mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-25 05:44:30 +01:00
1856 lines
64 KiB
Python
1856 lines
64 KiB
Python
import datetime
|
|
from io import StringIO
|
|
import itertools
|
|
from itertools import product
|
|
|
|
import numpy as np
|
|
from numpy.random import randn
|
|
import pytest
|
|
|
|
from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype
|
|
|
|
import pandas as pd
|
|
from pandas import DataFrame, Index, MultiIndex, Series, Timestamp
|
|
import pandas._testing as tm
|
|
|
|
AGG_FUNCTIONS = [
|
|
"sum",
|
|
"prod",
|
|
"min",
|
|
"max",
|
|
"median",
|
|
"mean",
|
|
"skew",
|
|
"mad",
|
|
"std",
|
|
"var",
|
|
"sem",
|
|
]
|
|
|
|
|
|
class Base:
|
|
def setup_method(self, method):
|
|
|
|
index = MultiIndex(
|
|
levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]],
|
|
codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
|
|
names=["first", "second"],
|
|
)
|
|
self.frame = DataFrame(
|
|
np.random.randn(10, 3),
|
|
index=index,
|
|
columns=Index(["A", "B", "C"], name="exp"),
|
|
)
|
|
|
|
self.single_level = MultiIndex(
|
|
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
|
|
)
|
|
|
|
# create test series object
|
|
arrays = [
|
|
["bar", "bar", "baz", "baz", "qux", "qux", "foo", "foo"],
|
|
["one", "two", "one", "two", "one", "two", "one", "two"],
|
|
]
|
|
tuples = zip(*arrays)
|
|
index = MultiIndex.from_tuples(tuples)
|
|
s = Series(randn(8), index=index)
|
|
s[3] = np.NaN
|
|
self.series = s
|
|
|
|
self.tdf = tm.makeTimeDataFrame(100)
|
|
self.ymd = self.tdf.groupby(
|
|
[lambda x: x.year, lambda x: x.month, lambda x: x.day]
|
|
).sum()
|
|
|
|
# use Int64Index, to make sure things work
|
|
self.ymd.index.set_levels(
|
|
[lev.astype("i8") for lev in self.ymd.index.levels], inplace=True
|
|
)
|
|
self.ymd.index.set_names(["year", "month", "day"], inplace=True)
|
|
|
|
|
|
class TestMultiLevel(Base):
|
|
def test_append(self):
|
|
a, b = self.frame[:5], self.frame[5:]
|
|
|
|
result = a.append(b)
|
|
tm.assert_frame_equal(result, self.frame)
|
|
|
|
result = a["A"].append(b["A"])
|
|
tm.assert_series_equal(result, self.frame["A"])
|
|
|
|
def test_dataframe_constructor(self):
|
|
multi = DataFrame(
|
|
np.random.randn(4, 4),
|
|
index=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])],
|
|
)
|
|
assert isinstance(multi.index, MultiIndex)
|
|
assert not isinstance(multi.columns, MultiIndex)
|
|
|
|
multi = DataFrame(
|
|
np.random.randn(4, 4), columns=[["a", "a", "b", "b"], ["x", "y", "x", "y"]]
|
|
)
|
|
assert isinstance(multi.columns, MultiIndex)
|
|
|
|
def test_series_constructor(self):
|
|
multi = Series(
|
|
1.0, index=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])]
|
|
)
|
|
assert isinstance(multi.index, MultiIndex)
|
|
|
|
multi = Series(1.0, index=[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
|
|
assert isinstance(multi.index, MultiIndex)
|
|
|
|
multi = Series(range(4), index=[["a", "a", "b", "b"], ["x", "y", "x", "y"]])
|
|
assert isinstance(multi.index, MultiIndex)
|
|
|
|
def test_reindex_level(self):
|
|
# axis=0
|
|
month_sums = self.ymd.sum(level="month")
|
|
result = month_sums.reindex(self.ymd.index, level=1)
|
|
expected = self.ymd.groupby(level="month").transform(np.sum)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Series
|
|
result = month_sums["A"].reindex(self.ymd.index, level=1)
|
|
expected = self.ymd["A"].groupby(level="month").transform(np.sum)
|
|
tm.assert_series_equal(result, expected, check_names=False)
|
|
|
|
# axis=1
|
|
month_sums = self.ymd.T.sum(axis=1, level="month")
|
|
result = month_sums.reindex(columns=self.ymd.index, level=1)
|
|
expected = self.ymd.groupby(level="month").transform(np.sum).T
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_binops_level(self):
|
|
def _check_op(opname):
|
|
op = getattr(DataFrame, opname)
|
|
month_sums = self.ymd.sum(level="month")
|
|
result = op(self.ymd, month_sums, level="month")
|
|
|
|
broadcasted = self.ymd.groupby(level="month").transform(np.sum)
|
|
expected = op(self.ymd, broadcasted)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# Series
|
|
op = getattr(Series, opname)
|
|
result = op(self.ymd["A"], month_sums["A"], level="month")
|
|
broadcasted = self.ymd["A"].groupby(level="month").transform(np.sum)
|
|
expected = op(self.ymd["A"], broadcasted)
|
|
expected.name = "A"
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
_check_op("sub")
|
|
_check_op("add")
|
|
_check_op("mul")
|
|
_check_op("div")
|
|
|
|
def test_pickle(self):
|
|
def _test_roundtrip(frame):
|
|
unpickled = tm.round_trip_pickle(frame)
|
|
tm.assert_frame_equal(frame, unpickled)
|
|
|
|
_test_roundtrip(self.frame)
|
|
_test_roundtrip(self.frame.T)
|
|
_test_roundtrip(self.ymd)
|
|
_test_roundtrip(self.ymd.T)
|
|
|
|
def test_reindex(self):
|
|
expected = self.frame.iloc[[0, 3]]
|
|
reindexed = self.frame.loc[[("foo", "one"), ("bar", "one")]]
|
|
tm.assert_frame_equal(reindexed, expected)
|
|
|
|
def test_reindex_preserve_levels(self):
|
|
new_index = self.ymd.index[::10]
|
|
chunk = self.ymd.reindex(new_index)
|
|
assert chunk.index is new_index
|
|
|
|
chunk = self.ymd.loc[new_index]
|
|
assert chunk.index is new_index
|
|
|
|
ymdT = self.ymd.T
|
|
chunk = ymdT.reindex(columns=new_index)
|
|
assert chunk.columns is new_index
|
|
|
|
chunk = ymdT.loc[:, new_index]
|
|
assert chunk.columns is new_index
|
|
|
|
def test_repr_to_string(self):
|
|
repr(self.frame)
|
|
repr(self.ymd)
|
|
repr(self.frame.T)
|
|
repr(self.ymd.T)
|
|
|
|
buf = StringIO()
|
|
self.frame.to_string(buf=buf)
|
|
self.ymd.to_string(buf=buf)
|
|
self.frame.T.to_string(buf=buf)
|
|
self.ymd.T.to_string(buf=buf)
|
|
|
|
def test_repr_name_coincide(self):
|
|
index = MultiIndex.from_tuples(
|
|
[("a", 0, "foo"), ("b", 1, "bar")], names=["a", "b", "c"]
|
|
)
|
|
|
|
df = DataFrame({"value": [0, 1]}, index=index)
|
|
|
|
lines = repr(df).split("\n")
|
|
assert lines[2].startswith("a 0 foo")
|
|
|
|
def test_delevel_infer_dtype(self):
|
|
tuples = list(product(["foo", "bar"], [10, 20], [1.0, 1.1]))
|
|
index = MultiIndex.from_tuples(tuples, names=["prm0", "prm1", "prm2"])
|
|
df = DataFrame(np.random.randn(8, 3), columns=["A", "B", "C"], index=index)
|
|
deleveled = df.reset_index()
|
|
assert is_integer_dtype(deleveled["prm1"])
|
|
assert is_float_dtype(deleveled["prm2"])
|
|
|
|
def test_reset_index_with_drop(self):
|
|
deleveled = self.ymd.reset_index(drop=True)
|
|
assert len(deleveled.columns) == len(self.ymd.columns)
|
|
assert deleveled.index.name == self.ymd.index.name
|
|
|
|
deleveled = self.series.reset_index()
|
|
assert isinstance(deleveled, DataFrame)
|
|
assert len(deleveled.columns) == len(self.series.index.levels) + 1
|
|
assert deleveled.index.name == self.series.index.name
|
|
|
|
deleveled = self.series.reset_index(drop=True)
|
|
assert isinstance(deleveled, Series)
|
|
assert deleveled.index.name == self.series.index.name
|
|
|
|
def test_count_level(self):
|
|
def _check_counts(frame, axis=0):
|
|
index = frame._get_axis(axis)
|
|
for i in range(index.nlevels):
|
|
result = frame.count(axis=axis, level=i)
|
|
expected = frame.groupby(axis=axis, level=i).count()
|
|
expected = expected.reindex_like(result).astype("i8")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
self.frame.iloc[1, [1, 2]] = np.nan
|
|
self.frame.iloc[7, [0, 1]] = np.nan
|
|
self.ymd.iloc[1, [1, 2]] = np.nan
|
|
self.ymd.iloc[7, [0, 1]] = np.nan
|
|
|
|
_check_counts(self.frame)
|
|
_check_counts(self.ymd)
|
|
_check_counts(self.frame.T, axis=1)
|
|
_check_counts(self.ymd.T, axis=1)
|
|
|
|
# can't call with level on regular DataFrame
|
|
df = tm.makeTimeDataFrame()
|
|
with pytest.raises(TypeError, match="hierarchical"):
|
|
df.count(level=0)
|
|
|
|
self.frame["D"] = "foo"
|
|
result = self.frame.count(level=0, numeric_only=True)
|
|
tm.assert_index_equal(result.columns, Index(list("ABC"), name="exp"))
|
|
|
|
def test_count_index_with_nan(self):
|
|
# https://github.com/pandas-dev/pandas/issues/21824
|
|
df = DataFrame(
|
|
{
|
|
"Person": ["John", "Myla", None, "John", "Myla"],
|
|
"Age": [24.0, 5, 21.0, 33, 26],
|
|
"Single": [False, True, True, True, False],
|
|
}
|
|
)
|
|
|
|
# count on row labels
|
|
res = df.set_index(["Person", "Single"]).count(level="Person")
|
|
expected = DataFrame(
|
|
index=Index(["John", "Myla"], name="Person"),
|
|
columns=Index(["Age"]),
|
|
data=[2, 2],
|
|
)
|
|
tm.assert_frame_equal(res, expected)
|
|
|
|
# count on column labels
|
|
res = df.set_index(["Person", "Single"]).T.count(level="Person", axis=1)
|
|
expected = DataFrame(
|
|
columns=Index(["John", "Myla"], name="Person"),
|
|
index=Index(["Age"]),
|
|
data=[[2, 2]],
|
|
)
|
|
tm.assert_frame_equal(res, expected)
|
|
|
|
def test_count_level_series(self):
|
|
index = MultiIndex(
|
|
levels=[["foo", "bar", "baz"], ["one", "two", "three", "four"]],
|
|
codes=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]],
|
|
)
|
|
|
|
s = Series(np.random.randn(len(index)), index=index)
|
|
|
|
result = s.count(level=0)
|
|
expected = s.groupby(level=0).count()
|
|
tm.assert_series_equal(
|
|
result.astype("f8"), expected.reindex(result.index).fillna(0)
|
|
)
|
|
|
|
result = s.count(level=1)
|
|
expected = s.groupby(level=1).count()
|
|
tm.assert_series_equal(
|
|
result.astype("f8"), expected.reindex(result.index).fillna(0)
|
|
)
|
|
|
|
def test_count_level_corner(self):
|
|
s = self.frame["A"][:0]
|
|
result = s.count(level=0)
|
|
expected = Series(0, index=s.index.levels[0], name="A")
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
df = self.frame[:0]
|
|
result = df.count(level=0)
|
|
expected = (
|
|
DataFrame(index=s.index.levels[0].set_names(["first"]), columns=df.columns)
|
|
.fillna(0)
|
|
.astype(np.int64)
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_get_level_number_out_of_bounds(self):
|
|
with pytest.raises(IndexError, match="Too many levels"):
|
|
self.frame.index._get_level_number(2)
|
|
with pytest.raises(IndexError, match="not a valid level number"):
|
|
self.frame.index._get_level_number(-3)
|
|
|
|
def test_unstack(self):
|
|
# just check that it works for now
|
|
unstacked = self.ymd.unstack()
|
|
unstacked.unstack()
|
|
|
|
# test that ints work
|
|
self.ymd.astype(int).unstack()
|
|
|
|
# test that int32 work
|
|
self.ymd.astype(np.int32).unstack()
|
|
|
|
@pytest.mark.parametrize(
|
|
"result_rows,result_columns,index_product,expected_row",
|
|
[
|
|
(
|
|
[[1, 1, None, None, 30.0, None], [2, 2, None, None, 30.0, None]],
|
|
["ix1", "ix2", "col1", "col2", "col3", "col4"],
|
|
2,
|
|
[None, None, 30.0, None],
|
|
),
|
|
(
|
|
[[1, 1, None, None, 30.0], [2, 2, None, None, 30.0]],
|
|
["ix1", "ix2", "col1", "col2", "col3"],
|
|
2,
|
|
[None, None, 30.0],
|
|
),
|
|
(
|
|
[[1, 1, None, None, 30.0], [2, None, None, None, 30.0]],
|
|
["ix1", "ix2", "col1", "col2", "col3"],
|
|
None,
|
|
[None, None, 30.0],
|
|
),
|
|
],
|
|
)
|
|
def test_unstack_partial(
|
|
self, result_rows, result_columns, index_product, expected_row
|
|
):
|
|
# check for regressions on this issue:
|
|
# https://github.com/pandas-dev/pandas/issues/19351
|
|
# make sure DataFrame.unstack() works when its run on a subset of the DataFrame
|
|
# and the Index levels contain values that are not present in the subset
|
|
result = pd.DataFrame(result_rows, columns=result_columns).set_index(
|
|
["ix1", "ix2"]
|
|
)
|
|
result = result.iloc[1:2].unstack("ix2")
|
|
expected = pd.DataFrame(
|
|
[expected_row],
|
|
columns=pd.MultiIndex.from_product(
|
|
[result_columns[2:], [index_product]], names=[None, "ix2"]
|
|
),
|
|
index=pd.Index([2], name="ix1"),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_unstack_multiple_no_empty_columns(self):
|
|
index = MultiIndex.from_tuples(
|
|
[(0, "foo", 0), (0, "bar", 0), (1, "baz", 1), (1, "qux", 1)]
|
|
)
|
|
|
|
s = Series(np.random.randn(4), index=index)
|
|
|
|
unstacked = s.unstack([1, 2])
|
|
expected = unstacked.dropna(axis=1, how="all")
|
|
tm.assert_frame_equal(unstacked, expected)
|
|
|
|
def test_stack(self):
|
|
# regular roundtrip
|
|
unstacked = self.ymd.unstack()
|
|
restacked = unstacked.stack()
|
|
tm.assert_frame_equal(restacked, self.ymd)
|
|
|
|
unlexsorted = self.ymd.sort_index(level=2)
|
|
|
|
unstacked = unlexsorted.unstack(2)
|
|
restacked = unstacked.stack()
|
|
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
|
|
|
|
unlexsorted = unlexsorted[::-1]
|
|
unstacked = unlexsorted.unstack(1)
|
|
restacked = unstacked.stack().swaplevel(1, 2)
|
|
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
|
|
|
|
unlexsorted = unlexsorted.swaplevel(0, 1)
|
|
unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1)
|
|
restacked = unstacked.stack(0).swaplevel(1, 2)
|
|
tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd)
|
|
|
|
# columns unsorted
|
|
unstacked = self.ymd.unstack()
|
|
unstacked = unstacked.sort_index(axis=1, ascending=False)
|
|
restacked = unstacked.stack()
|
|
tm.assert_frame_equal(restacked, self.ymd)
|
|
|
|
# more than 2 levels in the columns
|
|
unstacked = self.ymd.unstack(1).unstack(1)
|
|
|
|
result = unstacked.stack(1)
|
|
expected = self.ymd.unstack()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = unstacked.stack(2)
|
|
expected = self.ymd.unstack(1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = unstacked.stack(0)
|
|
expected = self.ymd.stack().unstack(1).unstack(1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# not all levels present in each echelon
|
|
unstacked = self.ymd.unstack(2).loc[:, ::3]
|
|
stacked = unstacked.stack().stack()
|
|
ymd_stacked = self.ymd.stack()
|
|
tm.assert_series_equal(stacked, ymd_stacked.reindex(stacked.index))
|
|
|
|
# stack with negative number
|
|
result = self.ymd.unstack(0).stack(-2)
|
|
expected = self.ymd.unstack(0).stack(0)
|
|
|
|
# GH10417
|
|
def check(left, right):
|
|
tm.assert_series_equal(left, right)
|
|
assert left.index.is_unique is False
|
|
li, ri = left.index, right.index
|
|
tm.assert_index_equal(li, ri)
|
|
|
|
df = DataFrame(
|
|
np.arange(12).reshape(4, 3),
|
|
index=list("abab"),
|
|
columns=["1st", "2nd", "3rd"],
|
|
)
|
|
|
|
mi = MultiIndex(
|
|
levels=[["a", "b"], ["1st", "2nd", "3rd"]],
|
|
codes=[np.tile(np.arange(2).repeat(3), 2), np.tile(np.arange(3), 4)],
|
|
)
|
|
|
|
left, right = df.stack(), Series(np.arange(12), index=mi)
|
|
check(left, right)
|
|
|
|
df.columns = ["1st", "2nd", "1st"]
|
|
mi = MultiIndex(
|
|
levels=[["a", "b"], ["1st", "2nd"]],
|
|
codes=[np.tile(np.arange(2).repeat(3), 2), np.tile([0, 1, 0], 4)],
|
|
)
|
|
|
|
left, right = df.stack(), Series(np.arange(12), index=mi)
|
|
check(left, right)
|
|
|
|
tpls = ("a", 2), ("b", 1), ("a", 1), ("b", 2)
|
|
df.index = MultiIndex.from_tuples(tpls)
|
|
mi = MultiIndex(
|
|
levels=[["a", "b"], [1, 2], ["1st", "2nd"]],
|
|
codes=[
|
|
np.tile(np.arange(2).repeat(3), 2),
|
|
np.repeat([1, 0, 1], [3, 6, 3]),
|
|
np.tile([0, 1, 0], 4),
|
|
],
|
|
)
|
|
|
|
left, right = df.stack(), Series(np.arange(12), index=mi)
|
|
check(left, right)
|
|
|
|
def test_unstack_odd_failure(self):
|
|
data = """day,time,smoker,sum,len
|
|
Fri,Dinner,No,8.25,3.
|
|
Fri,Dinner,Yes,27.03,9
|
|
Fri,Lunch,No,3.0,1
|
|
Fri,Lunch,Yes,13.68,6
|
|
Sat,Dinner,No,139.63,45
|
|
Sat,Dinner,Yes,120.77,42
|
|
Sun,Dinner,No,180.57,57
|
|
Sun,Dinner,Yes,66.82,19
|
|
Thur,Dinner,No,3.0,1
|
|
Thur,Lunch,No,117.32,44
|
|
Thur,Lunch,Yes,51.51,17"""
|
|
|
|
df = pd.read_csv(StringIO(data)).set_index(["day", "time", "smoker"])
|
|
|
|
# it works, #2100
|
|
result = df.unstack(2)
|
|
|
|
recons = result.stack()
|
|
tm.assert_frame_equal(recons, df)
|
|
|
|
def test_stack_mixed_dtype(self):
|
|
df = self.frame.T
|
|
df["foo", "four"] = "foo"
|
|
df = df.sort_index(level=1, axis=1)
|
|
|
|
stacked = df.stack()
|
|
result = df["foo"].stack().sort_index()
|
|
tm.assert_series_equal(stacked["foo"], result, check_names=False)
|
|
assert result.name is None
|
|
assert stacked["bar"].dtype == np.float_
|
|
|
|
def test_unstack_bug(self):
|
|
df = DataFrame(
|
|
{
|
|
"state": ["naive", "naive", "naive", "activ", "activ", "activ"],
|
|
"exp": ["a", "b", "b", "b", "a", "a"],
|
|
"barcode": [1, 2, 3, 4, 1, 3],
|
|
"v": ["hi", "hi", "bye", "bye", "bye", "peace"],
|
|
"extra": np.arange(6.0),
|
|
}
|
|
)
|
|
|
|
result = df.groupby(["state", "exp", "barcode", "v"]).apply(len)
|
|
|
|
unstacked = result.unstack()
|
|
restacked = unstacked.stack()
|
|
tm.assert_series_equal(restacked, result.reindex(restacked.index).astype(float))
|
|
|
|
def test_stack_unstack_preserve_names(self):
|
|
unstacked = self.frame.unstack()
|
|
assert unstacked.index.name == "first"
|
|
assert unstacked.columns.names == ["exp", "second"]
|
|
|
|
restacked = unstacked.stack()
|
|
assert restacked.index.names == self.frame.index.names
|
|
|
|
@pytest.mark.parametrize("method", ["stack", "unstack"])
|
|
def test_stack_unstack_wrong_level_name(self, method):
|
|
# GH 18303 - wrong level name should raise
|
|
|
|
# A DataFrame with flat axes:
|
|
df = self.frame.loc["foo"]
|
|
|
|
with pytest.raises(KeyError, match="does not match index name"):
|
|
getattr(df, method)("mistake")
|
|
|
|
if method == "unstack":
|
|
# Same on a Series:
|
|
s = df.iloc[:, 0]
|
|
with pytest.raises(KeyError, match="does not match index name"):
|
|
getattr(s, method)("mistake")
|
|
|
|
def test_unused_level_raises(self):
|
|
# GH 20410
|
|
mi = MultiIndex(
|
|
levels=[["a_lot", "onlyone", "notevenone"], [1970, ""]],
|
|
codes=[[1, 0], [1, 0]],
|
|
)
|
|
df = DataFrame(-1, index=range(3), columns=mi)
|
|
|
|
with pytest.raises(KeyError, match="notevenone"):
|
|
df["notevenone"]
|
|
|
|
def test_unstack_level_name(self):
|
|
result = self.frame.unstack("second")
|
|
expected = self.frame.unstack(level=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_stack_level_name(self):
|
|
unstacked = self.frame.unstack("second")
|
|
result = unstacked.stack("exp")
|
|
expected = self.frame.unstack().stack(0)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = self.frame.stack("exp")
|
|
expected = self.frame.stack()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_stack_unstack_multiple(self):
|
|
unstacked = self.ymd.unstack(["year", "month"])
|
|
expected = self.ymd.unstack("year").unstack("month")
|
|
tm.assert_frame_equal(unstacked, expected)
|
|
assert unstacked.columns.names == expected.columns.names
|
|
|
|
# series
|
|
s = self.ymd["A"]
|
|
s_unstacked = s.unstack(["year", "month"])
|
|
tm.assert_frame_equal(s_unstacked, expected["A"])
|
|
|
|
restacked = unstacked.stack(["year", "month"])
|
|
restacked = restacked.swaplevel(0, 1).swaplevel(1, 2)
|
|
restacked = restacked.sort_index(level=0)
|
|
|
|
tm.assert_frame_equal(restacked, self.ymd)
|
|
assert restacked.index.names == self.ymd.index.names
|
|
|
|
# GH #451
|
|
unstacked = self.ymd.unstack([1, 2])
|
|
expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how="all")
|
|
tm.assert_frame_equal(unstacked, expected)
|
|
|
|
unstacked = self.ymd.unstack([2, 1])
|
|
expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how="all")
|
|
tm.assert_frame_equal(unstacked, expected.loc[:, unstacked.columns])
|
|
|
|
def test_stack_names_and_numbers(self):
|
|
unstacked = self.ymd.unstack(["year", "month"])
|
|
|
|
# Can't use mixture of names and numbers to stack
|
|
with pytest.raises(ValueError, match="level should contain"):
|
|
unstacked.stack([0, "month"])
|
|
|
|
def test_stack_multiple_out_of_bounds(self):
|
|
# nlevels == 3
|
|
unstacked = self.ymd.unstack(["year", "month"])
|
|
|
|
with pytest.raises(IndexError, match="Too many levels"):
|
|
unstacked.stack([2, 3])
|
|
with pytest.raises(IndexError, match="not a valid level number"):
|
|
unstacked.stack([-4, -3])
|
|
|
|
def test_unstack_period_series(self):
|
|
# GH 4342
|
|
idx1 = pd.PeriodIndex(
|
|
["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"],
|
|
freq="M",
|
|
name="period",
|
|
)
|
|
idx2 = Index(["A", "B"] * 3, name="str")
|
|
value = [1, 2, 3, 4, 5, 6]
|
|
|
|
idx = MultiIndex.from_arrays([idx1, idx2])
|
|
s = Series(value, index=idx)
|
|
|
|
result1 = s.unstack()
|
|
result2 = s.unstack(level=1)
|
|
result3 = s.unstack(level=0)
|
|
|
|
e_idx = pd.PeriodIndex(
|
|
["2013-01", "2013-02", "2013-03"], freq="M", name="period"
|
|
)
|
|
expected = DataFrame(
|
|
{"A": [1, 3, 5], "B": [2, 4, 6]}, index=e_idx, columns=["A", "B"]
|
|
)
|
|
expected.columns.name = "str"
|
|
|
|
tm.assert_frame_equal(result1, expected)
|
|
tm.assert_frame_equal(result2, expected)
|
|
tm.assert_frame_equal(result3, expected.T)
|
|
|
|
idx1 = pd.PeriodIndex(
|
|
["2013-01", "2013-01", "2013-02", "2013-02", "2013-03", "2013-03"],
|
|
freq="M",
|
|
name="period1",
|
|
)
|
|
|
|
idx2 = pd.PeriodIndex(
|
|
["2013-12", "2013-11", "2013-10", "2013-09", "2013-08", "2013-07"],
|
|
freq="M",
|
|
name="period2",
|
|
)
|
|
idx = MultiIndex.from_arrays([idx1, idx2])
|
|
s = Series(value, index=idx)
|
|
|
|
result1 = s.unstack()
|
|
result2 = s.unstack(level=1)
|
|
result3 = s.unstack(level=0)
|
|
|
|
e_idx = pd.PeriodIndex(
|
|
["2013-01", "2013-02", "2013-03"], freq="M", name="period1"
|
|
)
|
|
e_cols = pd.PeriodIndex(
|
|
["2013-07", "2013-08", "2013-09", "2013-10", "2013-11", "2013-12"],
|
|
freq="M",
|
|
name="period2",
|
|
)
|
|
expected = DataFrame(
|
|
[
|
|
[np.nan, np.nan, np.nan, np.nan, 2, 1],
|
|
[np.nan, np.nan, 4, 3, np.nan, np.nan],
|
|
[6, 5, np.nan, np.nan, np.nan, np.nan],
|
|
],
|
|
index=e_idx,
|
|
columns=e_cols,
|
|
)
|
|
|
|
tm.assert_frame_equal(result1, expected)
|
|
tm.assert_frame_equal(result2, expected)
|
|
tm.assert_frame_equal(result3, expected.T)
|
|
|
|
def test_unstack_period_frame(self):
|
|
# GH 4342
|
|
idx1 = pd.PeriodIndex(
|
|
["2014-01", "2014-02", "2014-02", "2014-02", "2014-01", "2014-01"],
|
|
freq="M",
|
|
name="period1",
|
|
)
|
|
idx2 = pd.PeriodIndex(
|
|
["2013-12", "2013-12", "2014-02", "2013-10", "2013-10", "2014-02"],
|
|
freq="M",
|
|
name="period2",
|
|
)
|
|
value = {"A": [1, 2, 3, 4, 5, 6], "B": [6, 5, 4, 3, 2, 1]}
|
|
idx = MultiIndex.from_arrays([idx1, idx2])
|
|
df = DataFrame(value, index=idx)
|
|
|
|
result1 = df.unstack()
|
|
result2 = df.unstack(level=1)
|
|
result3 = df.unstack(level=0)
|
|
|
|
e_1 = pd.PeriodIndex(["2014-01", "2014-02"], freq="M", name="period1")
|
|
e_2 = pd.PeriodIndex(
|
|
["2013-10", "2013-12", "2014-02", "2013-10", "2013-12", "2014-02"],
|
|
freq="M",
|
|
name="period2",
|
|
)
|
|
e_cols = MultiIndex.from_arrays(["A A A B B B".split(), e_2])
|
|
expected = DataFrame(
|
|
[[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols
|
|
)
|
|
|
|
tm.assert_frame_equal(result1, expected)
|
|
tm.assert_frame_equal(result2, expected)
|
|
|
|
e_1 = pd.PeriodIndex(
|
|
["2014-01", "2014-02", "2014-01", "2014-02"], freq="M", name="period1"
|
|
)
|
|
e_2 = pd.PeriodIndex(
|
|
["2013-10", "2013-12", "2014-02"], freq="M", name="period2"
|
|
)
|
|
e_cols = MultiIndex.from_arrays(["A A B B".split(), e_1])
|
|
expected = DataFrame(
|
|
[[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols
|
|
)
|
|
|
|
tm.assert_frame_equal(result3, expected)
|
|
|
|
def test_stack_multiple_bug(self):
|
|
""" bug when some uniques are not present in the data #3170"""
|
|
id_col = ([1] * 3) + ([2] * 3)
|
|
name = (["a"] * 3) + (["b"] * 3)
|
|
date = pd.to_datetime(["2013-01-03", "2013-01-04", "2013-01-05"] * 2)
|
|
var1 = np.random.randint(0, 100, 6)
|
|
df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1))
|
|
|
|
multi = df.set_index(["DATE", "ID"])
|
|
multi.columns.name = "Params"
|
|
unst = multi.unstack("ID")
|
|
down = unst.resample("W-THU").mean()
|
|
|
|
rs = down.stack("ID")
|
|
xp = unst.loc[:, ["VAR1"]].resample("W-THU").mean().stack("ID")
|
|
xp.columns.name = "Params"
|
|
tm.assert_frame_equal(rs, xp)
|
|
|
|
def test_stack_dropna(self):
|
|
# GH #3997
|
|
df = DataFrame({"A": ["a1", "a2"], "B": ["b1", "b2"], "C": [1, 1]})
|
|
df = df.set_index(["A", "B"])
|
|
|
|
stacked = df.unstack().stack(dropna=False)
|
|
assert len(stacked) > len(stacked.dropna())
|
|
|
|
stacked = df.unstack().stack(dropna=True)
|
|
tm.assert_frame_equal(stacked, stacked.dropna())
|
|
|
|
def test_unstack_multiple_hierarchical(self):
|
|
df = DataFrame(
|
|
index=[
|
|
[0, 0, 0, 0, 1, 1, 1, 1],
|
|
[0, 0, 1, 1, 0, 0, 1, 1],
|
|
[0, 1, 0, 1, 0, 1, 0, 1],
|
|
],
|
|
columns=[[0, 0, 1, 1], [0, 1, 0, 1]],
|
|
)
|
|
|
|
df.index.names = ["a", "b", "c"]
|
|
df.columns.names = ["d", "e"]
|
|
|
|
# it works!
|
|
df.unstack(["b", "c"])
|
|
|
|
def test_groupby_transform(self):
|
|
s = self.frame["A"]
|
|
grouper = s.index.get_level_values(0)
|
|
|
|
grouped = s.groupby(grouper)
|
|
|
|
applied = grouped.apply(lambda x: x * 2)
|
|
expected = grouped.transform(lambda x: x * 2)
|
|
result = applied.reindex(expected.index)
|
|
tm.assert_series_equal(result, expected, check_names=False)
|
|
|
|
def test_unstack_sparse_keyspace(self):
|
|
# memory problems with naive impl #2278
|
|
# Generate Long File & Test Pivot
|
|
NUM_ROWS = 1000
|
|
|
|
df = DataFrame(
|
|
{
|
|
"A": np.random.randint(100, size=NUM_ROWS),
|
|
"B": np.random.randint(300, size=NUM_ROWS),
|
|
"C": np.random.randint(-7, 7, size=NUM_ROWS),
|
|
"D": np.random.randint(-19, 19, size=NUM_ROWS),
|
|
"E": np.random.randint(3000, size=NUM_ROWS),
|
|
"F": np.random.randn(NUM_ROWS),
|
|
}
|
|
)
|
|
|
|
idf = df.set_index(["A", "B", "C", "D", "E"])
|
|
|
|
# it works! is sufficient
|
|
idf.unstack("E")
|
|
|
|
def test_unstack_unobserved_keys(self):
|
|
# related to #2278 refactoring
|
|
levels = [[0, 1], [0, 1, 2, 3]]
|
|
codes = [[0, 0, 1, 1], [0, 2, 0, 2]]
|
|
|
|
index = MultiIndex(levels, codes)
|
|
|
|
df = DataFrame(np.random.randn(4, 2), index=index)
|
|
|
|
result = df.unstack()
|
|
assert len(result.columns) == 4
|
|
|
|
recons = result.stack()
|
|
tm.assert_frame_equal(recons, df)
|
|
|
|
@pytest.mark.slow
|
|
def test_unstack_number_of_levels_larger_than_int32(self):
|
|
# GH 20601
|
|
df = DataFrame(
|
|
np.random.randn(2 ** 16, 2), index=[np.arange(2 ** 16), np.arange(2 ** 16)]
|
|
)
|
|
with pytest.raises(ValueError, match="int32 overflow"):
|
|
df.unstack()
|
|
|
|
def test_stack_order_with_unsorted_levels(self):
|
|
# GH 16323
|
|
|
|
def manual_compare_stacked(df, df_stacked, lev0, lev1):
|
|
assert all(
|
|
df.loc[row, col] == df_stacked.loc[(row, col[lev0]), col[lev1]]
|
|
for row in df.index
|
|
for col in df.columns
|
|
)
|
|
|
|
# deep check for 1-row case
|
|
for width in [2, 3]:
|
|
levels_poss = itertools.product(
|
|
itertools.permutations([0, 1, 2], width), repeat=2
|
|
)
|
|
|
|
for levels in levels_poss:
|
|
columns = MultiIndex(levels=levels, codes=[[0, 0, 1, 1], [0, 1, 0, 1]])
|
|
df = DataFrame(columns=columns, data=[range(4)])
|
|
for stack_lev in range(2):
|
|
df_stacked = df.stack(stack_lev)
|
|
manual_compare_stacked(df, df_stacked, stack_lev, 1 - stack_lev)
|
|
|
|
# check multi-row case
|
|
mi = MultiIndex(
|
|
levels=[["A", "C", "B"], ["B", "A", "C"]],
|
|
codes=[np.repeat(range(3), 3), np.tile(range(3), 3)],
|
|
)
|
|
df = DataFrame(
|
|
columns=mi, index=range(5), data=np.arange(5 * len(mi)).reshape(5, -1)
|
|
)
|
|
manual_compare_stacked(df, df.stack(0), 0, 1)
|
|
|
|
def test_stack_unstack_unordered_multiindex(self):
|
|
# GH 18265
|
|
values = np.arange(5)
|
|
data = np.vstack(
|
|
[
|
|
[f"b{x}" for x in values], # b0, b1, ..
|
|
[f"a{x}" for x in values], # a0, a1, ..
|
|
]
|
|
)
|
|
df = pd.DataFrame(data.T, columns=["b", "a"])
|
|
df.columns.name = "first"
|
|
second_level_dict = {"x": df}
|
|
multi_level_df = pd.concat(second_level_dict, axis=1)
|
|
multi_level_df.columns.names = ["second", "first"]
|
|
df = multi_level_df.reindex(sorted(multi_level_df.columns), axis=1)
|
|
result = df.stack(["first", "second"]).unstack(["first", "second"])
|
|
expected = DataFrame(
|
|
[["a0", "b0"], ["a1", "b1"], ["a2", "b2"], ["a3", "b3"], ["a4", "b4"]],
|
|
index=[0, 1, 2, 3, 4],
|
|
columns=MultiIndex.from_tuples(
|
|
[("a", "x"), ("b", "x")], names=["first", "second"]
|
|
),
|
|
)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_groupby_corner(self):
|
|
midx = MultiIndex(
|
|
levels=[["foo"], ["bar"], ["baz"]],
|
|
codes=[[0], [0], [0]],
|
|
names=["one", "two", "three"],
|
|
)
|
|
df = DataFrame([np.random.rand(4)], columns=["a", "b", "c", "d"], index=midx)
|
|
# should work
|
|
df.groupby(level="three")
|
|
|
|
def test_groupby_level_no_obs(self):
|
|
# #1697
|
|
midx = MultiIndex.from_tuples(
|
|
[
|
|
("f1", "s1"),
|
|
("f1", "s2"),
|
|
("f2", "s1"),
|
|
("f2", "s2"),
|
|
("f3", "s1"),
|
|
("f3", "s2"),
|
|
]
|
|
)
|
|
df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx)
|
|
df1 = df.loc(axis=1)[df.columns.map(lambda u: u[0] in ["f2", "f3"])]
|
|
|
|
grouped = df1.groupby(axis=1, level=0)
|
|
result = grouped.sum()
|
|
assert (result.columns == ["f2", "f3"]).all()
|
|
|
|
def test_join(self):
|
|
a = self.frame.loc[self.frame.index[:5], ["A"]]
|
|
b = self.frame.loc[self.frame.index[2:], ["B", "C"]]
|
|
|
|
joined = a.join(b, how="outer").reindex(self.frame.index)
|
|
expected = self.frame.copy()
|
|
expected.values[np.isnan(joined.values)] = np.nan
|
|
|
|
assert not np.isnan(joined.values).all()
|
|
|
|
# TODO what should join do with names ?
|
|
tm.assert_frame_equal(joined, expected, check_names=False)
|
|
|
|
def test_swaplevel(self):
|
|
swapped = self.frame["A"].swaplevel()
|
|
swapped2 = self.frame["A"].swaplevel(0)
|
|
swapped3 = self.frame["A"].swaplevel(0, 1)
|
|
swapped4 = self.frame["A"].swaplevel("first", "second")
|
|
assert not swapped.index.equals(self.frame.index)
|
|
tm.assert_series_equal(swapped, swapped2)
|
|
tm.assert_series_equal(swapped, swapped3)
|
|
tm.assert_series_equal(swapped, swapped4)
|
|
|
|
back = swapped.swaplevel()
|
|
back2 = swapped.swaplevel(0)
|
|
back3 = swapped.swaplevel(0, 1)
|
|
back4 = swapped.swaplevel("second", "first")
|
|
assert back.index.equals(self.frame.index)
|
|
tm.assert_series_equal(back, back2)
|
|
tm.assert_series_equal(back, back3)
|
|
tm.assert_series_equal(back, back4)
|
|
|
|
ft = self.frame.T
|
|
swapped = ft.swaplevel("first", "second", axis=1)
|
|
exp = self.frame.swaplevel("first", "second").T
|
|
tm.assert_frame_equal(swapped, exp)
|
|
|
|
msg = "Can only swap levels on a hierarchical axis."
|
|
with pytest.raises(TypeError, match=msg):
|
|
DataFrame(range(3)).swaplevel()
|
|
|
|
def test_insert_index(self):
|
|
df = self.ymd[:5].T
|
|
df[2000, 1, 10] = df[2000, 1, 7]
|
|
assert isinstance(df.columns, MultiIndex)
|
|
assert (df[2000, 1, 10] == df[2000, 1, 7]).all()
|
|
|
|
def test_alignment(self):
|
|
x = Series(
|
|
data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])
|
|
)
|
|
|
|
y = Series(
|
|
data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])
|
|
)
|
|
|
|
res = x - y
|
|
exp_index = x.index.union(y.index)
|
|
exp = x.reindex(exp_index) - y.reindex(exp_index)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
# hit non-monotonic code path
|
|
res = x[::-1] - y[::-1]
|
|
exp_index = x.index.union(y.index)
|
|
exp = x.reindex(exp_index) - y.reindex(exp_index)
|
|
tm.assert_series_equal(res, exp)
|
|
|
|
def test_count(self):
|
|
frame = self.frame.copy()
|
|
frame.index.names = ["a", "b"]
|
|
|
|
result = frame.count(level="b")
|
|
expect = self.frame.count(level=1)
|
|
tm.assert_frame_equal(result, expect, check_names=False)
|
|
|
|
result = frame.count(level="a")
|
|
expect = self.frame.count(level=0)
|
|
tm.assert_frame_equal(result, expect, check_names=False)
|
|
|
|
series = self.series.copy()
|
|
series.index.names = ["a", "b"]
|
|
|
|
result = series.count(level="b")
|
|
expect = self.series.count(level=1).rename_axis("b")
|
|
tm.assert_series_equal(result, expect)
|
|
|
|
result = series.count(level="a")
|
|
expect = self.series.count(level=0).rename_axis("a")
|
|
tm.assert_series_equal(result, expect)
|
|
|
|
msg = "Level x not found"
|
|
with pytest.raises(KeyError, match=msg):
|
|
series.count("x")
|
|
with pytest.raises(KeyError, match=msg):
|
|
frame.count(level="x")
|
|
|
|
@pytest.mark.parametrize("op", AGG_FUNCTIONS)
|
|
@pytest.mark.parametrize("level", [0, 1])
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
@pytest.mark.parametrize("sort", [True, False])
|
|
def test_series_group_min_max(self, op, level, skipna, sort):
|
|
# GH 17537
|
|
grouped = self.series.groupby(level=level, sort=sort)
|
|
# skipna=True
|
|
leftside = grouped.agg(lambda x: getattr(x, op)(skipna=skipna))
|
|
rightside = getattr(self.series, op)(level=level, skipna=skipna)
|
|
if sort:
|
|
rightside = rightside.sort_index(level=level)
|
|
tm.assert_series_equal(leftside, rightside)
|
|
|
|
@pytest.mark.parametrize("op", AGG_FUNCTIONS)
|
|
@pytest.mark.parametrize("level", [0, 1])
|
|
@pytest.mark.parametrize("axis", [0, 1])
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
@pytest.mark.parametrize("sort", [True, False])
|
|
def test_frame_group_ops(self, op, level, axis, skipna, sort):
|
|
# GH 17537
|
|
self.frame.iloc[1, [1, 2]] = np.nan
|
|
self.frame.iloc[7, [0, 1]] = np.nan
|
|
|
|
level_name = self.frame.index.names[level]
|
|
|
|
if axis == 0:
|
|
frame = self.frame
|
|
else:
|
|
frame = self.frame.T
|
|
|
|
grouped = frame.groupby(level=level, axis=axis, sort=sort)
|
|
|
|
pieces = []
|
|
|
|
def aggf(x):
|
|
pieces.append(x)
|
|
return getattr(x, op)(skipna=skipna, axis=axis)
|
|
|
|
leftside = grouped.agg(aggf)
|
|
rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna)
|
|
if sort:
|
|
rightside = rightside.sort_index(level=level, axis=axis)
|
|
frame = frame.sort_index(level=level, axis=axis)
|
|
|
|
# for good measure, groupby detail
|
|
level_index = frame._get_axis(axis).levels[level].rename(level_name)
|
|
|
|
tm.assert_index_equal(leftside._get_axis(axis), level_index)
|
|
tm.assert_index_equal(rightside._get_axis(axis), level_index)
|
|
|
|
tm.assert_frame_equal(leftside, rightside)
|
|
|
|
def test_stat_op_corner(self):
|
|
obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)]))
|
|
|
|
result = obj.sum(level=0)
|
|
expected = Series([10.0], index=[2])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_frame_any_all_group(self):
|
|
df = DataFrame(
|
|
{"data": [False, False, True, False, True, False, True]},
|
|
index=[
|
|
["one", "one", "two", "one", "two", "two", "two"],
|
|
[0, 1, 0, 2, 1, 2, 3],
|
|
],
|
|
)
|
|
|
|
result = df.any(level=0)
|
|
ex = DataFrame({"data": [False, True]}, index=["one", "two"])
|
|
tm.assert_frame_equal(result, ex)
|
|
|
|
result = df.all(level=0)
|
|
ex = DataFrame({"data": [False, False]}, index=["one", "two"])
|
|
tm.assert_frame_equal(result, ex)
|
|
|
|
def test_series_any_timedelta(self):
|
|
# GH 17667
|
|
df = DataFrame(
|
|
{
|
|
"a": Series([0, 0]),
|
|
"t": Series([pd.to_timedelta(0, "s"), pd.to_timedelta(1, "ms")]),
|
|
}
|
|
)
|
|
|
|
result = df.any(axis=0)
|
|
expected = Series(data=[False, True], index=["a", "t"])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = df.any(axis=1)
|
|
expected = Series(data=[False, True])
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_std_var_pass_ddof(self):
|
|
index = MultiIndex.from_arrays(
|
|
[np.arange(5).repeat(10), np.tile(np.arange(10), 5)]
|
|
)
|
|
df = DataFrame(np.random.randn(len(index), 5), index=index)
|
|
|
|
for meth in ["var", "std"]:
|
|
ddof = 4
|
|
alt = lambda x: getattr(x, meth)(ddof=ddof)
|
|
|
|
result = getattr(df[0], meth)(level=0, ddof=ddof)
|
|
expected = df[0].groupby(level=0).agg(alt)
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
result = getattr(df, meth)(level=0, ddof=ddof)
|
|
expected = df.groupby(level=0).agg(alt)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_frame_series_agg_multiple_levels(self):
|
|
result = self.ymd.sum(level=["year", "month"])
|
|
expected = self.ymd.groupby(level=["year", "month"]).sum()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = self.ymd["A"].sum(level=["year", "month"])
|
|
expected = self.ymd["A"].groupby(level=["year", "month"]).sum()
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
def test_groupby_multilevel(self):
|
|
result = self.ymd.groupby(level=[0, 1]).mean()
|
|
|
|
k1 = self.ymd.index.get_level_values(0)
|
|
k2 = self.ymd.index.get_level_values(1)
|
|
|
|
expected = self.ymd.groupby([k1, k2]).mean()
|
|
|
|
# TODO groupby with level_values drops names
|
|
tm.assert_frame_equal(result, expected, check_names=False)
|
|
assert result.index.names == self.ymd.index.names[:2]
|
|
|
|
result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean()
|
|
tm.assert_frame_equal(result, result2)
|
|
|
|
def test_groupby_multilevel_with_transform(self):
|
|
pass
|
|
|
|
def test_multilevel_consolidate(self):
|
|
index = MultiIndex.from_tuples(
|
|
[("foo", "one"), ("foo", "two"), ("bar", "one"), ("bar", "two")]
|
|
)
|
|
df = DataFrame(np.random.randn(4, 4), index=index, columns=index)
|
|
df["Totals", ""] = df.sum(1)
|
|
df = df._consolidate()
|
|
|
|
def test_loc_preserve_names(self):
|
|
result = self.ymd.loc[2000]
|
|
result2 = self.ymd["A"].loc[2000]
|
|
assert result.index.names == self.ymd.index.names[1:]
|
|
assert result2.index.names == self.ymd.index.names[1:]
|
|
|
|
result = self.ymd.loc[2000, 2]
|
|
result2 = self.ymd["A"].loc[2000, 2]
|
|
assert result.index.name == self.ymd.index.names[2]
|
|
assert result2.index.name == self.ymd.index.names[2]
|
|
|
|
def test_unstack_preserve_types(self):
|
|
# GH #403
|
|
self.ymd["E"] = "foo"
|
|
self.ymd["F"] = 2
|
|
|
|
unstacked = self.ymd.unstack("month")
|
|
assert unstacked["A", 1].dtype == np.float64
|
|
assert unstacked["E", 1].dtype == np.object_
|
|
assert unstacked["F", 1].dtype == np.float64
|
|
|
|
def test_unstack_group_index_overflow(self):
|
|
codes = np.tile(np.arange(500), 2)
|
|
level = np.arange(500)
|
|
|
|
index = MultiIndex(
|
|
levels=[level] * 8 + [[0, 1]],
|
|
codes=[codes] * 8 + [np.arange(2).repeat(500)],
|
|
)
|
|
|
|
s = Series(np.arange(1000), index=index)
|
|
result = s.unstack()
|
|
assert result.shape == (500, 2)
|
|
|
|
# test roundtrip
|
|
stacked = result.stack()
|
|
tm.assert_series_equal(s, stacked.reindex(s.index))
|
|
|
|
# put it at beginning
|
|
index = MultiIndex(
|
|
levels=[[0, 1]] + [level] * 8,
|
|
codes=[np.arange(2).repeat(500)] + [codes] * 8,
|
|
)
|
|
|
|
s = Series(np.arange(1000), index=index)
|
|
result = s.unstack(0)
|
|
assert result.shape == (500, 2)
|
|
|
|
# put it in middle
|
|
index = MultiIndex(
|
|
levels=[level] * 4 + [[0, 1]] + [level] * 4,
|
|
codes=([codes] * 4 + [np.arange(2).repeat(500)] + [codes] * 4),
|
|
)
|
|
|
|
s = Series(np.arange(1000), index=index)
|
|
result = s.unstack(4)
|
|
assert result.shape == (500, 2)
|
|
|
|
def test_to_html(self):
|
|
self.ymd.columns.name = "foo"
|
|
self.ymd.to_html()
|
|
self.ymd.T.to_html()
|
|
|
|
def test_level_with_tuples(self):
|
|
index = MultiIndex(
|
|
levels=[[("foo", "bar", 0), ("foo", "baz", 0), ("foo", "qux", 0)], [0, 1]],
|
|
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
|
|
)
|
|
|
|
series = Series(np.random.randn(6), index=index)
|
|
frame = DataFrame(np.random.randn(6, 4), index=index)
|
|
|
|
result = series[("foo", "bar", 0)]
|
|
result2 = series.loc[("foo", "bar", 0)]
|
|
expected = series[:2]
|
|
expected.index = expected.index.droplevel(0)
|
|
tm.assert_series_equal(result, expected)
|
|
tm.assert_series_equal(result2, expected)
|
|
|
|
with pytest.raises(KeyError, match=r"^\(\('foo', 'bar', 0\), 2\)$"):
|
|
series[("foo", "bar", 0), 2]
|
|
|
|
result = frame.loc[("foo", "bar", 0)]
|
|
result2 = frame.xs(("foo", "bar", 0))
|
|
expected = frame[:2]
|
|
expected.index = expected.index.droplevel(0)
|
|
tm.assert_frame_equal(result, expected)
|
|
tm.assert_frame_equal(result2, expected)
|
|
|
|
index = MultiIndex(
|
|
levels=[[("foo", "bar"), ("foo", "baz"), ("foo", "qux")], [0, 1]],
|
|
codes=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
|
|
)
|
|
|
|
series = Series(np.random.randn(6), index=index)
|
|
frame = DataFrame(np.random.randn(6, 4), index=index)
|
|
|
|
result = series[("foo", "bar")]
|
|
result2 = series.loc[("foo", "bar")]
|
|
expected = series[:2]
|
|
expected.index = expected.index.droplevel(0)
|
|
tm.assert_series_equal(result, expected)
|
|
tm.assert_series_equal(result2, expected)
|
|
|
|
result = frame.loc[("foo", "bar")]
|
|
result2 = frame.xs(("foo", "bar"))
|
|
expected = frame[:2]
|
|
expected.index = expected.index.droplevel(0)
|
|
tm.assert_frame_equal(result, expected)
|
|
tm.assert_frame_equal(result2, expected)
|
|
|
|
def test_mixed_depth_pop(self):
|
|
arrays = [
|
|
["a", "top", "top", "routine1", "routine1", "routine2"],
|
|
["", "OD", "OD", "result1", "result2", "result1"],
|
|
["", "wx", "wy", "", "", ""],
|
|
]
|
|
|
|
tuples = sorted(zip(*arrays))
|
|
index = MultiIndex.from_tuples(tuples)
|
|
df = DataFrame(randn(4, 6), columns=index)
|
|
|
|
df1 = df.copy()
|
|
df2 = df.copy()
|
|
result = df1.pop("a")
|
|
expected = df2.pop(("a", "", ""))
|
|
tm.assert_series_equal(expected, result, check_names=False)
|
|
tm.assert_frame_equal(df1, df2)
|
|
assert result.name == "a"
|
|
|
|
expected = df1["top"]
|
|
df1 = df1.drop(["top"], axis=1)
|
|
result = df2.pop("top")
|
|
tm.assert_frame_equal(expected, result)
|
|
tm.assert_frame_equal(df1, df2)
|
|
|
|
def test_reindex_level_partial_selection(self):
|
|
result = self.frame.reindex(["foo", "qux"], level=0)
|
|
expected = self.frame.iloc[[0, 1, 2, 7, 8, 9]]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = self.frame.T.reindex(["foo", "qux"], axis=1, level=0)
|
|
tm.assert_frame_equal(result, expected.T)
|
|
|
|
result = self.frame.loc[["foo", "qux"]]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = self.frame["A"].loc[["foo", "qux"]]
|
|
tm.assert_series_equal(result, expected["A"])
|
|
|
|
result = self.frame.T.loc[:, ["foo", "qux"]]
|
|
tm.assert_frame_equal(result, expected.T)
|
|
|
|
def test_unicode_repr_level_names(self):
|
|
index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=["\u0394", "i1"])
|
|
|
|
s = Series(range(2), index=index)
|
|
df = DataFrame(np.random.randn(2, 4), index=index)
|
|
repr(s)
|
|
repr(df)
|
|
|
|
def test_join_segfault(self):
|
|
# 1532
|
|
df1 = DataFrame({"a": [1, 1], "b": [1, 2], "x": [1, 2]})
|
|
df2 = DataFrame({"a": [2, 2], "b": [1, 2], "y": [1, 2]})
|
|
df1 = df1.set_index(["a", "b"])
|
|
df2 = df2.set_index(["a", "b"])
|
|
# it works!
|
|
for how in ["left", "right", "outer"]:
|
|
df1.join(df2, how=how)
|
|
|
|
def test_frame_dict_constructor_empty_series(self):
|
|
s1 = Series(
|
|
[1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (2, 2), (2, 4)])
|
|
)
|
|
s2 = Series(
|
|
[1, 2, 3, 4], index=MultiIndex.from_tuples([(1, 2), (1, 3), (3, 2), (3, 4)])
|
|
)
|
|
s3 = Series(dtype=object)
|
|
|
|
# it works!
|
|
DataFrame({"foo": s1, "bar": s2, "baz": s3})
|
|
DataFrame.from_dict({"foo": s1, "baz": s3, "bar": s2})
|
|
|
|
@pytest.mark.parametrize("d", [4, "d"])
|
|
def test_empty_frame_groupby_dtypes_consistency(self, d):
|
|
# GH 20888
|
|
group_keys = ["a", "b", "c"]
|
|
df = DataFrame({"a": [1], "b": [2], "c": [3], "d": [d]})
|
|
|
|
g = df[df.a == 2].groupby(group_keys)
|
|
result = g.first().index
|
|
expected = MultiIndex(
|
|
levels=[[1], [2], [3]], codes=[[], [], []], names=["a", "b", "c"]
|
|
)
|
|
|
|
tm.assert_index_equal(result, expected)
|
|
|
|
def test_multiindex_na_repr(self):
|
|
# only an issue with long columns
|
|
df3 = DataFrame(
|
|
{
|
|
"A" * 30: {("A", "A0006000", "nuit"): "A0006000"},
|
|
"B" * 30: {("A", "A0006000", "nuit"): np.nan},
|
|
"C" * 30: {("A", "A0006000", "nuit"): np.nan},
|
|
"D" * 30: {("A", "A0006000", "nuit"): np.nan},
|
|
"E" * 30: {("A", "A0006000", "nuit"): "A"},
|
|
"F" * 30: {("A", "A0006000", "nuit"): np.nan},
|
|
}
|
|
)
|
|
|
|
idf = df3.set_index(["A" * 30, "C" * 30])
|
|
repr(idf)
|
|
|
|
def test_assign_index_sequences(self):
|
|
# #2200
|
|
df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(
|
|
["a", "b"]
|
|
)
|
|
index = list(df.index)
|
|
index[0] = ("faz", "boo")
|
|
df.index = index
|
|
repr(df)
|
|
|
|
# this travels an improper code path
|
|
index[0] = ["faz", "boo"]
|
|
df.index = index
|
|
repr(df)
|
|
|
|
def test_duplicate_groupby_issues(self):
|
|
idx_tp = [
|
|
("600809", "20061231"),
|
|
("600809", "20070331"),
|
|
("600809", "20070630"),
|
|
("600809", "20070331"),
|
|
]
|
|
dt = ["demo", "demo", "demo", "demo"]
|
|
|
|
idx = MultiIndex.from_tuples(idx_tp, names=["STK_ID", "RPT_Date"])
|
|
s = Series(dt, index=idx)
|
|
|
|
result = s.groupby(s.index).first()
|
|
assert len(result) == 3
|
|
|
|
def test_duplicate_mi(self):
|
|
# GH 4516
|
|
df = DataFrame(
|
|
[
|
|
["foo", "bar", 1.0, 1],
|
|
["foo", "bar", 2.0, 2],
|
|
["bah", "bam", 3.0, 3],
|
|
["bah", "bam", 4.0, 4],
|
|
["foo", "bar", 5.0, 5],
|
|
["bah", "bam", 6.0, 6],
|
|
],
|
|
columns=list("ABCD"),
|
|
)
|
|
df = df.set_index(["A", "B"])
|
|
df = df.sort_index(level=0)
|
|
expected = DataFrame(
|
|
[["foo", "bar", 1.0, 1], ["foo", "bar", 2.0, 2], ["foo", "bar", 5.0, 5]],
|
|
columns=list("ABCD"),
|
|
).set_index(["A", "B"])
|
|
result = df.loc[("foo", "bar")]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_multiindex_set_index(self):
|
|
# segfault in #3308
|
|
d = {"t1": [2, 2.5, 3], "t2": [4, 5, 6]}
|
|
df = DataFrame(d)
|
|
tuples = [(0, 1), (0, 2), (1, 2)]
|
|
df["tuples"] = tuples
|
|
|
|
index = MultiIndex.from_tuples(df["tuples"])
|
|
# it works!
|
|
df.set_index(index)
|
|
|
|
def test_set_index_datetime(self):
|
|
# GH 3950
|
|
df = DataFrame(
|
|
{
|
|
"label": ["a", "a", "a", "b", "b", "b"],
|
|
"datetime": [
|
|
"2011-07-19 07:00:00",
|
|
"2011-07-19 08:00:00",
|
|
"2011-07-19 09:00:00",
|
|
"2011-07-19 07:00:00",
|
|
"2011-07-19 08:00:00",
|
|
"2011-07-19 09:00:00",
|
|
],
|
|
"value": range(6),
|
|
}
|
|
)
|
|
df.index = pd.to_datetime(df.pop("datetime"), utc=True)
|
|
df.index = df.index.tz_convert("US/Pacific")
|
|
|
|
expected = pd.DatetimeIndex(
|
|
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
|
|
name="datetime",
|
|
)
|
|
expected = expected.tz_localize("UTC").tz_convert("US/Pacific")
|
|
|
|
df = df.set_index("label", append=True)
|
|
tm.assert_index_equal(df.index.levels[0], expected)
|
|
tm.assert_index_equal(df.index.levels[1], Index(["a", "b"], name="label"))
|
|
assert df.index.names == ["datetime", "label"]
|
|
|
|
df = df.swaplevel(0, 1)
|
|
tm.assert_index_equal(df.index.levels[0], Index(["a", "b"], name="label"))
|
|
tm.assert_index_equal(df.index.levels[1], expected)
|
|
assert df.index.names == ["label", "datetime"]
|
|
|
|
df = DataFrame(np.random.random(6))
|
|
idx1 = pd.DatetimeIndex(
|
|
[
|
|
"2011-07-19 07:00:00",
|
|
"2011-07-19 08:00:00",
|
|
"2011-07-19 09:00:00",
|
|
"2011-07-19 07:00:00",
|
|
"2011-07-19 08:00:00",
|
|
"2011-07-19 09:00:00",
|
|
],
|
|
tz="US/Eastern",
|
|
)
|
|
idx2 = pd.DatetimeIndex(
|
|
[
|
|
"2012-04-01 09:00",
|
|
"2012-04-01 09:00",
|
|
"2012-04-01 09:00",
|
|
"2012-04-02 09:00",
|
|
"2012-04-02 09:00",
|
|
"2012-04-02 09:00",
|
|
],
|
|
tz="US/Eastern",
|
|
)
|
|
idx3 = pd.date_range("2011-01-01 09:00", periods=6, tz="Asia/Tokyo")
|
|
idx3 = idx3._with_freq(None)
|
|
|
|
df = df.set_index(idx1)
|
|
df = df.set_index(idx2, append=True)
|
|
df = df.set_index(idx3, append=True)
|
|
|
|
expected1 = pd.DatetimeIndex(
|
|
["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"],
|
|
tz="US/Eastern",
|
|
)
|
|
expected2 = pd.DatetimeIndex(
|
|
["2012-04-01 09:00", "2012-04-02 09:00"], tz="US/Eastern"
|
|
)
|
|
|
|
tm.assert_index_equal(df.index.levels[0], expected1)
|
|
tm.assert_index_equal(df.index.levels[1], expected2)
|
|
tm.assert_index_equal(df.index.levels[2], idx3)
|
|
|
|
# GH 7092
|
|
tm.assert_index_equal(df.index.get_level_values(0), idx1)
|
|
tm.assert_index_equal(df.index.get_level_values(1), idx2)
|
|
tm.assert_index_equal(df.index.get_level_values(2), idx3)
|
|
|
|
def test_reset_index_datetime(self):
|
|
# GH 3950
|
|
for tz in ["UTC", "Asia/Tokyo", "US/Eastern"]:
|
|
idx1 = pd.date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx1")
|
|
idx2 = Index(range(5), name="idx2", dtype="int64")
|
|
idx = MultiIndex.from_arrays([idx1, idx2])
|
|
df = DataFrame(
|
|
{"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
|
|
index=idx,
|
|
)
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"idx1": [
|
|
datetime.datetime(2011, 1, 1),
|
|
datetime.datetime(2011, 1, 2),
|
|
datetime.datetime(2011, 1, 3),
|
|
datetime.datetime(2011, 1, 4),
|
|
datetime.datetime(2011, 1, 5),
|
|
],
|
|
"idx2": np.arange(5, dtype="int64"),
|
|
"a": np.arange(5, dtype="int64"),
|
|
"b": ["A", "B", "C", "D", "E"],
|
|
},
|
|
columns=["idx1", "idx2", "a", "b"],
|
|
)
|
|
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
|
|
|
|
tm.assert_frame_equal(df.reset_index(), expected)
|
|
|
|
idx3 = pd.date_range(
|
|
"1/1/2012", periods=5, freq="MS", tz="Europe/Paris", name="idx3"
|
|
)
|
|
idx = MultiIndex.from_arrays([idx1, idx2, idx3])
|
|
df = DataFrame(
|
|
{"a": np.arange(5, dtype="int64"), "b": ["A", "B", "C", "D", "E"]},
|
|
index=idx,
|
|
)
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"idx1": [
|
|
datetime.datetime(2011, 1, 1),
|
|
datetime.datetime(2011, 1, 2),
|
|
datetime.datetime(2011, 1, 3),
|
|
datetime.datetime(2011, 1, 4),
|
|
datetime.datetime(2011, 1, 5),
|
|
],
|
|
"idx2": np.arange(5, dtype="int64"),
|
|
"idx3": [
|
|
datetime.datetime(2012, 1, 1),
|
|
datetime.datetime(2012, 2, 1),
|
|
datetime.datetime(2012, 3, 1),
|
|
datetime.datetime(2012, 4, 1),
|
|
datetime.datetime(2012, 5, 1),
|
|
],
|
|
"a": np.arange(5, dtype="int64"),
|
|
"b": ["A", "B", "C", "D", "E"],
|
|
},
|
|
columns=["idx1", "idx2", "idx3", "a", "b"],
|
|
)
|
|
expected["idx1"] = expected["idx1"].apply(lambda d: Timestamp(d, tz=tz))
|
|
expected["idx3"] = expected["idx3"].apply(
|
|
lambda d: Timestamp(d, tz="Europe/Paris")
|
|
)
|
|
tm.assert_frame_equal(df.reset_index(), expected)
|
|
|
|
# GH 7793
|
|
idx = MultiIndex.from_product(
|
|
[["a", "b"], pd.date_range("20130101", periods=3, tz=tz)]
|
|
)
|
|
df = DataFrame(
|
|
np.arange(6, dtype="int64").reshape(6, 1), columns=["a"], index=idx
|
|
)
|
|
|
|
expected = DataFrame(
|
|
{
|
|
"level_0": "a a a b b b".split(),
|
|
"level_1": [
|
|
datetime.datetime(2013, 1, 1),
|
|
datetime.datetime(2013, 1, 2),
|
|
datetime.datetime(2013, 1, 3),
|
|
]
|
|
* 2,
|
|
"a": np.arange(6, dtype="int64"),
|
|
},
|
|
columns=["level_0", "level_1", "a"],
|
|
)
|
|
expected["level_1"] = expected["level_1"].apply(
|
|
lambda d: Timestamp(d, freq="D", tz=tz)
|
|
)
|
|
tm.assert_frame_equal(df.reset_index(), expected)
|
|
|
|
def test_reset_index_period(self):
|
|
# GH 7746
|
|
idx = MultiIndex.from_product(
|
|
[pd.period_range("20130101", periods=3, freq="M"), list("abc")],
|
|
names=["month", "feature"],
|
|
)
|
|
|
|
df = DataFrame(
|
|
np.arange(9, dtype="int64").reshape(-1, 1), index=idx, columns=["a"]
|
|
)
|
|
expected = DataFrame(
|
|
{
|
|
"month": (
|
|
[pd.Period("2013-01", freq="M")] * 3
|
|
+ [pd.Period("2013-02", freq="M")] * 3
|
|
+ [pd.Period("2013-03", freq="M")] * 3
|
|
),
|
|
"feature": ["a", "b", "c"] * 3,
|
|
"a": np.arange(9, dtype="int64"),
|
|
},
|
|
columns=["month", "feature", "a"],
|
|
)
|
|
tm.assert_frame_equal(df.reset_index(), expected)
|
|
|
|
def test_reset_index_multiindex_columns(self):
|
|
levels = [["A", ""], ["B", "b"]]
|
|
df = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
|
|
result = df[["B"]].rename_axis("A").reset_index()
|
|
tm.assert_frame_equal(result, df)
|
|
|
|
# gh-16120: already existing column
|
|
msg = r"cannot insert \('A', ''\), already exists"
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.rename_axis("A").reset_index()
|
|
|
|
# gh-16164: multiindex (tuple) full key
|
|
result = df.set_index([("A", "")]).reset_index()
|
|
tm.assert_frame_equal(result, df)
|
|
|
|
# with additional (unnamed) index level
|
|
idx_col = DataFrame(
|
|
[[0], [1]], columns=MultiIndex.from_tuples([("level_0", "")])
|
|
)
|
|
expected = pd.concat([idx_col, df[[("B", "b"), ("A", "")]]], axis=1)
|
|
result = df.set_index([("B", "b")], append=True).reset_index()
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# with index name which is a too long tuple...
|
|
msg = "Item must have length equal to number of levels."
|
|
with pytest.raises(ValueError, match=msg):
|
|
df.rename_axis([("C", "c", "i")]).reset_index()
|
|
|
|
# or too short...
|
|
levels = [["A", "a", ""], ["B", "b", "i"]]
|
|
df2 = DataFrame([[0, 2], [1, 3]], columns=MultiIndex.from_tuples(levels))
|
|
idx_col = DataFrame(
|
|
[[0], [1]], columns=MultiIndex.from_tuples([("C", "c", "ii")])
|
|
)
|
|
expected = pd.concat([idx_col, df2], axis=1)
|
|
result = df2.rename_axis([("C", "c")]).reset_index(col_fill="ii")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# ... which is incompatible with col_fill=None
|
|
with pytest.raises(
|
|
ValueError,
|
|
match=(
|
|
"col_fill=None is incompatible with "
|
|
r"incomplete column name \('C', 'c'\)"
|
|
),
|
|
):
|
|
df2.rename_axis([("C", "c")]).reset_index(col_fill=None)
|
|
|
|
# with col_level != 0
|
|
result = df2.rename_axis([("c", "ii")]).reset_index(col_level=1, col_fill="C")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_set_index_period(self):
|
|
# GH 6631
|
|
df = DataFrame(np.random.random(6))
|
|
idx1 = pd.period_range("2011-01-01", periods=3, freq="M")
|
|
idx1 = idx1.append(idx1)
|
|
idx2 = pd.period_range("2013-01-01 09:00", periods=2, freq="H")
|
|
idx2 = idx2.append(idx2).append(idx2)
|
|
idx3 = pd.period_range("2005", periods=6, freq="A")
|
|
|
|
df = df.set_index(idx1)
|
|
df = df.set_index(idx2, append=True)
|
|
df = df.set_index(idx3, append=True)
|
|
|
|
expected1 = pd.period_range("2011-01-01", periods=3, freq="M")
|
|
expected2 = pd.period_range("2013-01-01 09:00", periods=2, freq="H")
|
|
|
|
tm.assert_index_equal(df.index.levels[0], expected1)
|
|
tm.assert_index_equal(df.index.levels[1], expected2)
|
|
tm.assert_index_equal(df.index.levels[2], idx3)
|
|
|
|
tm.assert_index_equal(df.index.get_level_values(0), idx1)
|
|
tm.assert_index_equal(df.index.get_level_values(1), idx2)
|
|
tm.assert_index_equal(df.index.get_level_values(2), idx3)
|
|
|
|
def test_repeat(self):
|
|
# GH 9361
|
|
# fixed by # GH 7891
|
|
m_idx = MultiIndex.from_tuples([(1, 2), (3, 4), (5, 6), (7, 8)])
|
|
data = ["a", "b", "c", "d"]
|
|
m_df = Series(data, index=m_idx)
|
|
assert m_df.repeat(3).shape == (3 * len(data),)
|
|
|
|
def test_subsets_multiindex_dtype(self):
|
|
# GH 20757
|
|
data = [["x", 1]]
|
|
columns = [("a", "b", np.nan), ("a", "c", 0.0)]
|
|
df = DataFrame(data, columns=pd.MultiIndex.from_tuples(columns))
|
|
expected = df.dtypes.a.b
|
|
result = df.a.b.dtypes
|
|
tm.assert_series_equal(result, expected)
|
|
|
|
|
|
class TestSorted(Base):
|
|
""" everything you wanted to test about sorting """
|
|
|
|
def test_sort_index_preserve_levels(self):
|
|
result = self.frame.sort_index()
|
|
assert result.index.names == self.frame.index.names
|
|
|
|
def test_sorting_repr_8017(self):
|
|
|
|
np.random.seed(0)
|
|
data = np.random.randn(3, 4)
|
|
|
|
for gen, extra in [
|
|
([1.0, 3.0, 2.0, 5.0], 4.0),
|
|
([1, 3, 2, 5], 4),
|
|
(
|
|
[
|
|
Timestamp("20130101"),
|
|
Timestamp("20130103"),
|
|
Timestamp("20130102"),
|
|
Timestamp("20130105"),
|
|
],
|
|
Timestamp("20130104"),
|
|
),
|
|
(["1one", "3one", "2one", "5one"], "4one"),
|
|
]:
|
|
columns = MultiIndex.from_tuples([("red", i) for i in gen])
|
|
df = DataFrame(data, index=list("def"), columns=columns)
|
|
df2 = pd.concat(
|
|
[
|
|
df,
|
|
DataFrame(
|
|
"world",
|
|
index=list("def"),
|
|
columns=MultiIndex.from_tuples([("red", extra)]),
|
|
),
|
|
],
|
|
axis=1,
|
|
)
|
|
|
|
# check that the repr is good
|
|
# make sure that we have a correct sparsified repr
|
|
# e.g. only 1 header of read
|
|
assert str(df2).splitlines()[0].split() == ["red"]
|
|
|
|
# GH 8017
|
|
# sorting fails after columns added
|
|
|
|
# construct single-dtype then sort
|
|
result = df.copy().sort_index(axis=1)
|
|
expected = df.iloc[:, [0, 2, 1, 3]]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
result = df2.sort_index(axis=1)
|
|
expected = df2.iloc[:, [0, 2, 1, 4, 3]]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
# setitem then sort
|
|
result = df.copy()
|
|
result[("red", extra)] = "world"
|
|
|
|
result = result.sort_index(axis=1)
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_sort_non_lexsorted(self):
|
|
# degenerate case where we sort but don't
|
|
# have a satisfying result :<
|
|
# GH 15797
|
|
idx = MultiIndex(
|
|
[["A", "B", "C"], ["c", "b", "a"]], [[0, 1, 2, 0, 1, 2], [0, 2, 1, 1, 0, 2]]
|
|
)
|
|
|
|
df = DataFrame({"col": range(len(idx))}, index=idx, dtype="int64")
|
|
assert df.index.is_lexsorted() is False
|
|
assert df.index.is_monotonic is False
|
|
|
|
sorted = df.sort_index()
|
|
assert sorted.index.is_lexsorted() is True
|
|
assert sorted.index.is_monotonic is True
|
|
|
|
expected = DataFrame(
|
|
{"col": [1, 4, 5, 2]},
|
|
index=MultiIndex.from_tuples(
|
|
[("B", "a"), ("B", "c"), ("C", "a"), ("C", "b")]
|
|
),
|
|
dtype="int64",
|
|
)
|
|
result = sorted.loc[pd.IndexSlice["B":"C", "a":"c"], :]
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.parametrize(
|
|
"keys, expected",
|
|
[
|
|
(["b", "a"], [["b", "b", "a", "a"], [1, 2, 1, 2]]),
|
|
(["a", "b"], [["a", "a", "b", "b"], [1, 2, 1, 2]]),
|
|
((["a", "b"], [1, 2]), [["a", "a", "b", "b"], [1, 2, 1, 2]]),
|
|
((["a", "b"], [2, 1]), [["a", "a", "b", "b"], [2, 1, 2, 1]]),
|
|
((["b", "a"], [2, 1]), [["b", "b", "a", "a"], [2, 1, 2, 1]]),
|
|
((["b", "a"], [1, 2]), [["b", "b", "a", "a"], [1, 2, 1, 2]]),
|
|
((["c", "a"], [2, 1]), [["c", "a", "a"], [1, 2, 1]]),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("dim", ["index", "columns"])
|
|
def test_multilevel_index_loc_order(self, dim, keys, expected):
|
|
# GH 22797
|
|
# Try to respect order of keys given for MultiIndex.loc
|
|
kwargs = {dim: [["c", "a", "a", "b", "b"], [1, 1, 2, 1, 2]]}
|
|
df = pd.DataFrame(np.arange(25).reshape(5, 5), **kwargs,)
|
|
exp_index = MultiIndex.from_arrays(expected)
|
|
if dim == "index":
|
|
res = df.loc[keys, :]
|
|
tm.assert_index_equal(res.index, exp_index)
|
|
elif dim == "columns":
|
|
res = df.loc[:, keys]
|
|
tm.assert_index_equal(res.columns, exp_index)
|