mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-06 04:42:01 +01:00
455 lines
16 KiB
Python
455 lines
16 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Copyright (c) 2012-2015 LOGILAB S.A. (Paris, FRANCE) <contact@logilab.fr>
|
|
# Copyright (c) 2013-2014 Google, Inc.
|
|
# Copyright (c) 2014-2020 Claudiu Popa <pcmanticore@gmail.com>
|
|
# Copyright (c) 2014 Eevee (Alex Munroe) <amunroe@yelp.com>
|
|
# Copyright (c) 2015-2016 Ceridwen <ceridwenv@gmail.com>
|
|
# Copyright (c) 2015 Dmitry Pribysh <dmand@yandex.ru>
|
|
# Copyright (c) 2015 David Shea <dshea@redhat.com>
|
|
# Copyright (c) 2015 Philip Lorenz <philip@bithub.de>
|
|
# Copyright (c) 2016 Jakub Wilk <jwilk@jwilk.net>
|
|
# Copyright (c) 2016 Mateusz Bysiek <mb@mbdev.pl>
|
|
# Copyright (c) 2017 Hugo <hugovk@users.noreply.github.com>
|
|
# Copyright (c) 2017 Łukasz Rogalski <rogalski.91@gmail.com>
|
|
# Copyright (c) 2018 Ville Skyttä <ville.skytta@iki.fi>
|
|
# Copyright (c) 2019 Ashley Whetter <ashley@awhetter.co.uk>
|
|
|
|
# Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
|
|
# For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER
|
|
|
|
"""Astroid hooks for the Python standard library."""
|
|
|
|
import functools
|
|
import keyword
|
|
from textwrap import dedent
|
|
|
|
from astroid import MANAGER, UseInferenceDefault, inference_tip, InferenceError
|
|
from astroid import arguments
|
|
from astroid import exceptions
|
|
from astroid import nodes
|
|
from astroid.builder import AstroidBuilder, extract_node
|
|
from astroid import util
|
|
|
|
|
|
TYPING_NAMEDTUPLE_BASENAMES = {"NamedTuple", "typing.NamedTuple"}
|
|
ENUM_BASE_NAMES = {
|
|
"Enum",
|
|
"IntEnum",
|
|
"enum.Enum",
|
|
"enum.IntEnum",
|
|
"IntFlag",
|
|
"enum.IntFlag",
|
|
}
|
|
|
|
|
|
def _infer_first(node, context):
|
|
if node is util.Uninferable:
|
|
raise UseInferenceDefault
|
|
try:
|
|
value = next(node.infer(context=context))
|
|
if value is util.Uninferable:
|
|
raise UseInferenceDefault()
|
|
else:
|
|
return value
|
|
except StopIteration:
|
|
raise InferenceError()
|
|
|
|
|
|
def _find_func_form_arguments(node, context):
|
|
def _extract_namedtuple_arg_or_keyword(position, key_name=None):
|
|
|
|
if len(args) > position:
|
|
return _infer_first(args[position], context)
|
|
if key_name and key_name in found_keywords:
|
|
return _infer_first(found_keywords[key_name], context)
|
|
|
|
args = node.args
|
|
keywords = node.keywords
|
|
found_keywords = (
|
|
{keyword.arg: keyword.value for keyword in keywords} if keywords else {}
|
|
)
|
|
|
|
name = _extract_namedtuple_arg_or_keyword(position=0, key_name="typename")
|
|
names = _extract_namedtuple_arg_or_keyword(position=1, key_name="field_names")
|
|
if name and names:
|
|
return name.value, names
|
|
|
|
raise UseInferenceDefault()
|
|
|
|
|
|
def infer_func_form(node, base_type, context=None, enum=False):
|
|
"""Specific inference function for namedtuple or Python 3 enum. """
|
|
# node is a Call node, class name as first argument and generated class
|
|
# attributes as second argument
|
|
|
|
# namedtuple or enums list of attributes can be a list of strings or a
|
|
# whitespace-separate string
|
|
try:
|
|
name, names = _find_func_form_arguments(node, context)
|
|
try:
|
|
attributes = names.value.replace(",", " ").split()
|
|
except AttributeError:
|
|
if not enum:
|
|
attributes = [
|
|
_infer_first(const, context).value for const in names.elts
|
|
]
|
|
else:
|
|
# Enums supports either iterator of (name, value) pairs
|
|
# or mappings.
|
|
if hasattr(names, "items") and isinstance(names.items, list):
|
|
attributes = [
|
|
_infer_first(const[0], context).value
|
|
for const in names.items
|
|
if isinstance(const[0], nodes.Const)
|
|
]
|
|
elif hasattr(names, "elts"):
|
|
# Enums can support either ["a", "b", "c"]
|
|
# or [("a", 1), ("b", 2), ...], but they can't
|
|
# be mixed.
|
|
if all(isinstance(const, nodes.Tuple) for const in names.elts):
|
|
attributes = [
|
|
_infer_first(const.elts[0], context).value
|
|
for const in names.elts
|
|
if isinstance(const, nodes.Tuple)
|
|
]
|
|
else:
|
|
attributes = [
|
|
_infer_first(const, context).value for const in names.elts
|
|
]
|
|
else:
|
|
raise AttributeError
|
|
if not attributes:
|
|
raise AttributeError
|
|
except (AttributeError, exceptions.InferenceError):
|
|
raise UseInferenceDefault()
|
|
|
|
attributes = [attr for attr in attributes if " " not in attr]
|
|
|
|
# If we can't infer the name of the class, don't crash, up to this point
|
|
# we know it is a namedtuple anyway.
|
|
name = name or "Uninferable"
|
|
# we want to return a Class node instance with proper attributes set
|
|
class_node = nodes.ClassDef(name, "docstring")
|
|
class_node.parent = node.parent
|
|
# set base class=tuple
|
|
class_node.bases.append(base_type)
|
|
# XXX add __init__(*attributes) method
|
|
for attr in attributes:
|
|
fake_node = nodes.EmptyNode()
|
|
fake_node.parent = class_node
|
|
fake_node.attrname = attr
|
|
class_node.instance_attrs[attr] = [fake_node]
|
|
return class_node, name, attributes
|
|
|
|
|
|
def _has_namedtuple_base(node):
|
|
"""Predicate for class inference tip
|
|
|
|
:type node: ClassDef
|
|
:rtype: bool
|
|
"""
|
|
return set(node.basenames) & TYPING_NAMEDTUPLE_BASENAMES
|
|
|
|
|
|
def _looks_like(node, name):
|
|
func = node.func
|
|
if isinstance(func, nodes.Attribute):
|
|
return func.attrname == name
|
|
if isinstance(func, nodes.Name):
|
|
return func.name == name
|
|
return False
|
|
|
|
|
|
_looks_like_namedtuple = functools.partial(_looks_like, name="namedtuple")
|
|
_looks_like_enum = functools.partial(_looks_like, name="Enum")
|
|
_looks_like_typing_namedtuple = functools.partial(_looks_like, name="NamedTuple")
|
|
|
|
|
|
def infer_named_tuple(node, context=None):
|
|
"""Specific inference function for namedtuple Call node"""
|
|
tuple_base_name = nodes.Name(name="tuple", parent=node.root())
|
|
class_node, name, attributes = infer_func_form(
|
|
node, tuple_base_name, context=context
|
|
)
|
|
call_site = arguments.CallSite.from_call(node, context=context)
|
|
func = next(extract_node("import collections; collections.namedtuple").infer())
|
|
try:
|
|
rename = next(call_site.infer_argument(func, "rename", context)).bool_value()
|
|
except InferenceError:
|
|
rename = False
|
|
|
|
if rename:
|
|
attributes = _get_renamed_namedtuple_attributes(attributes)
|
|
|
|
replace_args = ", ".join("{arg}=None".format(arg=arg) for arg in attributes)
|
|
field_def = (
|
|
" {name} = property(lambda self: self[{index:d}], "
|
|
"doc='Alias for field number {index:d}')"
|
|
)
|
|
field_defs = "\n".join(
|
|
field_def.format(name=name, index=index)
|
|
for index, name in enumerate(attributes)
|
|
)
|
|
fake = AstroidBuilder(MANAGER).string_build(
|
|
"""
|
|
class %(name)s(tuple):
|
|
__slots__ = ()
|
|
_fields = %(fields)r
|
|
def _asdict(self):
|
|
return self.__dict__
|
|
@classmethod
|
|
def _make(cls, iterable, new=tuple.__new__, len=len):
|
|
return new(cls, iterable)
|
|
def _replace(self, %(replace_args)s):
|
|
return self
|
|
def __getnewargs__(self):
|
|
return tuple(self)
|
|
%(field_defs)s
|
|
"""
|
|
% {
|
|
"name": name,
|
|
"fields": attributes,
|
|
"field_defs": field_defs,
|
|
"replace_args": replace_args,
|
|
}
|
|
)
|
|
class_node.locals["_asdict"] = fake.body[0].locals["_asdict"]
|
|
class_node.locals["_make"] = fake.body[0].locals["_make"]
|
|
class_node.locals["_replace"] = fake.body[0].locals["_replace"]
|
|
class_node.locals["_fields"] = fake.body[0].locals["_fields"]
|
|
for attr in attributes:
|
|
class_node.locals[attr] = fake.body[0].locals[attr]
|
|
# we use UseInferenceDefault, we can't be a generator so return an iterator
|
|
return iter([class_node])
|
|
|
|
|
|
def _get_renamed_namedtuple_attributes(field_names):
|
|
names = list(field_names)
|
|
seen = set()
|
|
for i, name in enumerate(field_names):
|
|
if (
|
|
not all(c.isalnum() or c == "_" for c in name)
|
|
or keyword.iskeyword(name)
|
|
or not name
|
|
or name[0].isdigit()
|
|
or name.startswith("_")
|
|
or name in seen
|
|
):
|
|
names[i] = "_%d" % i
|
|
seen.add(name)
|
|
return tuple(names)
|
|
|
|
|
|
def infer_enum(node, context=None):
|
|
""" Specific inference function for enum Call node. """
|
|
enum_meta = extract_node(
|
|
"""
|
|
class EnumMeta(object):
|
|
'docstring'
|
|
def __call__(self, node):
|
|
class EnumAttribute(object):
|
|
name = ''
|
|
value = 0
|
|
return EnumAttribute()
|
|
def __iter__(self):
|
|
class EnumAttribute(object):
|
|
name = ''
|
|
value = 0
|
|
return [EnumAttribute()]
|
|
def __reversed__(self):
|
|
class EnumAttribute(object):
|
|
name = ''
|
|
value = 0
|
|
return (EnumAttribute, )
|
|
def __next__(self):
|
|
return next(iter(self))
|
|
def __getitem__(self, attr):
|
|
class Value(object):
|
|
@property
|
|
def name(self):
|
|
return ''
|
|
@property
|
|
def value(self):
|
|
return attr
|
|
|
|
return Value()
|
|
__members__ = ['']
|
|
"""
|
|
)
|
|
class_node = infer_func_form(node, enum_meta, context=context, enum=True)[0]
|
|
return iter([class_node.instantiate_class()])
|
|
|
|
|
|
INT_FLAG_ADDITION_METHODS = """
|
|
def __or__(self, other):
|
|
return {name}(self.value | other.value)
|
|
def __and__(self, other):
|
|
return {name}(self.value & other.value)
|
|
def __xor__(self, other):
|
|
return {name}(self.value ^ other.value)
|
|
def __add__(self, other):
|
|
return {name}(self.value + other.value)
|
|
def __div__(self, other):
|
|
return {name}(self.value / other.value)
|
|
def __invert__(self):
|
|
return {name}(~self.value)
|
|
def __mul__(self, other):
|
|
return {name}(self.value * other.value)
|
|
"""
|
|
|
|
|
|
def infer_enum_class(node):
|
|
""" Specific inference for enums. """
|
|
for basename in node.basenames:
|
|
# TODO: doesn't handle subclasses yet. This implementation
|
|
# is a hack to support enums.
|
|
if basename not in ENUM_BASE_NAMES:
|
|
continue
|
|
if node.root().name == "enum":
|
|
# Skip if the class is directly from enum module.
|
|
break
|
|
for local, values in node.locals.items():
|
|
if any(not isinstance(value, nodes.AssignName) for value in values):
|
|
continue
|
|
|
|
targets = []
|
|
stmt = values[0].statement()
|
|
if isinstance(stmt, nodes.Assign):
|
|
if isinstance(stmt.targets[0], nodes.Tuple):
|
|
targets = stmt.targets[0].itered()
|
|
else:
|
|
targets = stmt.targets
|
|
elif isinstance(stmt, nodes.AnnAssign):
|
|
targets = [stmt.target]
|
|
else:
|
|
continue
|
|
|
|
inferred_return_value = None
|
|
if isinstance(stmt, nodes.Assign):
|
|
if isinstance(stmt.value, nodes.Const):
|
|
if isinstance(stmt.value.value, str):
|
|
inferred_return_value = repr(stmt.value.value)
|
|
else:
|
|
inferred_return_value = stmt.value.value
|
|
else:
|
|
inferred_return_value = stmt.value.as_string()
|
|
|
|
new_targets = []
|
|
for target in targets:
|
|
# Replace all the assignments with our mocked class.
|
|
classdef = dedent(
|
|
"""
|
|
class {name}({types}):
|
|
@property
|
|
def value(self):
|
|
return {return_value}
|
|
@property
|
|
def name(self):
|
|
return "{name}"
|
|
""".format(
|
|
name=target.name,
|
|
types=", ".join(node.basenames),
|
|
return_value=inferred_return_value,
|
|
)
|
|
)
|
|
if "IntFlag" in basename:
|
|
# Alright, we need to add some additional methods.
|
|
# Unfortunately we still can't infer the resulting objects as
|
|
# Enum members, but once we'll be able to do that, the following
|
|
# should result in some nice symbolic execution
|
|
classdef += INT_FLAG_ADDITION_METHODS.format(name=target.name)
|
|
|
|
fake = AstroidBuilder(MANAGER).string_build(classdef)[target.name]
|
|
fake.parent = target.parent
|
|
for method in node.mymethods():
|
|
fake.locals[method.name] = [method]
|
|
new_targets.append(fake.instantiate_class())
|
|
node.locals[local] = new_targets
|
|
break
|
|
return node
|
|
|
|
|
|
def infer_typing_namedtuple_class(class_node, context=None):
|
|
"""Infer a subclass of typing.NamedTuple"""
|
|
# Check if it has the corresponding bases
|
|
annassigns_fields = [
|
|
annassign.target.name
|
|
for annassign in class_node.body
|
|
if isinstance(annassign, nodes.AnnAssign)
|
|
]
|
|
code = dedent(
|
|
"""
|
|
from collections import namedtuple
|
|
namedtuple({typename!r}, {fields!r})
|
|
"""
|
|
).format(typename=class_node.name, fields=",".join(annassigns_fields))
|
|
node = extract_node(code)
|
|
generated_class_node = next(infer_named_tuple(node, context))
|
|
for method in class_node.mymethods():
|
|
generated_class_node.locals[method.name] = [method]
|
|
|
|
for assign in class_node.body:
|
|
if not isinstance(assign, nodes.Assign):
|
|
continue
|
|
|
|
for target in assign.targets:
|
|
attr = target.name
|
|
generated_class_node.locals[attr] = class_node.locals[attr]
|
|
|
|
return iter((generated_class_node,))
|
|
|
|
|
|
def infer_typing_namedtuple(node, context=None):
|
|
"""Infer a typing.NamedTuple(...) call."""
|
|
# This is essentially a namedtuple with different arguments
|
|
# so we extract the args and infer a named tuple.
|
|
try:
|
|
func = next(node.func.infer())
|
|
except InferenceError:
|
|
raise UseInferenceDefault
|
|
|
|
if func.qname() != "typing.NamedTuple":
|
|
raise UseInferenceDefault
|
|
|
|
if len(node.args) != 2:
|
|
raise UseInferenceDefault
|
|
|
|
if not isinstance(node.args[1], (nodes.List, nodes.Tuple)):
|
|
raise UseInferenceDefault
|
|
|
|
names = []
|
|
for elt in node.args[1].elts:
|
|
if not isinstance(elt, (nodes.List, nodes.Tuple)):
|
|
raise UseInferenceDefault
|
|
if len(elt.elts) != 2:
|
|
raise UseInferenceDefault
|
|
names.append(elt.elts[0].as_string())
|
|
|
|
typename = node.args[0].as_string()
|
|
if names:
|
|
field_names = "({},)".format(",".join(names))
|
|
else:
|
|
field_names = "''"
|
|
node = extract_node(
|
|
"namedtuple({typename}, {fields})".format(typename=typename, fields=field_names)
|
|
)
|
|
return infer_named_tuple(node, context)
|
|
|
|
|
|
MANAGER.register_transform(
|
|
nodes.Call, inference_tip(infer_named_tuple), _looks_like_namedtuple
|
|
)
|
|
MANAGER.register_transform(nodes.Call, inference_tip(infer_enum), _looks_like_enum)
|
|
MANAGER.register_transform(
|
|
nodes.ClassDef,
|
|
infer_enum_class,
|
|
predicate=lambda cls: any(
|
|
basename for basename in cls.basenames if basename in ENUM_BASE_NAMES
|
|
),
|
|
)
|
|
MANAGER.register_transform(
|
|
nodes.ClassDef, inference_tip(infer_typing_namedtuple_class), _has_namedtuple_base
|
|
)
|
|
MANAGER.register_transform(
|
|
nodes.Call, inference_tip(infer_typing_namedtuple), _looks_like_typing_namedtuple
|
|
)
|