mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-23 04:46:11 +01:00
994 lines
34 KiB
Python
994 lines
34 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Copyright (c) 2006-2011, 2013-2014 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
|
|
# Copyright (c) 2012 FELD Boris <lothiraldan@gmail.com>
|
|
# Copyright (c) 2013-2014 Google, Inc.
|
|
# Copyright (c) 2014-2020 Claudiu Popa <pcmanticore@gmail.com>
|
|
# Copyright (c) 2014 Eevee (Alex Munroe) <amunroe@yelp.com>
|
|
# Copyright (c) 2015-2016 Ceridwen <ceridwenv@gmail.com>
|
|
# Copyright (c) 2015 Dmitry Pribysh <dmand@yandex.ru>
|
|
# Copyright (c) 2016 Jakub Wilk <jwilk@jwilk.net>
|
|
# Copyright (c) 2017 Michał Masłowski <m.maslowski@clearcode.cc>
|
|
# Copyright (c) 2017 Calen Pennington <cale@edx.org>
|
|
# Copyright (c) 2017 Łukasz Rogalski <rogalski.91@gmail.com>
|
|
# Copyright (c) 2018-2019 Nick Drozd <nicholasdrozd@gmail.com>
|
|
# Copyright (c) 2018 Daniel Martin <daniel.martin@crowdstrike.com>
|
|
# Copyright (c) 2018 Ville Skyttä <ville.skytta@iki.fi>
|
|
# Copyright (c) 2018 Bryce Guinta <bryce.paul.guinta@gmail.com>
|
|
# Copyright (c) 2018 Ashley Whetter <ashley@awhetter.co.uk>
|
|
# Copyright (c) 2018 HoverHell <hoverhell@gmail.com>
|
|
# Copyright (c) 2020 Leandro T. C. Melo <ltcmelo@gmail.com>
|
|
|
|
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
|
|
# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
|
|
|
|
"""this module contains a set of functions to handle inference on astroid trees
|
|
"""
|
|
|
|
import functools
|
|
import itertools
|
|
import operator
|
|
|
|
import wrapt
|
|
from astroid import bases
|
|
from astroid import context as contextmod
|
|
from astroid import exceptions
|
|
from astroid import decorators
|
|
from astroid import helpers
|
|
from astroid import manager
|
|
from astroid import nodes
|
|
from astroid.interpreter import dunder_lookup
|
|
from astroid import protocols
|
|
from astroid import util
|
|
|
|
|
|
MANAGER = manager.AstroidManager()
|
|
# Prevents circular imports
|
|
objects = util.lazy_import("objects")
|
|
|
|
|
|
# .infer method ###############################################################
|
|
|
|
|
|
def infer_end(self, context=None):
|
|
"""Inference's end for nodes that yield themselves on inference
|
|
|
|
These are objects for which inference does not have any semantic,
|
|
such as Module or Consts.
|
|
"""
|
|
yield self
|
|
|
|
|
|
nodes.Module._infer = infer_end
|
|
nodes.ClassDef._infer = infer_end
|
|
nodes.Lambda._infer = infer_end
|
|
nodes.Const._infer = infer_end
|
|
nodes.Slice._infer = infer_end
|
|
|
|
|
|
def _infer_sequence_helper(node, context=None):
|
|
"""Infer all values based on _BaseContainer.elts"""
|
|
values = []
|
|
|
|
for elt in node.elts:
|
|
if isinstance(elt, nodes.Starred):
|
|
starred = helpers.safe_infer(elt.value, context)
|
|
if not starred:
|
|
raise exceptions.InferenceError(node=node, context=context)
|
|
if not hasattr(starred, "elts"):
|
|
raise exceptions.InferenceError(node=node, context=context)
|
|
values.extend(_infer_sequence_helper(starred))
|
|
elif isinstance(elt, nodes.NamedExpr):
|
|
value = helpers.safe_infer(elt.value, context)
|
|
if not value:
|
|
raise exceptions.InferenceError(node=node, context=context)
|
|
values.append(value)
|
|
else:
|
|
values.append(elt)
|
|
return values
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
def infer_sequence(self, context=None):
|
|
has_starred_named_expr = any(
|
|
isinstance(e, (nodes.Starred, nodes.NamedExpr)) for e in self.elts
|
|
)
|
|
if has_starred_named_expr:
|
|
values = _infer_sequence_helper(self, context)
|
|
new_seq = type(self)(
|
|
lineno=self.lineno, col_offset=self.col_offset, parent=self.parent
|
|
)
|
|
new_seq.postinit(values)
|
|
|
|
yield new_seq
|
|
else:
|
|
yield self
|
|
|
|
|
|
nodes.List._infer = infer_sequence
|
|
nodes.Tuple._infer = infer_sequence
|
|
nodes.Set._infer = infer_sequence
|
|
|
|
|
|
def infer_map(self, context=None):
|
|
if not any(isinstance(k, nodes.DictUnpack) for k, _ in self.items):
|
|
yield self
|
|
else:
|
|
items = _infer_map(self, context)
|
|
new_seq = type(self)(self.lineno, self.col_offset, self.parent)
|
|
new_seq.postinit(list(items.items()))
|
|
yield new_seq
|
|
|
|
|
|
def _update_with_replacement(lhs_dict, rhs_dict):
|
|
"""Delete nodes that equate to duplicate keys
|
|
|
|
Since an astroid node doesn't 'equal' another node with the same value,
|
|
this function uses the as_string method to make sure duplicate keys
|
|
don't get through
|
|
|
|
Note that both the key and the value are astroid nodes
|
|
|
|
Fixes issue with DictUnpack causing duplicte keys
|
|
in inferred Dict items
|
|
|
|
:param dict(nodes.NodeNG, nodes.NodeNG) lhs_dict: Dictionary to 'merge' nodes into
|
|
:param dict(nodes.NodeNG, nodes.NodeNG) rhs_dict: Dictionary with nodes to pull from
|
|
:return dict(nodes.NodeNG, nodes.NodeNG): merged dictionary of nodes
|
|
"""
|
|
combined_dict = itertools.chain(lhs_dict.items(), rhs_dict.items())
|
|
# Overwrite keys which have the same string values
|
|
string_map = {key.as_string(): (key, value) for key, value in combined_dict}
|
|
# Return to dictionary
|
|
return dict(string_map.values())
|
|
|
|
|
|
def _infer_map(node, context):
|
|
"""Infer all values based on Dict.items"""
|
|
values = {}
|
|
for name, value in node.items:
|
|
if isinstance(name, nodes.DictUnpack):
|
|
double_starred = helpers.safe_infer(value, context)
|
|
if not double_starred:
|
|
raise exceptions.InferenceError
|
|
if not isinstance(double_starred, nodes.Dict):
|
|
raise exceptions.InferenceError(node=node, context=context)
|
|
unpack_items = _infer_map(double_starred, context)
|
|
values = _update_with_replacement(values, unpack_items)
|
|
else:
|
|
key = helpers.safe_infer(name, context=context)
|
|
value = helpers.safe_infer(value, context=context)
|
|
if any(not elem for elem in (key, value)):
|
|
raise exceptions.InferenceError(node=node, context=context)
|
|
values = _update_with_replacement(values, {key: value})
|
|
return values
|
|
|
|
|
|
nodes.Dict._infer = infer_map
|
|
|
|
|
|
def _higher_function_scope(node):
|
|
""" Search for the first function which encloses the given
|
|
scope. This can be used for looking up in that function's
|
|
scope, in case looking up in a lower scope for a particular
|
|
name fails.
|
|
|
|
:param node: A scope node.
|
|
:returns:
|
|
``None``, if no parent function scope was found,
|
|
otherwise an instance of :class:`astroid.scoped_nodes.Function`,
|
|
which encloses the given node.
|
|
"""
|
|
current = node
|
|
while current.parent and not isinstance(current.parent, nodes.FunctionDef):
|
|
current = current.parent
|
|
if current and current.parent:
|
|
return current.parent
|
|
return None
|
|
|
|
|
|
def infer_name(self, context=None):
|
|
"""infer a Name: use name lookup rules"""
|
|
frame, stmts = self.lookup(self.name)
|
|
if not stmts:
|
|
# Try to see if the name is enclosed in a nested function
|
|
# and use the higher (first function) scope for searching.
|
|
parent_function = _higher_function_scope(self.scope())
|
|
if parent_function:
|
|
_, stmts = parent_function.lookup(self.name)
|
|
|
|
if not stmts:
|
|
raise exceptions.NameInferenceError(
|
|
name=self.name, scope=self.scope(), context=context
|
|
)
|
|
context = contextmod.copy_context(context)
|
|
context.lookupname = self.name
|
|
return bases._infer_stmts(stmts, context, frame)
|
|
|
|
|
|
# pylint: disable=no-value-for-parameter
|
|
nodes.Name._infer = decorators.raise_if_nothing_inferred(
|
|
decorators.path_wrapper(infer_name)
|
|
)
|
|
nodes.AssignName.infer_lhs = infer_name # won't work with a path wrapper
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_call(self, context=None):
|
|
"""infer a Call node by trying to guess what the function returns"""
|
|
callcontext = contextmod.copy_context(context)
|
|
callcontext.callcontext = contextmod.CallContext(
|
|
args=self.args, keywords=self.keywords
|
|
)
|
|
callcontext.boundnode = None
|
|
if context is not None:
|
|
callcontext.extra_context = _populate_context_lookup(self, context.clone())
|
|
|
|
for callee in self.func.infer(context):
|
|
if callee is util.Uninferable:
|
|
yield callee
|
|
continue
|
|
try:
|
|
if hasattr(callee, "infer_call_result"):
|
|
yield from callee.infer_call_result(caller=self, context=callcontext)
|
|
except exceptions.InferenceError:
|
|
continue
|
|
return dict(node=self, context=context)
|
|
|
|
|
|
nodes.Call._infer = infer_call
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_import(self, context=None, asname=True):
|
|
"""infer an Import node: return the imported module/object"""
|
|
name = context.lookupname
|
|
if name is None:
|
|
raise exceptions.InferenceError(node=self, context=context)
|
|
|
|
try:
|
|
if asname:
|
|
yield self.do_import_module(self.real_name(name))
|
|
else:
|
|
yield self.do_import_module(name)
|
|
except exceptions.AstroidBuildingError as exc:
|
|
raise exceptions.InferenceError(node=self, context=context) from exc
|
|
|
|
|
|
nodes.Import._infer = infer_import
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_import_from(self, context=None, asname=True):
|
|
"""infer a ImportFrom node: return the imported module/object"""
|
|
name = context.lookupname
|
|
if name is None:
|
|
raise exceptions.InferenceError(node=self, context=context)
|
|
if asname:
|
|
name = self.real_name(name)
|
|
|
|
try:
|
|
module = self.do_import_module()
|
|
except exceptions.AstroidBuildingError as exc:
|
|
raise exceptions.InferenceError(node=self, context=context) from exc
|
|
|
|
try:
|
|
context = contextmod.copy_context(context)
|
|
context.lookupname = name
|
|
stmts = module.getattr(name, ignore_locals=module is self.root())
|
|
return bases._infer_stmts(stmts, context)
|
|
except exceptions.AttributeInferenceError as error:
|
|
raise exceptions.InferenceError(
|
|
error.message, target=self, attribute=name, context=context
|
|
) from error
|
|
|
|
|
|
nodes.ImportFrom._infer = infer_import_from
|
|
|
|
|
|
def infer_attribute(self, context=None):
|
|
"""infer an Attribute node by using getattr on the associated object"""
|
|
for owner in self.expr.infer(context):
|
|
if owner is util.Uninferable:
|
|
yield owner
|
|
continue
|
|
|
|
if context and context.boundnode:
|
|
# This handles the situation where the attribute is accessed through a subclass
|
|
# of a base class and the attribute is defined at the base class's level,
|
|
# by taking in consideration a redefinition in the subclass.
|
|
if isinstance(owner, bases.Instance) and isinstance(
|
|
context.boundnode, bases.Instance
|
|
):
|
|
try:
|
|
if helpers.is_subtype(
|
|
helpers.object_type(context.boundnode),
|
|
helpers.object_type(owner),
|
|
):
|
|
owner = context.boundnode
|
|
except exceptions._NonDeducibleTypeHierarchy:
|
|
# Can't determine anything useful.
|
|
pass
|
|
elif not context:
|
|
context = contextmod.InferenceContext()
|
|
|
|
try:
|
|
context.boundnode = owner
|
|
yield from owner.igetattr(self.attrname, context)
|
|
except (
|
|
exceptions.AttributeInferenceError,
|
|
exceptions.InferenceError,
|
|
AttributeError,
|
|
):
|
|
pass
|
|
finally:
|
|
context.boundnode = None
|
|
return dict(node=self, context=context)
|
|
|
|
|
|
nodes.Attribute._infer = decorators.raise_if_nothing_inferred(
|
|
decorators.path_wrapper(infer_attribute)
|
|
)
|
|
# won't work with a path wrapper
|
|
nodes.AssignAttr.infer_lhs = decorators.raise_if_nothing_inferred(infer_attribute)
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_global(self, context=None):
|
|
if context.lookupname is None:
|
|
raise exceptions.InferenceError(node=self, context=context)
|
|
try:
|
|
return bases._infer_stmts(self.root().getattr(context.lookupname), context)
|
|
except exceptions.AttributeInferenceError as error:
|
|
raise exceptions.InferenceError(
|
|
error.message, target=self, attribute=context.lookupname, context=context
|
|
) from error
|
|
|
|
|
|
nodes.Global._infer = infer_global
|
|
|
|
|
|
_SUBSCRIPT_SENTINEL = object()
|
|
|
|
|
|
def infer_subscript(self, context=None):
|
|
"""Inference for subscripts
|
|
|
|
We're understanding if the index is a Const
|
|
or a slice, passing the result of inference
|
|
to the value's `getitem` method, which should
|
|
handle each supported index type accordingly.
|
|
"""
|
|
|
|
found_one = False
|
|
for value in self.value.infer(context):
|
|
if value is util.Uninferable:
|
|
yield util.Uninferable
|
|
return None
|
|
for index in self.slice.infer(context):
|
|
if index is util.Uninferable:
|
|
yield util.Uninferable
|
|
return None
|
|
|
|
# Try to deduce the index value.
|
|
index_value = _SUBSCRIPT_SENTINEL
|
|
if value.__class__ == bases.Instance:
|
|
index_value = index
|
|
elif index.__class__ == bases.Instance:
|
|
instance_as_index = helpers.class_instance_as_index(index)
|
|
if instance_as_index:
|
|
index_value = instance_as_index
|
|
else:
|
|
index_value = index
|
|
|
|
if index_value is _SUBSCRIPT_SENTINEL:
|
|
raise exceptions.InferenceError(node=self, context=context)
|
|
|
|
try:
|
|
assigned = value.getitem(index_value, context)
|
|
except (
|
|
exceptions.AstroidTypeError,
|
|
exceptions.AstroidIndexError,
|
|
exceptions.AttributeInferenceError,
|
|
AttributeError,
|
|
) as exc:
|
|
raise exceptions.InferenceError(node=self, context=context) from exc
|
|
|
|
# Prevent inferring if the inferred subscript
|
|
# is the same as the original subscripted object.
|
|
if self is assigned or assigned is util.Uninferable:
|
|
yield util.Uninferable
|
|
return None
|
|
yield from assigned.infer(context)
|
|
found_one = True
|
|
|
|
if found_one:
|
|
return dict(node=self, context=context)
|
|
return None
|
|
|
|
|
|
nodes.Subscript._infer = decorators.raise_if_nothing_inferred(
|
|
decorators.path_wrapper(infer_subscript)
|
|
)
|
|
nodes.Subscript.infer_lhs = decorators.raise_if_nothing_inferred(infer_subscript)
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def _infer_boolop(self, context=None):
|
|
"""Infer a boolean operation (and / or / not).
|
|
|
|
The function will calculate the boolean operation
|
|
for all pairs generated through inference for each component
|
|
node.
|
|
"""
|
|
values = self.values
|
|
if self.op == "or":
|
|
predicate = operator.truth
|
|
else:
|
|
predicate = operator.not_
|
|
|
|
try:
|
|
values = [value.infer(context=context) for value in values]
|
|
except exceptions.InferenceError:
|
|
yield util.Uninferable
|
|
return None
|
|
|
|
for pair in itertools.product(*values):
|
|
if any(item is util.Uninferable for item in pair):
|
|
# Can't infer the final result, just yield Uninferable.
|
|
yield util.Uninferable
|
|
continue
|
|
|
|
bool_values = [item.bool_value() for item in pair]
|
|
if any(item is util.Uninferable for item in bool_values):
|
|
# Can't infer the final result, just yield Uninferable.
|
|
yield util.Uninferable
|
|
continue
|
|
|
|
# Since the boolean operations are short circuited operations,
|
|
# this code yields the first value for which the predicate is True
|
|
# and if no value respected the predicate, then the last value will
|
|
# be returned (or Uninferable if there was no last value).
|
|
# This is conforming to the semantics of `and` and `or`:
|
|
# 1 and 0 -> 1
|
|
# 0 and 1 -> 0
|
|
# 1 or 0 -> 1
|
|
# 0 or 1 -> 1
|
|
value = util.Uninferable
|
|
for value, bool_value in zip(pair, bool_values):
|
|
if predicate(bool_value):
|
|
yield value
|
|
break
|
|
else:
|
|
yield value
|
|
|
|
return dict(node=self, context=context)
|
|
|
|
|
|
nodes.BoolOp._infer = _infer_boolop
|
|
|
|
|
|
# UnaryOp, BinOp and AugAssign inferences
|
|
|
|
|
|
def _filter_operation_errors(self, infer_callable, context, error):
|
|
for result in infer_callable(self, context):
|
|
if isinstance(result, error):
|
|
# For the sake of .infer(), we don't care about operation
|
|
# errors, which is the job of pylint. So return something
|
|
# which shows that we can't infer the result.
|
|
yield util.Uninferable
|
|
else:
|
|
yield result
|
|
|
|
|
|
def _infer_unaryop(self, context=None):
|
|
"""Infer what an UnaryOp should return when evaluated."""
|
|
for operand in self.operand.infer(context):
|
|
try:
|
|
yield operand.infer_unary_op(self.op)
|
|
except TypeError as exc:
|
|
# The operand doesn't support this operation.
|
|
yield util.BadUnaryOperationMessage(operand, self.op, exc)
|
|
except AttributeError as exc:
|
|
meth = protocols.UNARY_OP_METHOD[self.op]
|
|
if meth is None:
|
|
# `not node`. Determine node's boolean
|
|
# value and negate its result, unless it is
|
|
# Uninferable, which will be returned as is.
|
|
bool_value = operand.bool_value()
|
|
if bool_value is not util.Uninferable:
|
|
yield nodes.const_factory(not bool_value)
|
|
else:
|
|
yield util.Uninferable
|
|
else:
|
|
if not isinstance(operand, (bases.Instance, nodes.ClassDef)):
|
|
# The operation was used on something which
|
|
# doesn't support it.
|
|
yield util.BadUnaryOperationMessage(operand, self.op, exc)
|
|
continue
|
|
|
|
try:
|
|
try:
|
|
methods = dunder_lookup.lookup(operand, meth)
|
|
except exceptions.AttributeInferenceError:
|
|
yield util.BadUnaryOperationMessage(operand, self.op, exc)
|
|
continue
|
|
|
|
meth = methods[0]
|
|
inferred = next(meth.infer(context=context))
|
|
if inferred is util.Uninferable or not inferred.callable():
|
|
continue
|
|
|
|
context = contextmod.copy_context(context)
|
|
context.callcontext = contextmod.CallContext(args=[operand])
|
|
call_results = inferred.infer_call_result(self, context=context)
|
|
result = next(call_results, None)
|
|
if result is None:
|
|
# Failed to infer, return the same type.
|
|
yield operand
|
|
else:
|
|
yield result
|
|
except exceptions.AttributeInferenceError as exc:
|
|
# The unary operation special method was not found.
|
|
yield util.BadUnaryOperationMessage(operand, self.op, exc)
|
|
except exceptions.InferenceError:
|
|
yield util.Uninferable
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_unaryop(self, context=None):
|
|
"""Infer what an UnaryOp should return when evaluated."""
|
|
yield from _filter_operation_errors(
|
|
self, _infer_unaryop, context, util.BadUnaryOperationMessage
|
|
)
|
|
return dict(node=self, context=context)
|
|
|
|
|
|
nodes.UnaryOp._infer_unaryop = _infer_unaryop
|
|
nodes.UnaryOp._infer = infer_unaryop
|
|
|
|
|
|
def _is_not_implemented(const):
|
|
"""Check if the given const node is NotImplemented."""
|
|
return isinstance(const, nodes.Const) and const.value is NotImplemented
|
|
|
|
|
|
def _invoke_binop_inference(instance, opnode, op, other, context, method_name):
|
|
"""Invoke binary operation inference on the given instance."""
|
|
methods = dunder_lookup.lookup(instance, method_name)
|
|
context = contextmod.bind_context_to_node(context, instance)
|
|
method = methods[0]
|
|
inferred = next(method.infer(context=context))
|
|
if inferred is util.Uninferable:
|
|
raise exceptions.InferenceError
|
|
return instance.infer_binary_op(opnode, op, other, context, inferred)
|
|
|
|
|
|
def _aug_op(instance, opnode, op, other, context, reverse=False):
|
|
"""Get an inference callable for an augmented binary operation."""
|
|
method_name = protocols.AUGMENTED_OP_METHOD[op]
|
|
return functools.partial(
|
|
_invoke_binop_inference,
|
|
instance=instance,
|
|
op=op,
|
|
opnode=opnode,
|
|
other=other,
|
|
context=context,
|
|
method_name=method_name,
|
|
)
|
|
|
|
|
|
def _bin_op(instance, opnode, op, other, context, reverse=False):
|
|
"""Get an inference callable for a normal binary operation.
|
|
|
|
If *reverse* is True, then the reflected method will be used instead.
|
|
"""
|
|
if reverse:
|
|
method_name = protocols.REFLECTED_BIN_OP_METHOD[op]
|
|
else:
|
|
method_name = protocols.BIN_OP_METHOD[op]
|
|
return functools.partial(
|
|
_invoke_binop_inference,
|
|
instance=instance,
|
|
op=op,
|
|
opnode=opnode,
|
|
other=other,
|
|
context=context,
|
|
method_name=method_name,
|
|
)
|
|
|
|
|
|
def _get_binop_contexts(context, left, right):
|
|
"""Get contexts for binary operations.
|
|
|
|
This will return two inference contexts, the first one
|
|
for x.__op__(y), the other one for y.__rop__(x), where
|
|
only the arguments are inversed.
|
|
"""
|
|
# The order is important, since the first one should be
|
|
# left.__op__(right).
|
|
for arg in (right, left):
|
|
new_context = context.clone()
|
|
new_context.callcontext = contextmod.CallContext(args=[arg])
|
|
new_context.boundnode = None
|
|
yield new_context
|
|
|
|
|
|
def _same_type(type1, type2):
|
|
"""Check if type1 is the same as type2."""
|
|
return type1.qname() == type2.qname()
|
|
|
|
|
|
def _get_binop_flow(
|
|
left, left_type, binary_opnode, right, right_type, context, reverse_context
|
|
):
|
|
"""Get the flow for binary operations.
|
|
|
|
The rules are a bit messy:
|
|
|
|
* if left and right have the same type, then only one
|
|
method will be called, left.__op__(right)
|
|
* if left and right are unrelated typewise, then first
|
|
left.__op__(right) is tried and if this does not exist
|
|
or returns NotImplemented, then right.__rop__(left) is tried.
|
|
* if left is a subtype of right, then only left.__op__(right)
|
|
is tried.
|
|
* if left is a supertype of right, then right.__rop__(left)
|
|
is first tried and then left.__op__(right)
|
|
"""
|
|
op = binary_opnode.op
|
|
if _same_type(left_type, right_type):
|
|
methods = [_bin_op(left, binary_opnode, op, right, context)]
|
|
elif helpers.is_subtype(left_type, right_type):
|
|
methods = [_bin_op(left, binary_opnode, op, right, context)]
|
|
elif helpers.is_supertype(left_type, right_type):
|
|
methods = [
|
|
_bin_op(right, binary_opnode, op, left, reverse_context, reverse=True),
|
|
_bin_op(left, binary_opnode, op, right, context),
|
|
]
|
|
else:
|
|
methods = [
|
|
_bin_op(left, binary_opnode, op, right, context),
|
|
_bin_op(right, binary_opnode, op, left, reverse_context, reverse=True),
|
|
]
|
|
return methods
|
|
|
|
|
|
def _get_aug_flow(
|
|
left, left_type, aug_opnode, right, right_type, context, reverse_context
|
|
):
|
|
"""Get the flow for augmented binary operations.
|
|
|
|
The rules are a bit messy:
|
|
|
|
* if left and right have the same type, then left.__augop__(right)
|
|
is first tried and then left.__op__(right).
|
|
* if left and right are unrelated typewise, then
|
|
left.__augop__(right) is tried, then left.__op__(right)
|
|
is tried and then right.__rop__(left) is tried.
|
|
* if left is a subtype of right, then left.__augop__(right)
|
|
is tried and then left.__op__(right).
|
|
* if left is a supertype of right, then left.__augop__(right)
|
|
is tried, then right.__rop__(left) and then
|
|
left.__op__(right)
|
|
"""
|
|
bin_op = aug_opnode.op.strip("=")
|
|
aug_op = aug_opnode.op
|
|
if _same_type(left_type, right_type):
|
|
methods = [
|
|
_aug_op(left, aug_opnode, aug_op, right, context),
|
|
_bin_op(left, aug_opnode, bin_op, right, context),
|
|
]
|
|
elif helpers.is_subtype(left_type, right_type):
|
|
methods = [
|
|
_aug_op(left, aug_opnode, aug_op, right, context),
|
|
_bin_op(left, aug_opnode, bin_op, right, context),
|
|
]
|
|
elif helpers.is_supertype(left_type, right_type):
|
|
methods = [
|
|
_aug_op(left, aug_opnode, aug_op, right, context),
|
|
_bin_op(right, aug_opnode, bin_op, left, reverse_context, reverse=True),
|
|
_bin_op(left, aug_opnode, bin_op, right, context),
|
|
]
|
|
else:
|
|
methods = [
|
|
_aug_op(left, aug_opnode, aug_op, right, context),
|
|
_bin_op(left, aug_opnode, bin_op, right, context),
|
|
_bin_op(right, aug_opnode, bin_op, left, reverse_context, reverse=True),
|
|
]
|
|
return methods
|
|
|
|
|
|
def _infer_binary_operation(left, right, binary_opnode, context, flow_factory):
|
|
"""Infer a binary operation between a left operand and a right operand
|
|
|
|
This is used by both normal binary operations and augmented binary
|
|
operations, the only difference is the flow factory used.
|
|
"""
|
|
|
|
context, reverse_context = _get_binop_contexts(context, left, right)
|
|
left_type = helpers.object_type(left)
|
|
right_type = helpers.object_type(right)
|
|
methods = flow_factory(
|
|
left, left_type, binary_opnode, right, right_type, context, reverse_context
|
|
)
|
|
for method in methods:
|
|
try:
|
|
results = list(method())
|
|
except AttributeError:
|
|
continue
|
|
except exceptions.AttributeInferenceError:
|
|
continue
|
|
except exceptions.InferenceError:
|
|
yield util.Uninferable
|
|
return
|
|
else:
|
|
if any(result is util.Uninferable for result in results):
|
|
yield util.Uninferable
|
|
return
|
|
|
|
if all(map(_is_not_implemented, results)):
|
|
continue
|
|
not_implemented = sum(
|
|
1 for result in results if _is_not_implemented(result)
|
|
)
|
|
if not_implemented and not_implemented != len(results):
|
|
# Can't infer yet what this is.
|
|
yield util.Uninferable
|
|
return
|
|
|
|
yield from results
|
|
return
|
|
# The operation doesn't seem to be supported so let the caller know about it
|
|
yield util.BadBinaryOperationMessage(left_type, binary_opnode.op, right_type)
|
|
|
|
|
|
def _infer_binop(self, context):
|
|
"""Binary operation inference logic."""
|
|
left = self.left
|
|
right = self.right
|
|
|
|
# we use two separate contexts for evaluating lhs and rhs because
|
|
# 1. evaluating lhs may leave some undesired entries in context.path
|
|
# which may not let us infer right value of rhs
|
|
context = context or contextmod.InferenceContext()
|
|
lhs_context = contextmod.copy_context(context)
|
|
rhs_context = contextmod.copy_context(context)
|
|
lhs_iter = left.infer(context=lhs_context)
|
|
rhs_iter = right.infer(context=rhs_context)
|
|
for lhs, rhs in itertools.product(lhs_iter, rhs_iter):
|
|
if any(value is util.Uninferable for value in (rhs, lhs)):
|
|
# Don't know how to process this.
|
|
yield util.Uninferable
|
|
return
|
|
|
|
try:
|
|
yield from _infer_binary_operation(lhs, rhs, self, context, _get_binop_flow)
|
|
except exceptions._NonDeducibleTypeHierarchy:
|
|
yield util.Uninferable
|
|
|
|
|
|
@decorators.yes_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_binop(self, context=None):
|
|
return _filter_operation_errors(
|
|
self, _infer_binop, context, util.BadBinaryOperationMessage
|
|
)
|
|
|
|
|
|
nodes.BinOp._infer_binop = _infer_binop
|
|
nodes.BinOp._infer = infer_binop
|
|
|
|
|
|
def _infer_augassign(self, context=None):
|
|
"""Inference logic for augmented binary operations."""
|
|
if context is None:
|
|
context = contextmod.InferenceContext()
|
|
|
|
rhs_context = context.clone()
|
|
|
|
lhs_iter = self.target.infer_lhs(context=context)
|
|
rhs_iter = self.value.infer(context=rhs_context)
|
|
for lhs, rhs in itertools.product(lhs_iter, rhs_iter):
|
|
if any(value is util.Uninferable for value in (rhs, lhs)):
|
|
# Don't know how to process this.
|
|
yield util.Uninferable
|
|
return
|
|
|
|
try:
|
|
yield from _infer_binary_operation(
|
|
left=lhs,
|
|
right=rhs,
|
|
binary_opnode=self,
|
|
context=context,
|
|
flow_factory=_get_aug_flow,
|
|
)
|
|
except exceptions._NonDeducibleTypeHierarchy:
|
|
yield util.Uninferable
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_augassign(self, context=None):
|
|
return _filter_operation_errors(
|
|
self, _infer_augassign, context, util.BadBinaryOperationMessage
|
|
)
|
|
|
|
|
|
nodes.AugAssign._infer_augassign = _infer_augassign
|
|
nodes.AugAssign._infer = infer_augassign
|
|
|
|
# End of binary operation inference.
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
def infer_arguments(self, context=None):
|
|
name = context.lookupname
|
|
if name is None:
|
|
raise exceptions.InferenceError(node=self, context=context)
|
|
return protocols._arguments_infer_argname(self, name, context)
|
|
|
|
|
|
nodes.Arguments._infer = infer_arguments
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_assign(self, context=None):
|
|
"""infer a AssignName/AssignAttr: need to inspect the RHS part of the
|
|
assign node
|
|
"""
|
|
if isinstance(self.parent, nodes.AugAssign):
|
|
return self.parent.infer(context)
|
|
|
|
stmts = list(self.assigned_stmts(context=context))
|
|
return bases._infer_stmts(stmts, context)
|
|
|
|
|
|
nodes.AssignName._infer = infer_assign
|
|
nodes.AssignAttr._infer = infer_assign
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
@decorators.path_wrapper
|
|
def infer_empty_node(self, context=None):
|
|
if not self.has_underlying_object():
|
|
yield util.Uninferable
|
|
else:
|
|
try:
|
|
yield from MANAGER.infer_ast_from_something(self.object, context=context)
|
|
except exceptions.AstroidError:
|
|
yield util.Uninferable
|
|
|
|
|
|
nodes.EmptyNode._infer = infer_empty_node
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
def infer_index(self, context=None):
|
|
return self.value.infer(context)
|
|
|
|
|
|
nodes.Index._infer = infer_index
|
|
|
|
# TODO: move directly into bases.Instance when the dependency hell
|
|
# will be solved.
|
|
def instance_getitem(self, index, context=None):
|
|
# Rewrap index to Const for this case
|
|
new_context = contextmod.bind_context_to_node(context, self)
|
|
if not context:
|
|
context = new_context
|
|
|
|
# Create a new callcontext for providing index as an argument.
|
|
new_context.callcontext = contextmod.CallContext(args=[index])
|
|
|
|
method = next(self.igetattr("__getitem__", context=context), None)
|
|
if not isinstance(method, bases.BoundMethod):
|
|
raise exceptions.InferenceError(
|
|
"Could not find __getitem__ for {node!r}.", node=self, context=context
|
|
)
|
|
|
|
return next(method.infer_call_result(self, new_context))
|
|
|
|
|
|
bases.Instance.getitem = instance_getitem
|
|
|
|
|
|
def _populate_context_lookup(call, context):
|
|
# Allows context to be saved for later
|
|
# for inference inside a function
|
|
context_lookup = {}
|
|
if context is None:
|
|
return context_lookup
|
|
for arg in call.args:
|
|
if isinstance(arg, nodes.Starred):
|
|
context_lookup[arg.value] = context
|
|
else:
|
|
context_lookup[arg] = context
|
|
keywords = call.keywords if call.keywords is not None else []
|
|
for keyword in keywords:
|
|
context_lookup[keyword.value] = context
|
|
return context_lookup
|
|
|
|
|
|
@decorators.raise_if_nothing_inferred
|
|
def infer_ifexp(self, context=None):
|
|
"""Support IfExp inference
|
|
|
|
If we can't infer the truthiness of the condition, we default
|
|
to inferring both branches. Otherwise, we infer either branch
|
|
depending on the condition.
|
|
"""
|
|
both_branches = False
|
|
# We use two separate contexts for evaluating lhs and rhs because
|
|
# evaluating lhs may leave some undesired entries in context.path
|
|
# which may not let us infer right value of rhs.
|
|
|
|
context = context or contextmod.InferenceContext()
|
|
lhs_context = contextmod.copy_context(context)
|
|
rhs_context = contextmod.copy_context(context)
|
|
try:
|
|
test = next(self.test.infer(context=context.clone()))
|
|
except exceptions.InferenceError:
|
|
both_branches = True
|
|
else:
|
|
if test is not util.Uninferable:
|
|
if test.bool_value():
|
|
yield from self.body.infer(context=lhs_context)
|
|
else:
|
|
yield from self.orelse.infer(context=rhs_context)
|
|
else:
|
|
both_branches = True
|
|
if both_branches:
|
|
yield from self.body.infer(context=lhs_context)
|
|
yield from self.orelse.infer(context=rhs_context)
|
|
|
|
|
|
nodes.IfExp._infer = infer_ifexp
|
|
|
|
|
|
# pylint: disable=dangerous-default-value
|
|
@wrapt.decorator
|
|
def _cached_generator(func, instance, args, kwargs, _cache={}):
|
|
node = args[0]
|
|
try:
|
|
return iter(_cache[func, id(node)])
|
|
except KeyError:
|
|
result = func(*args, **kwargs)
|
|
# Need to keep an iterator around
|
|
original, copy = itertools.tee(result)
|
|
_cache[func, id(node)] = list(copy)
|
|
return original
|
|
|
|
|
|
# When inferring a property, we instantiate a new `objects.Property` object,
|
|
# which in turn, because it inherits from `FunctionDef`, sets itself in the locals
|
|
# of the wrapping frame. This means that everytime we infer a property, the locals
|
|
# are mutated with a new instance of the property. This is why we cache the result
|
|
# of the function's inference.
|
|
@_cached_generator
|
|
def infer_functiondef(self, context=None):
|
|
if not self.decorators or not bases._is_property(self):
|
|
yield self
|
|
return dict(node=self, context=context)
|
|
|
|
prop_func = objects.Property(
|
|
function=self,
|
|
name=self.name,
|
|
doc=self.doc,
|
|
lineno=self.lineno,
|
|
parent=self.parent,
|
|
col_offset=self.col_offset,
|
|
)
|
|
prop_func.postinit(body=[], args=self.args)
|
|
yield prop_func
|
|
return dict(node=self, context=context)
|
|
|
|
|
|
nodes.FunctionDef._infer = infer_functiondef
|