mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-10 14:43:19 +01:00
244 lines
5.8 KiB
Python
244 lines
5.8 KiB
Python
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
|
|
# ------------------------------------------------------------------
|
|
# Helper Functions
|
|
|
|
|
|
def id_func(x):
|
|
if isinstance(x, tuple):
|
|
assert len(x) == 2
|
|
return x[0].__name__ + "-" + str(x[1])
|
|
else:
|
|
return x.__name__
|
|
|
|
|
|
# ------------------------------------------------------------------
|
|
@pytest.fixture(
|
|
params=[
|
|
("foo", None, None),
|
|
("Egon", "Venkman", None),
|
|
("NCC1701D", "NCC1701D", "NCC1701D"),
|
|
]
|
|
)
|
|
def names(request):
|
|
"""
|
|
A 3-tuple of names, the first two for operands, the last for a result.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[1, np.array(1, dtype=np.int64)])
|
|
def one(request):
|
|
"""
|
|
Several variants of integer value 1. The zero-dim integer array
|
|
behaves like an integer.
|
|
|
|
This fixture can be used to check that datetimelike indexes handle
|
|
addition and subtraction of integers and zero-dimensional arrays
|
|
of integers.
|
|
|
|
Examples
|
|
--------
|
|
>>> dti = pd.date_range('2016-01-01', periods=2, freq='H')
|
|
>>> dti
|
|
DatetimeIndex(['2016-01-01 00:00:00', '2016-01-01 01:00:00'],
|
|
dtype='datetime64[ns]', freq='H')
|
|
>>> dti + one
|
|
DatetimeIndex(['2016-01-01 01:00:00', '2016-01-01 02:00:00'],
|
|
dtype='datetime64[ns]', freq='H')
|
|
"""
|
|
return request.param
|
|
|
|
|
|
zeros = [
|
|
box_cls([0] * 5, dtype=dtype)
|
|
for box_cls in [pd.Index, np.array]
|
|
for dtype in [np.int64, np.uint64, np.float64]
|
|
]
|
|
zeros.extend(
|
|
[box_cls([-0.0] * 5, dtype=np.float64) for box_cls in [pd.Index, np.array]]
|
|
)
|
|
zeros.extend([np.array(0, dtype=dtype) for dtype in [np.int64, np.uint64, np.float64]])
|
|
zeros.extend([np.array(-0.0, dtype=np.float64)])
|
|
zeros.extend([0, 0.0, -0.0])
|
|
|
|
|
|
@pytest.fixture(params=zeros)
|
|
def zero(request):
|
|
"""
|
|
Several types of scalar zeros and length 5 vectors of zeros.
|
|
|
|
This fixture can be used to check that numeric-dtype indexes handle
|
|
division by any zero numeric-dtype.
|
|
|
|
Uses vector of length 5 for broadcasting with `numeric_idx` fixture,
|
|
which creates numeric-dtype vectors also of length 5.
|
|
|
|
Examples
|
|
--------
|
|
>>> arr = pd.RangeIndex(5)
|
|
>>> arr / zeros
|
|
Float64Index([nan, inf, inf, inf, inf], dtype='float64')
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ------------------------------------------------------------------
|
|
# Vector Fixtures
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
pd.Float64Index(np.arange(5, dtype="float64")),
|
|
pd.Int64Index(np.arange(5, dtype="int64")),
|
|
pd.UInt64Index(np.arange(5, dtype="uint64")),
|
|
pd.RangeIndex(5),
|
|
],
|
|
ids=lambda x: type(x).__name__,
|
|
)
|
|
def numeric_idx(request):
|
|
"""
|
|
Several types of numeric-dtypes Index objects
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ------------------------------------------------------------------
|
|
# Scalar Fixtures
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
pd.Timedelta("5m4s").to_pytimedelta(),
|
|
pd.Timedelta("5m4s"),
|
|
pd.Timedelta("5m4s").to_timedelta64(),
|
|
],
|
|
ids=lambda x: type(x).__name__,
|
|
)
|
|
def scalar_td(request):
|
|
"""
|
|
Several variants of Timedelta scalars representing 5 minutes and 4 seconds
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
pd.offsets.Day(3),
|
|
pd.offsets.Hour(72),
|
|
pd.Timedelta(days=3).to_pytimedelta(),
|
|
pd.Timedelta("72:00:00"),
|
|
np.timedelta64(3, "D"),
|
|
np.timedelta64(72, "h"),
|
|
],
|
|
ids=lambda x: type(x).__name__,
|
|
)
|
|
def three_days(request):
|
|
"""
|
|
Several timedelta-like and DateOffset objects that each represent
|
|
a 3-day timedelta
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
pd.offsets.Hour(2),
|
|
pd.offsets.Minute(120),
|
|
pd.Timedelta(hours=2).to_pytimedelta(),
|
|
pd.Timedelta(seconds=2 * 3600),
|
|
np.timedelta64(2, "h"),
|
|
np.timedelta64(120, "m"),
|
|
],
|
|
ids=lambda x: type(x).__name__,
|
|
)
|
|
def two_hours(request):
|
|
"""
|
|
Several timedelta-like and DateOffset objects that each represent
|
|
a 2-hour timedelta
|
|
"""
|
|
return request.param
|
|
|
|
|
|
_common_mismatch = [
|
|
pd.offsets.YearBegin(2),
|
|
pd.offsets.MonthBegin(1),
|
|
pd.offsets.Minute(),
|
|
]
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
pd.Timedelta(minutes=30).to_pytimedelta(),
|
|
np.timedelta64(30, "s"),
|
|
pd.Timedelta(seconds=30),
|
|
]
|
|
+ _common_mismatch
|
|
)
|
|
def not_hourly(request):
|
|
"""
|
|
Several timedelta-like and DateOffset instances that are _not_
|
|
compatible with Hourly frequencies.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
np.timedelta64(4, "h"),
|
|
pd.Timedelta(hours=23).to_pytimedelta(),
|
|
pd.Timedelta("23:00:00"),
|
|
]
|
|
+ _common_mismatch
|
|
)
|
|
def not_daily(request):
|
|
"""
|
|
Several timedelta-like and DateOffset instances that are _not_
|
|
compatible with Daily frequencies.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
np.timedelta64(365, "D"),
|
|
pd.Timedelta(days=365).to_pytimedelta(),
|
|
pd.Timedelta(days=365),
|
|
]
|
|
+ _common_mismatch
|
|
)
|
|
def mismatched_freq(request):
|
|
"""
|
|
Several timedelta-like and DateOffset instances that are _not_
|
|
compatible with Monthly or Annual frequencies.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# ------------------------------------------------------------------
|
|
|
|
|
|
@pytest.fixture(params=[pd.Index, pd.Series, pd.DataFrame], ids=id_func)
|
|
def box(request):
|
|
"""
|
|
Several array-like containers that should have effectively identical
|
|
behavior with respect to arithmetic operations.
|
|
"""
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture(params=[pd.Index, pd.Series, pd.DataFrame, tm.to_array], ids=id_func)
|
|
def box_with_array(request):
|
|
"""
|
|
Fixture to test behavior for Index, Series, DataFrame, and pandas Array
|
|
classes
|
|
"""
|
|
return request.param
|
|
|
|
|
|
# alias so we can use the same fixture for multiple parameters in a test
|
|
box_with_array2 = box_with_array
|