_missing, fillna_method)
|
|
|
|
@skip_nested
|
|
def test_fillna_series(self, data_missing):
|
|
# Non-scalar "scalar" values.
|
|
super().test_fillna_series(data_missing)
|
|
|
|
@skip_nested
|
|
def test_fillna_frame(self, data_missing):
|
|
# Non-scalar "scalar" values.
|
|
super().test_fillna_frame(data_missing)
|
|
|
|
@pytest.mark.skip("Invalid test")
|
|
def test_fillna_fill_other(self, data):
|
|
# inplace update doesn't work correctly with patched extension arrays
|
|
# extract_array returns PandasArray, while dtype is a numpy dtype
|
|
super().test_fillna_fill_other(data_missing)
|
|
|
|
|
|
class TestReshaping(BaseNumPyTests, base.BaseReshapingTests):
|
|
@pytest.mark.skip("Incorrect parent test")
|
|
# not actually a mixed concat, since we concat int and int.
|
|
def test_concat_mixed_dtypes(self, data):
|
|
super().test_concat_mixed_dtypes(data)
|
|
|
|
@pytest.mark.xfail(
|
|
reason="GH#33125 PandasArray.astype does not recognize PandasDtype"
|
|
)
|
|
def test_concat(self, data, in_frame):
|
|
super().test_concat(data, in_frame)
|
|
|
|
@pytest.mark.xfail(
|
|
reason="GH#33125 PandasArray.astype does not recognize PandasDtype"
|
|
)
|
|
def test_concat_all_na_block(self, data_missing, in_frame):
|
|
super().test_concat_all_na_block(data_missing, in_frame)
|
|
|
|
@skip_nested
|
|
def test_merge(self, data, na_value):
|
|
# Fails creating expected
|
|
super().test_merge(data, na_value)
|
|
|
|
@skip_nested
|
|
def test_merge_on_extension_array(self, data):
|
|
# Fails creating expected
|
|
super().test_merge_on_extension_array(data)
|
|
|
|
@skip_nested
|
|
def test_merge_on_extension_array_duplicates(self, data):
|
|
# Fails creating expected
|
|
super().test_merge_on_extension_array_duplicates(data)
|
|
|
|
@skip_nested
|
|
def test_transpose_frame(self, data):
|
|
super().test_transpose_frame(data)
|
|
|
|
|
|
class TestSetitem(BaseNumPyTests, base.BaseSetitemTests):
|
|
@skip_nested
|
|
def test_setitem_scalar_series(self, data, box_in_series):
|
|
# AssertionError
|
|
super().test_setitem_scalar_series(data, box_in_series)
|
|
|
|
@skip_nested
|
|
def test_setitem_sequence(self, data, box_in_series):
|
|
# ValueError: shape mismatch: value array of shape (2,1) could not
|
|
# be broadcast to indexing result of shape (2,)
|
|
super().test_setitem_sequence(data, box_in_series)
|
|
|
|
@skip_nested
|
|
def test_setitem_sequence_mismatched_length_raises(self, data, as_array):
|
|
# ValueError: PandasArray must be 1-dimensional.
|
|
super().test_setitem_sequence_mismatched_length_raises(data, as_array)
|
|
|
|
@skip_nested
|
|
def test_setitem_sequence_broadcasts(self, data, box_in_series):
|
|
# ValueError: cannot set using a list-like indexer with a different
|
|
# length than the value
|
|
super().test_setitem_sequence_broadcasts(data, box_in_series)
|
|
|
|
@skip_nested
|
|
def test_setitem_loc_scalar_mixed(self, data):
|
|
# AssertionError
|
|
super().test_setitem_loc_scalar_mixed(data)
|
|
|
|
@skip_nested
|
|
def test_setitem_loc_scalar_multiple_homogoneous(self, data):
|
|
# AssertionError
|
|
super().test_setitem_loc_scalar_multiple_homogoneous(data)
|
|
|
|
@skip_nested
|
|
def test_setitem_iloc_scalar_mixed(self, data):
|
|
# AssertionError
|
|
super().test_setitem_iloc_scalar_mixed(data)
|
|
|
|
@skip_nested
|
|
def test_setitem_iloc_scalar_multiple_homogoneous(self, data):
|
|
# AssertionError
|
|
super().test_setitem_iloc_scalar_multiple_homogoneous(data)
|
|
|
|
@skip_nested
|
|
@pytest.mark.parametrize("setter", ["loc", None])
|
|
def test_setitem_mask_broadcast(self, data, setter):
|
|
# ValueError: cannot set using a list-like indexer with a different
|
|
# length than the value
|
|
super().test_setitem_mask_broadcast(data, setter)
|
|
|
|
@skip_nested
|
|
def test_setitem_scalar_key_sequence_raise(self, data):
|
|
# Failed: DID NOT RAISE <class 'ValueError'>
|
|
super().test_setitem_scalar_key_sequence_raise(data)
|
|
|
|
# TODO: there is some issue with PandasArray, therefore,
|
|
# skip the setitem test for now, and fix it later (GH 31446)
|
|
|
|
@skip_nested
|
|
@pytest.mark.parametrize(
|
|
"mask",
|
|
[
|
|
np.array([True, True, True, False, False]),
|
|
pd.array([True, True, True, False, False], dtype="boolean"),
|
|
],
|
|
ids=["numpy-array", "boolean-array"],
|
|
)
|
|
def test_setitem_mask(self, data, mask, box_in_series):
|
|
super().test_setitem_mask(data, mask, box_in_series)
|
|
|
|
@skip_nested
|
|
def test_setitem_mask_raises(self, data, box_in_series):
|
|
super().test_setitem_mask_raises(data, box_in_series)
|
|
|
|
@skip_nested
|
|
@pytest.mark.parametrize(
|
|
"idx",
|
|
[[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])],
|
|
ids=["list", "integer-array", "numpy-array"],
|
|
)
|
|
def test_setitem_integer_array(self, data, idx, box_in_series):
|
|
super().test_setitem_integer_array(data, idx, box_in_series)
|
|
|
|
@skip_nested
|
|
@pytest.mark.parametrize(
|
|
"idx, box_in_series",
|
|
[
|
|
([0, 1, 2, pd.NA], False),
|
|
pytest.param([0, 1, 2, pd.NA], True, marks=pytest.mark.xfail),
|
|
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
|
|
(pd.array([0, 1, 2, pd.NA], dtype="Int64"), False),
|
|
],
|
|
ids=["list-False", "list-True", "integer-array-False", "integer-array-True"],
|
|
)
|
|
def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series):
|
|
super().test_setitem_integer_with_missing_raises(data, idx, box_in_series)
|
|
|
|
@skip_nested
|
|
def test_setitem_slice(self, data, box_in_series):
|
|
super().test_setitem_slice(data, box_in_series)
|
|
|
|
@skip_nested
|
|
def test_setitem_loc_iloc_slice(self, data):
|
|
super().test_setitem_loc_iloc_slice(data)
|
|
|
|
|
|
@skip_nested
|
|
class TestParsing(BaseNumPyTests, base.BaseParsingTests):
|
|
pass
|