craftbeerpi4-pione/venv/lib/python3.8/site-packages/pandas/util/_doctools.py

193 lines
6.5 KiB
Python

from typing import Optional, Tuple
import numpy as np
import pandas as pd
class TablePlotter:
"""
Layout some DataFrames in vertical/horizontal layout for explanation.
Used in merging.rst
"""
def __init__(
self,
cell_width: float = 0.37,
cell_height: float = 0.25,
font_size: float = 7.5,
):
self.cell_width = cell_width
self.cell_height = cell_height
self.font_size = font_size
def _shape(self, df: pd.DataFrame) -> Tuple[int, int]:
"""
Calculate table shape considering index levels.
"""
row, col = df.shape
return row + df.columns.nlevels, col + df.index.nlevels
def _get_cells(self, left, right, vertical) -> Tuple[int, int]:
"""
Calculate appropriate figure size based on left and right data.
"""
if vertical:
# calculate required number of cells
vcells = max(sum(self._shape(df)[0] for df in left), self._shape(right)[0])
hcells = max(self._shape(df)[1] for df in left) + self._shape(right)[1]
else:
vcells = max([self._shape(df)[0] for df in left] + [self._shape(right)[0]])
hcells = sum([self._shape(df)[1] for df in left] + [self._shape(right)[1]])
return hcells, vcells
def plot(self, left, right, labels=None, vertical: bool = True):
"""
Plot left / right DataFrames in specified layout.
Parameters
----------
left : list of DataFrames before operation is applied
right : DataFrame of operation result
labels : list of str to be drawn as titles of left DataFrames
vertical : bool, default True
If True, use vertical layout. If False, use horizontal layout.
"""
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
if not isinstance(left, list):
left = [left]
left = [self._conv(df) for df in left]
right = self._conv(right)
hcells, vcells = self._get_cells(left, right, vertical)
if vertical:
figsize = self.cell_width * hcells, self.cell_height * vcells
else:
# include margin for titles
figsize = self.cell_width * hcells, self.cell_height * vcells
fig = plt.figure(figsize=figsize)
if vertical:
gs = gridspec.GridSpec(len(left), hcells)
# left
max_left_cols = max(self._shape(df)[1] for df in left)
max_left_rows = max(self._shape(df)[0] for df in left)
for i, (l, label) in enumerate(zip(left, labels)):
ax = fig.add_subplot(gs[i, 0:max_left_cols])
self._make_table(ax, l, title=label, height=1.0 / max_left_rows)
# right
ax = plt.subplot(gs[:, max_left_cols:])
self._make_table(ax, right, title="Result", height=1.05 / vcells)
fig.subplots_adjust(top=0.9, bottom=0.05, left=0.05, right=0.95)
else:
max_rows = max(self._shape(df)[0] for df in left + [right])
height = 1.0 / np.max(max_rows)
gs = gridspec.GridSpec(1, hcells)
# left
i = 0
for df, label in zip(left, labels):
sp = self._shape(df)
ax = fig.add_subplot(gs[0, i : i + sp[1]])
self._make_table(ax, df, title=label, height=height)
i += sp[1]
# right
ax = plt.subplot(gs[0, i:])
self._make_table(ax, right, title="Result", height=height)
fig.subplots_adjust(top=0.85, bottom=0.05, left=0.05, right=0.95)
return fig
def _conv(self, data):
"""
Convert each input to appropriate for table outplot.
"""
if isinstance(data, pd.Series):
if data.name is None:
data = data.to_frame(name="")
else:
data = data.to_frame()
data = data.fillna("NaN")
return data
def _insert_index(self, data):
# insert is destructive
data = data.copy()
idx_nlevels = data.index.nlevels
if idx_nlevels == 1:
data.insert(0, "Index", data.index)
else:
for i in range(idx_nlevels):
data.insert(i, f"Index{i}", data.index._get_level_values(i))
col_nlevels = data.columns.nlevels
if col_nlevels > 1:
col = data.columns._get_level_values(0)
values = [
data.columns._get_level_values(i)._values for i in range(1, col_nlevels)
]
col_df = pd.DataFrame(values)
data.columns = col_df.columns
data = pd.concat([col_df, data])
data.columns = col
return data
def _make_table(self, ax, df, title: str, height: Optional[float] = None):
if df is None:
ax.set_visible(False)
return
import pandas.plotting as plotting
idx_nlevels = df.index.nlevels
col_nlevels = df.columns.nlevels
# must be convert here to get index levels for colorization
df = self._insert_index(df)
tb = plotting.table(ax, df, loc=9)
tb.set_fontsize(self.font_size)
if height is None:
height = 1.0 / (len(df) + 1)
props = tb.properties()
for (r, c), cell in props["celld"].items():
if c == -1:
cell.set_visible(False)
elif r < col_nlevels and c < idx_nlevels:
cell.set_visible(False)
elif r < col_nlevels or c < idx_nlevels:
cell.set_facecolor("#AAAAAA")
cell.set_height(height)
ax.set_title(title, size=self.font_size)
ax.axis("off")
if __name__ == "__main__":
import matplotlib.pyplot as plt
p = TablePlotter()
df1 = pd.DataFrame({"A": [10, 11, 12], "B": [20, 21, 22], "C": [30, 31, 32]})
df2 = pd.DataFrame({"A": [10, 12], "C": [30, 32]})
p.plot([df1, df2], pd.concat([df1, df2]), labels=["df1", "df2"], vertical=True)
plt.show()
df3 = pd.DataFrame({"X": [10, 12], "Z": [30, 32]})
p.plot(
[df1, df3], pd.concat([df1, df3], axis=1), labels=["df1", "df2"], vertical=False
)
plt.show()
idx = pd.MultiIndex.from_tuples(
[(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")]
)
col = pd.MultiIndex.from_tuples([(1, "A"), (1, "B")])
df3 = pd.DataFrame({"v1": [1, 2, 3, 4, 5, 6], "v2": [5, 6, 7, 8, 9, 10]}, index=idx)
df3.columns = col
p.plot(df3, df3, labels=["df3"])
plt.show()