mirror of
https://github.com/PiBrewing/craftbeerpi4.git
synced 2025-01-03 19:31:48 +01:00
1236 lines
38 KiB
Python
1236 lines
38 KiB
Python
from functools import partial
|
|
from importlib import reload
|
|
from io import BytesIO, StringIO
|
|
import os
|
|
import re
|
|
import threading
|
|
from urllib.error import URLError
|
|
|
|
import numpy as np
|
|
from numpy.random import rand
|
|
import pytest
|
|
|
|
from pandas.compat import is_platform_windows
|
|
from pandas.errors import ParserError
|
|
import pandas.util._test_decorators as td
|
|
|
|
from pandas import DataFrame, MultiIndex, Series, Timestamp, date_range, read_csv
|
|
import pandas._testing as tm
|
|
|
|
from pandas.io.common import file_path_to_url
|
|
import pandas.io.html
|
|
from pandas.io.html import read_html
|
|
|
|
HERE = os.path.dirname(__file__)
|
|
|
|
|
|
@pytest.fixture(
|
|
params=[
|
|
"chinese_utf-16.html",
|
|
"chinese_utf-32.html",
|
|
"chinese_utf-8.html",
|
|
"letz_latin1.html",
|
|
]
|
|
)
|
|
def html_encoding_file(request, datapath):
|
|
"""Parametrized fixture for HTML encoding test filenames."""
|
|
return datapath("io", "data", "html_encoding", request.param)
|
|
|
|
|
|
def assert_framelist_equal(list1, list2, *args, **kwargs):
|
|
assert len(list1) == len(list2), (
|
|
"lists are not of equal size "
|
|
f"len(list1) == {len(list1)}, "
|
|
f"len(list2) == {len(list2)}"
|
|
)
|
|
msg = "not all list elements are DataFrames"
|
|
both_frames = all(
|
|
map(
|
|
lambda x, y: isinstance(x, DataFrame) and isinstance(y, DataFrame),
|
|
list1,
|
|
list2,
|
|
)
|
|
)
|
|
assert both_frames, msg
|
|
for frame_i, frame_j in zip(list1, list2):
|
|
tm.assert_frame_equal(frame_i, frame_j, *args, **kwargs)
|
|
assert not frame_i.empty, "frames are both empty"
|
|
|
|
|
|
@td.skip_if_no("bs4")
|
|
def test_bs4_version_fails(monkeypatch, datapath):
|
|
import bs4
|
|
|
|
monkeypatch.setattr(bs4, "__version__", "4.2")
|
|
with pytest.raises(ImportError, match="Pandas requires version"):
|
|
read_html(datapath("io", "data", "html", "spam.html"), flavor="bs4")
|
|
|
|
|
|
def test_invalid_flavor():
|
|
url = "google.com"
|
|
flavor = "invalid flavor"
|
|
msg = r"\{" + flavor + r"\} is not a valid set of flavors"
|
|
|
|
with pytest.raises(ValueError, match=msg):
|
|
read_html(url, match="google", flavor=flavor)
|
|
|
|
|
|
@td.skip_if_no("bs4")
|
|
@td.skip_if_no("lxml")
|
|
def test_same_ordering(datapath):
|
|
filename = datapath("io", "data", "html", "valid_markup.html")
|
|
dfs_lxml = read_html(filename, index_col=0, flavor=["lxml"])
|
|
dfs_bs4 = read_html(filename, index_col=0, flavor=["bs4"])
|
|
assert_framelist_equal(dfs_lxml, dfs_bs4)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"flavor",
|
|
[
|
|
pytest.param("bs4", marks=td.skip_if_no("bs4")),
|
|
pytest.param("lxml", marks=td.skip_if_no("lxml")),
|
|
],
|
|
scope="class",
|
|
)
|
|
class TestReadHtml:
|
|
@pytest.fixture(autouse=True)
|
|
def set_files(self, datapath):
|
|
self.spam_data = datapath("io", "data", "html", "spam.html")
|
|
self.spam_data_kwargs = {}
|
|
self.spam_data_kwargs["encoding"] = "UTF-8"
|
|
self.banklist_data = datapath("io", "data", "html", "banklist.html")
|
|
|
|
@pytest.fixture(autouse=True, scope="function")
|
|
def set_defaults(self, flavor, request):
|
|
self.read_html = partial(read_html, flavor=flavor)
|
|
yield
|
|
|
|
def test_to_html_compat(self):
|
|
df = (
|
|
tm.makeCustomDataframe(
|
|
4,
|
|
3,
|
|
data_gen_f=lambda *args: rand(),
|
|
c_idx_names=False,
|
|
r_idx_names=False,
|
|
)
|
|
.applymap("{0:.3f}".format)
|
|
.astype(float)
|
|
)
|
|
out = df.to_html()
|
|
res = self.read_html(out, attrs={"class": "dataframe"}, index_col=0)[0]
|
|
tm.assert_frame_equal(res, df)
|
|
|
|
@tm.network
|
|
def test_banklist_url_positional_match(self):
|
|
url = "http://www.fdic.gov/bank/individual/failed/banklist.html"
|
|
# Passing match argument as positional should cause a FutureWarning.
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
df1 = self.read_html(
|
|
url, "First Federal Bank of Florida", attrs={"id": "table"}
|
|
)
|
|
with tm.assert_produces_warning(FutureWarning):
|
|
df2 = self.read_html(url, "Metcalf Bank", attrs={"id": "table"})
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
@tm.network
|
|
def test_banklist_url(self):
|
|
url = "http://www.fdic.gov/bank/individual/failed/banklist.html"
|
|
df1 = self.read_html(
|
|
url, match="First Federal Bank of Florida", attrs={"id": "table"}
|
|
)
|
|
df2 = self.read_html(url, match="Metcalf Bank", attrs={"id": "table"})
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
@tm.network
|
|
def test_spam_url(self):
|
|
url = (
|
|
"https://raw.githubusercontent.com/pandas-dev/pandas/master/"
|
|
"pandas/tests/io/data/html/spam.html"
|
|
)
|
|
df1 = self.read_html(url, match=".*Water.*")
|
|
df2 = self.read_html(url, match="Unit")
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
@pytest.mark.slow
|
|
def test_banklist(self):
|
|
df1 = self.read_html(
|
|
self.banklist_data, match=".*Florida.*", attrs={"id": "table"}
|
|
)
|
|
df2 = self.read_html(
|
|
self.banklist_data, match="Metcalf Bank", attrs={"id": "table"}
|
|
)
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_spam(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*")
|
|
df2 = self.read_html(self.spam_data, match="Unit")
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
assert df1[0].iloc[0, 0] == "Proximates"
|
|
assert df1[0].columns[0] == "Nutrient"
|
|
|
|
def test_spam_no_match(self):
|
|
dfs = self.read_html(self.spam_data)
|
|
for df in dfs:
|
|
assert isinstance(df, DataFrame)
|
|
|
|
def test_banklist_no_match(self):
|
|
dfs = self.read_html(self.banklist_data, attrs={"id": "table"})
|
|
for df in dfs:
|
|
assert isinstance(df, DataFrame)
|
|
|
|
def test_spam_header(self):
|
|
df = self.read_html(self.spam_data, match=".*Water.*", header=2)[0]
|
|
assert df.columns[0] == "Proximates"
|
|
assert not df.empty
|
|
|
|
def test_skiprows_int(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", skiprows=1)
|
|
df2 = self.read_html(self.spam_data, match="Unit", skiprows=1)
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_skiprows_range(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", skiprows=range(2))
|
|
df2 = self.read_html(self.spam_data, match="Unit", skiprows=range(2))
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_skiprows_list(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", skiprows=[1, 2])
|
|
df2 = self.read_html(self.spam_data, match="Unit", skiprows=[2, 1])
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_skiprows_set(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", skiprows={1, 2})
|
|
df2 = self.read_html(self.spam_data, match="Unit", skiprows={2, 1})
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_skiprows_slice(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", skiprows=1)
|
|
df2 = self.read_html(self.spam_data, match="Unit", skiprows=1)
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_skiprows_slice_short(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", skiprows=slice(2))
|
|
df2 = self.read_html(self.spam_data, match="Unit", skiprows=slice(2))
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_skiprows_slice_long(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", skiprows=slice(2, 5))
|
|
df2 = self.read_html(self.spam_data, match="Unit", skiprows=slice(4, 1, -1))
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_skiprows_ndarray(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", skiprows=np.arange(2))
|
|
df2 = self.read_html(self.spam_data, match="Unit", skiprows=np.arange(2))
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_skiprows_invalid(self):
|
|
with pytest.raises(TypeError, match=("is not a valid type for skipping rows")):
|
|
self.read_html(self.spam_data, match=".*Water.*", skiprows="asdf")
|
|
|
|
def test_index(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", index_col=0)
|
|
df2 = self.read_html(self.spam_data, match="Unit", index_col=0)
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_header_and_index_no_types(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", header=1, index_col=0)
|
|
df2 = self.read_html(self.spam_data, match="Unit", header=1, index_col=0)
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_header_and_index_with_types(self):
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", header=1, index_col=0)
|
|
df2 = self.read_html(self.spam_data, match="Unit", header=1, index_col=0)
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_infer_types(self):
|
|
|
|
# 10892 infer_types removed
|
|
df1 = self.read_html(self.spam_data, match=".*Water.*", index_col=0)
|
|
df2 = self.read_html(self.spam_data, match="Unit", index_col=0)
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_string_io(self):
|
|
with open(self.spam_data, **self.spam_data_kwargs) as f:
|
|
data1 = StringIO(f.read())
|
|
|
|
with open(self.spam_data, **self.spam_data_kwargs) as f:
|
|
data2 = StringIO(f.read())
|
|
|
|
df1 = self.read_html(data1, match=".*Water.*")
|
|
df2 = self.read_html(data2, match="Unit")
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_string(self):
|
|
with open(self.spam_data, **self.spam_data_kwargs) as f:
|
|
data = f.read()
|
|
|
|
df1 = self.read_html(data, match=".*Water.*")
|
|
df2 = self.read_html(data, match="Unit")
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
def test_file_like(self):
|
|
with open(self.spam_data, **self.spam_data_kwargs) as f:
|
|
df1 = self.read_html(f, match=".*Water.*")
|
|
|
|
with open(self.spam_data, **self.spam_data_kwargs) as f:
|
|
df2 = self.read_html(f, match="Unit")
|
|
|
|
assert_framelist_equal(df1, df2)
|
|
|
|
@tm.network
|
|
def test_bad_url_protocol(self):
|
|
with pytest.raises(URLError):
|
|
self.read_html("git://github.com", match=".*Water.*")
|
|
|
|
@tm.network
|
|
@pytest.mark.slow
|
|
def test_invalid_url(self):
|
|
try:
|
|
with pytest.raises(URLError):
|
|
self.read_html("http://www.a23950sdfa908sd.com", match=".*Water.*")
|
|
except ValueError as e:
|
|
assert "No tables found" in str(e)
|
|
|
|
@pytest.mark.slow
|
|
def test_file_url(self):
|
|
url = self.banklist_data
|
|
dfs = self.read_html(
|
|
file_path_to_url(os.path.abspath(url)), match="First", attrs={"id": "table"}
|
|
)
|
|
assert isinstance(dfs, list)
|
|
for df in dfs:
|
|
assert isinstance(df, DataFrame)
|
|
|
|
@pytest.mark.slow
|
|
def test_invalid_table_attrs(self):
|
|
url = self.banklist_data
|
|
with pytest.raises(ValueError, match="No tables found"):
|
|
self.read_html(
|
|
url, match="First Federal Bank of Florida", attrs={"id": "tasdfable"}
|
|
)
|
|
|
|
def _bank_data(self, *args, **kwargs):
|
|
return self.read_html(
|
|
self.banklist_data, match="Metcalf", attrs={"id": "table"}, *args, **kwargs
|
|
)
|
|
|
|
@pytest.mark.slow
|
|
def test_multiindex_header(self):
|
|
df = self._bank_data(header=[0, 1])[0]
|
|
assert isinstance(df.columns, MultiIndex)
|
|
|
|
@pytest.mark.slow
|
|
def test_multiindex_index(self):
|
|
df = self._bank_data(index_col=[0, 1])[0]
|
|
assert isinstance(df.index, MultiIndex)
|
|
|
|
@pytest.mark.slow
|
|
def test_multiindex_header_index(self):
|
|
df = self._bank_data(header=[0, 1], index_col=[0, 1])[0]
|
|
assert isinstance(df.columns, MultiIndex)
|
|
assert isinstance(df.index, MultiIndex)
|
|
|
|
@pytest.mark.slow
|
|
def test_multiindex_header_skiprows_tuples(self):
|
|
df = self._bank_data(header=[0, 1], skiprows=1)[0]
|
|
assert isinstance(df.columns, MultiIndex)
|
|
|
|
@pytest.mark.slow
|
|
def test_multiindex_header_skiprows(self):
|
|
df = self._bank_data(header=[0, 1], skiprows=1)[0]
|
|
assert isinstance(df.columns, MultiIndex)
|
|
|
|
@pytest.mark.slow
|
|
def test_multiindex_header_index_skiprows(self):
|
|
df = self._bank_data(header=[0, 1], index_col=[0, 1], skiprows=1)[0]
|
|
assert isinstance(df.index, MultiIndex)
|
|
assert isinstance(df.columns, MultiIndex)
|
|
|
|
@pytest.mark.slow
|
|
def test_regex_idempotency(self):
|
|
url = self.banklist_data
|
|
dfs = self.read_html(
|
|
file_path_to_url(os.path.abspath(url)),
|
|
match=re.compile(re.compile("Florida")),
|
|
attrs={"id": "table"},
|
|
)
|
|
assert isinstance(dfs, list)
|
|
for df in dfs:
|
|
assert isinstance(df, DataFrame)
|
|
|
|
def test_negative_skiprows(self):
|
|
msg = r"\(you passed a negative value\)"
|
|
with pytest.raises(ValueError, match=msg):
|
|
self.read_html(self.spam_data, match="Water", skiprows=-1)
|
|
|
|
@tm.network
|
|
def test_multiple_matches(self):
|
|
url = "https://docs.python.org/2/"
|
|
dfs = self.read_html(url, match="Python")
|
|
assert len(dfs) > 1
|
|
|
|
@tm.network
|
|
def test_python_docs_table(self):
|
|
url = "https://docs.python.org/2/"
|
|
dfs = self.read_html(url, match="Python")
|
|
zz = [df.iloc[0, 0][0:4] for df in dfs]
|
|
assert sorted(zz) == sorted(["Repo", "What"])
|
|
|
|
def test_empty_tables(self):
|
|
"""
|
|
Make sure that read_html ignores empty tables.
|
|
"""
|
|
html = """
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>A</th>
|
|
<th>B</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>1</td>
|
|
<td>2</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
<table>
|
|
<tbody>
|
|
</tbody>
|
|
</table>
|
|
"""
|
|
result = self.read_html(html)
|
|
assert len(result) == 1
|
|
|
|
def test_multiple_tbody(self):
|
|
# GH-20690
|
|
# Read all tbody tags within a single table.
|
|
result = self.read_html(
|
|
"""<table>
|
|
<thead>
|
|
<tr>
|
|
<th>A</th>
|
|
<th>B</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>1</td>
|
|
<td>2</td>
|
|
</tr>
|
|
</tbody>
|
|
<tbody>
|
|
<tr>
|
|
<td>3</td>
|
|
<td>4</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>"""
|
|
)[0]
|
|
|
|
expected = DataFrame(data=[[1, 2], [3, 4]], columns=["A", "B"])
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_header_and_one_column(self):
|
|
"""
|
|
Don't fail with bs4 when there is a header and only one column
|
|
as described in issue #9178
|
|
"""
|
|
result = self.read_html(
|
|
"""<table>
|
|
<thead>
|
|
<tr>
|
|
<th>Header</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>first</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>"""
|
|
)[0]
|
|
|
|
expected = DataFrame(data={"Header": "first"}, index=[0])
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_thead_without_tr(self):
|
|
"""
|
|
Ensure parser adds <tr> within <thead> on malformed HTML.
|
|
"""
|
|
result = self.read_html(
|
|
"""<table>
|
|
<thead>
|
|
<tr>
|
|
<th>Country</th>
|
|
<th>Municipality</th>
|
|
<th>Year</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>Ukraine</td>
|
|
<th>Odessa</th>
|
|
<td>1944</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>"""
|
|
)[0]
|
|
|
|
expected = DataFrame(
|
|
data=[["Ukraine", "Odessa", 1944]],
|
|
columns=["Country", "Municipality", "Year"],
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_tfoot_read(self):
|
|
"""
|
|
Make sure that read_html reads tfoot, containing td or th.
|
|
Ignores empty tfoot
|
|
"""
|
|
data_template = """<table>
|
|
<thead>
|
|
<tr>
|
|
<th>A</th>
|
|
<th>B</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>bodyA</td>
|
|
<td>bodyB</td>
|
|
</tr>
|
|
</tbody>
|
|
<tfoot>
|
|
{footer}
|
|
</tfoot>
|
|
</table>"""
|
|
|
|
expected1 = DataFrame(data=[["bodyA", "bodyB"]], columns=["A", "B"])
|
|
|
|
expected2 = DataFrame(
|
|
data=[["bodyA", "bodyB"], ["footA", "footB"]], columns=["A", "B"]
|
|
)
|
|
|
|
data1 = data_template.format(footer="")
|
|
data2 = data_template.format(footer="<tr><td>footA</td><th>footB</th></tr>")
|
|
|
|
result1 = self.read_html(data1)[0]
|
|
result2 = self.read_html(data2)[0]
|
|
|
|
tm.assert_frame_equal(result1, expected1)
|
|
tm.assert_frame_equal(result2, expected2)
|
|
|
|
def test_parse_header_of_non_string_column(self):
|
|
# GH5048: if header is specified explicitly, an int column should be
|
|
# parsed as int while its header is parsed as str
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<tr>
|
|
<td>S</td>
|
|
<td>I</td>
|
|
</tr>
|
|
<tr>
|
|
<td>text</td>
|
|
<td>1944</td>
|
|
</tr>
|
|
</table>
|
|
""",
|
|
header=0,
|
|
)[0]
|
|
|
|
expected = DataFrame([["text", 1944]], columns=("S", "I"))
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
@pytest.mark.slow
|
|
def test_banklist_header(self, datapath):
|
|
from pandas.io.html import _remove_whitespace
|
|
|
|
def try_remove_ws(x):
|
|
try:
|
|
return _remove_whitespace(x)
|
|
except AttributeError:
|
|
return x
|
|
|
|
df = self.read_html(self.banklist_data, match="Metcalf", attrs={"id": "table"})[
|
|
0
|
|
]
|
|
ground_truth = read_csv(
|
|
datapath("io", "data", "csv", "banklist.csv"),
|
|
converters={"Updated Date": Timestamp, "Closing Date": Timestamp},
|
|
)
|
|
assert df.shape == ground_truth.shape
|
|
old = [
|
|
"First Vietnamese American BankIn Vietnamese",
|
|
"Westernbank Puerto RicoEn Espanol",
|
|
"R-G Premier Bank of Puerto RicoEn Espanol",
|
|
"EurobankEn Espanol",
|
|
"Sanderson State BankEn Espanol",
|
|
"Washington Mutual Bank(Including its subsidiary Washington "
|
|
"Mutual Bank FSB)",
|
|
"Silver State BankEn Espanol",
|
|
"AmTrade International BankEn Espanol",
|
|
"Hamilton Bank, NAEn Espanol",
|
|
"The Citizens Savings BankPioneer Community Bank, Inc.",
|
|
]
|
|
new = [
|
|
"First Vietnamese American Bank",
|
|
"Westernbank Puerto Rico",
|
|
"R-G Premier Bank of Puerto Rico",
|
|
"Eurobank",
|
|
"Sanderson State Bank",
|
|
"Washington Mutual Bank",
|
|
"Silver State Bank",
|
|
"AmTrade International Bank",
|
|
"Hamilton Bank, NA",
|
|
"The Citizens Savings Bank",
|
|
]
|
|
dfnew = df.applymap(try_remove_ws).replace(old, new)
|
|
gtnew = ground_truth.applymap(try_remove_ws)
|
|
converted = dfnew._convert(datetime=True, numeric=True)
|
|
date_cols = ["Closing Date", "Updated Date"]
|
|
converted[date_cols] = converted[date_cols]._convert(datetime=True, coerce=True)
|
|
tm.assert_frame_equal(converted, gtnew)
|
|
|
|
@pytest.mark.slow
|
|
def test_gold_canyon(self):
|
|
gc = "Gold Canyon"
|
|
with open(self.banklist_data, "r") as f:
|
|
raw_text = f.read()
|
|
|
|
assert gc in raw_text
|
|
df = self.read_html(
|
|
self.banklist_data, match="Gold Canyon", attrs={"id": "table"}
|
|
)[0]
|
|
assert gc in df.to_string()
|
|
|
|
def test_different_number_of_cols(self):
|
|
expected = self.read_html(
|
|
"""<table>
|
|
<thead>
|
|
<tr style="text-align: right;">
|
|
<th></th>
|
|
<th>C_l0_g0</th>
|
|
<th>C_l0_g1</th>
|
|
<th>C_l0_g2</th>
|
|
<th>C_l0_g3</th>
|
|
<th>C_l0_g4</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<th>R_l0_g0</th>
|
|
<td> 0.763</td>
|
|
<td> 0.233</td>
|
|
<td> nan</td>
|
|
<td> nan</td>
|
|
<td> nan</td>
|
|
</tr>
|
|
<tr>
|
|
<th>R_l0_g1</th>
|
|
<td> 0.244</td>
|
|
<td> 0.285</td>
|
|
<td> 0.392</td>
|
|
<td> 0.137</td>
|
|
<td> 0.222</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>""",
|
|
index_col=0,
|
|
)[0]
|
|
|
|
result = self.read_html(
|
|
"""<table>
|
|
<thead>
|
|
<tr style="text-align: right;">
|
|
<th></th>
|
|
<th>C_l0_g0</th>
|
|
<th>C_l0_g1</th>
|
|
<th>C_l0_g2</th>
|
|
<th>C_l0_g3</th>
|
|
<th>C_l0_g4</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<th>R_l0_g0</th>
|
|
<td> 0.763</td>
|
|
<td> 0.233</td>
|
|
</tr>
|
|
<tr>
|
|
<th>R_l0_g1</th>
|
|
<td> 0.244</td>
|
|
<td> 0.285</td>
|
|
<td> 0.392</td>
|
|
<td> 0.137</td>
|
|
<td> 0.222</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>""",
|
|
index_col=0,
|
|
)[0]
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_colspan_rowspan_1(self):
|
|
# GH17054
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<tr>
|
|
<th>A</th>
|
|
<th colspan="1">B</th>
|
|
<th rowspan="1">C</th>
|
|
</tr>
|
|
<tr>
|
|
<td>a</td>
|
|
<td>b</td>
|
|
<td>c</td>
|
|
</tr>
|
|
</table>
|
|
"""
|
|
)[0]
|
|
|
|
expected = DataFrame([["a", "b", "c"]], columns=["A", "B", "C"])
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_colspan_rowspan_copy_values(self):
|
|
# GH17054
|
|
|
|
# In ASCII, with lowercase letters being copies:
|
|
#
|
|
# X x Y Z W
|
|
# A B b z C
|
|
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<tr>
|
|
<td colspan="2">X</td>
|
|
<td>Y</td>
|
|
<td rowspan="2">Z</td>
|
|
<td>W</td>
|
|
</tr>
|
|
<tr>
|
|
<td>A</td>
|
|
<td colspan="2">B</td>
|
|
<td>C</td>
|
|
</tr>
|
|
</table>
|
|
""",
|
|
header=0,
|
|
)[0]
|
|
|
|
expected = DataFrame(
|
|
data=[["A", "B", "B", "Z", "C"]], columns=["X", "X.1", "Y", "Z", "W"]
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_colspan_rowspan_both_not_1(self):
|
|
# GH17054
|
|
|
|
# In ASCII, with lowercase letters being copies:
|
|
#
|
|
# A B b b C
|
|
# a b b b D
|
|
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<tr>
|
|
<td rowspan="2">A</td>
|
|
<td rowspan="2" colspan="3">B</td>
|
|
<td>C</td>
|
|
</tr>
|
|
<tr>
|
|
<td>D</td>
|
|
</tr>
|
|
</table>
|
|
""",
|
|
header=0,
|
|
)[0]
|
|
|
|
expected = DataFrame(
|
|
data=[["A", "B", "B", "B", "D"]], columns=["A", "B", "B.1", "B.2", "C"]
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_rowspan_at_end_of_row(self):
|
|
# GH17054
|
|
|
|
# In ASCII, with lowercase letters being copies:
|
|
#
|
|
# A B
|
|
# C b
|
|
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<tr>
|
|
<td>A</td>
|
|
<td rowspan="2">B</td>
|
|
</tr>
|
|
<tr>
|
|
<td>C</td>
|
|
</tr>
|
|
</table>
|
|
""",
|
|
header=0,
|
|
)[0]
|
|
|
|
expected = DataFrame(data=[["C", "B"]], columns=["A", "B"])
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_rowspan_only_rows(self):
|
|
# GH17054
|
|
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<tr>
|
|
<td rowspan="3">A</td>
|
|
<td rowspan="3">B</td>
|
|
</tr>
|
|
</table>
|
|
""",
|
|
header=0,
|
|
)[0]
|
|
|
|
expected = DataFrame(data=[["A", "B"], ["A", "B"]], columns=["A", "B"])
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_header_inferred_from_rows_with_only_th(self):
|
|
# GH17054
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<tr>
|
|
<th>A</th>
|
|
<th>B</th>
|
|
</tr>
|
|
<tr>
|
|
<th>a</th>
|
|
<th>b</th>
|
|
</tr>
|
|
<tr>
|
|
<td>1</td>
|
|
<td>2</td>
|
|
</tr>
|
|
</table>
|
|
"""
|
|
)[0]
|
|
|
|
columns = MultiIndex(levels=[["A", "B"], ["a", "b"]], codes=[[0, 1], [0, 1]])
|
|
expected = DataFrame(data=[[1, 2]], columns=columns)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_parse_dates_list(self):
|
|
df = DataFrame({"date": date_range("1/1/2001", periods=10)})
|
|
expected = df.to_html()
|
|
res = self.read_html(expected, parse_dates=[1], index_col=0)
|
|
tm.assert_frame_equal(df, res[0])
|
|
res = self.read_html(expected, parse_dates=["date"], index_col=0)
|
|
tm.assert_frame_equal(df, res[0])
|
|
|
|
def test_parse_dates_combine(self):
|
|
raw_dates = Series(date_range("1/1/2001", periods=10))
|
|
df = DataFrame(
|
|
{
|
|
"date": raw_dates.map(lambda x: str(x.date())),
|
|
"time": raw_dates.map(lambda x: str(x.time())),
|
|
}
|
|
)
|
|
res = self.read_html(
|
|
df.to_html(), parse_dates={"datetime": [1, 2]}, index_col=1
|
|
)
|
|
newdf = DataFrame({"datetime": raw_dates})
|
|
tm.assert_frame_equal(newdf, res[0])
|
|
|
|
def test_wikipedia_states_table(self, datapath):
|
|
data = datapath("io", "data", "html", "wikipedia_states.html")
|
|
assert os.path.isfile(data), f"{repr(data)} is not a file"
|
|
assert os.path.getsize(data), f"{repr(data)} is an empty file"
|
|
result = self.read_html(data, match="Arizona", header=1)[0]
|
|
assert result.shape == (60, 12)
|
|
assert "Unnamed" in result.columns[-1]
|
|
assert result["sq mi"].dtype == np.dtype("float64")
|
|
assert np.allclose(result.loc[0, "sq mi"], 665384.04)
|
|
|
|
def test_wikipedia_states_multiindex(self, datapath):
|
|
data = datapath("io", "data", "html", "wikipedia_states.html")
|
|
result = self.read_html(data, match="Arizona", index_col=0)[0]
|
|
assert result.shape == (60, 11)
|
|
assert "Unnamed" in result.columns[-1][1]
|
|
assert result.columns.nlevels == 2
|
|
assert np.allclose(result.loc["Alaska", ("Total area[2]", "sq mi")], 665384.04)
|
|
|
|
def test_parser_error_on_empty_header_row(self):
|
|
msg = (
|
|
r"Passed header=\[0,1\] are too many "
|
|
r"rows for this multi_index of columns"
|
|
)
|
|
with pytest.raises(ParserError, match=msg):
|
|
self.read_html(
|
|
"""
|
|
<table>
|
|
<thead>
|
|
<tr><th></th><th></tr>
|
|
<tr><th>A</th><th>B</th></tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr><td>a</td><td>b</td></tr>
|
|
</tbody>
|
|
</table>
|
|
""",
|
|
header=[0, 1],
|
|
)
|
|
|
|
def test_decimal_rows(self):
|
|
# GH 12907
|
|
result = self.read_html(
|
|
"""<html>
|
|
<body>
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>Header</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>1100#101</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</body>
|
|
</html>""",
|
|
decimal="#",
|
|
)[0]
|
|
|
|
expected = DataFrame(data={"Header": 1100.101}, index=[0])
|
|
|
|
assert result["Header"].dtype == np.dtype("float64")
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_bool_header_arg(self):
|
|
# GH 6114
|
|
for arg in [True, False]:
|
|
with pytest.raises(TypeError):
|
|
self.read_html(self.spam_data, header=arg)
|
|
|
|
def test_converters(self):
|
|
# GH 13461
|
|
result = self.read_html(
|
|
"""<table>
|
|
<thead>
|
|
<tr>
|
|
<th>a</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td> 0.763</td>
|
|
</tr>
|
|
<tr>
|
|
<td> 0.244</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>""",
|
|
converters={"a": str},
|
|
)[0]
|
|
|
|
expected = DataFrame({"a": ["0.763", "0.244"]})
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_na_values(self):
|
|
# GH 13461
|
|
result = self.read_html(
|
|
"""<table>
|
|
<thead>
|
|
<tr>
|
|
<th>a</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td> 0.763</td>
|
|
</tr>
|
|
<tr>
|
|
<td> 0.244</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>""",
|
|
na_values=[0.244],
|
|
)[0]
|
|
|
|
expected = DataFrame({"a": [0.763, np.nan]})
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_keep_default_na(self):
|
|
html_data = """<table>
|
|
<thead>
|
|
<tr>
|
|
<th>a</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td> N/A</td>
|
|
</tr>
|
|
<tr>
|
|
<td> NA</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>"""
|
|
|
|
expected_df = DataFrame({"a": ["N/A", "NA"]})
|
|
html_df = self.read_html(html_data, keep_default_na=False)[0]
|
|
tm.assert_frame_equal(expected_df, html_df)
|
|
|
|
expected_df = DataFrame({"a": [np.nan, np.nan]})
|
|
html_df = self.read_html(html_data, keep_default_na=True)[0]
|
|
tm.assert_frame_equal(expected_df, html_df)
|
|
|
|
def test_preserve_empty_rows(self):
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<tr>
|
|
<th>A</th>
|
|
<th>B</th>
|
|
</tr>
|
|
<tr>
|
|
<td>a</td>
|
|
<td>b</td>
|
|
</tr>
|
|
<tr>
|
|
<td></td>
|
|
<td></td>
|
|
</tr>
|
|
</table>
|
|
"""
|
|
)[0]
|
|
|
|
expected = DataFrame(data=[["a", "b"], [np.nan, np.nan]], columns=["A", "B"])
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_ignore_empty_rows_when_inferring_header(self):
|
|
result = self.read_html(
|
|
"""
|
|
<table>
|
|
<thead>
|
|
<tr><th></th><th></tr>
|
|
<tr><th>A</th><th>B</th></tr>
|
|
<tr><th>a</th><th>b</th></tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr><td>1</td><td>2</td></tr>
|
|
</tbody>
|
|
</table>
|
|
"""
|
|
)[0]
|
|
|
|
columns = MultiIndex(levels=[["A", "B"], ["a", "b"]], codes=[[0, 1], [0, 1]])
|
|
expected = DataFrame(data=[[1, 2]], columns=columns)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_multiple_header_rows(self):
|
|
# Issue #13434
|
|
expected_df = DataFrame(
|
|
data=[("Hillary", 68, "D"), ("Bernie", 74, "D"), ("Donald", 69, "R")]
|
|
)
|
|
expected_df.columns = [
|
|
["Unnamed: 0_level_0", "Age", "Party"],
|
|
["Name", "Unnamed: 1_level_1", "Unnamed: 2_level_1"],
|
|
]
|
|
html = expected_df.to_html(index=False)
|
|
html_df = self.read_html(html)[0]
|
|
tm.assert_frame_equal(expected_df, html_df)
|
|
|
|
def test_works_on_valid_markup(self, datapath):
|
|
filename = datapath("io", "data", "html", "valid_markup.html")
|
|
dfs = self.read_html(filename, index_col=0)
|
|
assert isinstance(dfs, list)
|
|
assert isinstance(dfs[0], DataFrame)
|
|
|
|
@pytest.mark.slow
|
|
def test_fallback_success(self, datapath):
|
|
banklist_data = datapath("io", "data", "html", "banklist.html")
|
|
self.read_html(banklist_data, match=".*Water.*", flavor=["lxml", "html5lib"])
|
|
|
|
def test_to_html_timestamp(self):
|
|
rng = date_range("2000-01-01", periods=10)
|
|
df = DataFrame(np.random.randn(10, 4), index=rng)
|
|
|
|
result = df.to_html()
|
|
assert "2000-01-01" in result
|
|
|
|
@pytest.mark.parametrize(
|
|
"displayed_only,exp0,exp1",
|
|
[
|
|
(True, DataFrame(["foo"]), None),
|
|
(False, DataFrame(["foo bar baz qux"]), DataFrame(["foo"])),
|
|
],
|
|
)
|
|
def test_displayed_only(self, displayed_only, exp0, exp1):
|
|
# GH 20027
|
|
data = StringIO(
|
|
"""<html>
|
|
<body>
|
|
<table>
|
|
<tr>
|
|
<td>
|
|
foo
|
|
<span style="display:none;text-align:center">bar</span>
|
|
<span style="display:none">baz</span>
|
|
<span style="display: none">qux</span>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
<table style="display: none">
|
|
<tr>
|
|
<td>foo</td>
|
|
</tr>
|
|
</table>
|
|
</body>
|
|
</html>"""
|
|
)
|
|
|
|
dfs = self.read_html(data, displayed_only=displayed_only)
|
|
tm.assert_frame_equal(dfs[0], exp0)
|
|
|
|
if exp1 is not None:
|
|
tm.assert_frame_equal(dfs[1], exp1)
|
|
else:
|
|
assert len(dfs) == 1 # Should not parse hidden table
|
|
|
|
def test_encode(self, html_encoding_file):
|
|
base_path = os.path.basename(html_encoding_file)
|
|
root = os.path.splitext(base_path)[0]
|
|
_, encoding = root.split("_")
|
|
|
|
try:
|
|
with open(html_encoding_file, "rb") as fobj:
|
|
from_string = self.read_html(
|
|
fobj.read(), encoding=encoding, index_col=0
|
|
).pop()
|
|
|
|
with open(html_encoding_file, "rb") as fobj:
|
|
from_file_like = self.read_html(
|
|
BytesIO(fobj.read()), encoding=encoding, index_col=0
|
|
).pop()
|
|
|
|
from_filename = self.read_html(
|
|
html_encoding_file, encoding=encoding, index_col=0
|
|
).pop()
|
|
tm.assert_frame_equal(from_string, from_file_like)
|
|
tm.assert_frame_equal(from_string, from_filename)
|
|
except Exception:
|
|
# seems utf-16/32 fail on windows
|
|
if is_platform_windows():
|
|
if "16" in encoding or "32" in encoding:
|
|
pytest.skip()
|
|
raise
|
|
|
|
def test_parse_failure_unseekable(self):
|
|
# Issue #17975
|
|
|
|
if self.read_html.keywords.get("flavor") == "lxml":
|
|
pytest.skip("Not applicable for lxml")
|
|
|
|
class UnseekableStringIO(StringIO):
|
|
def seekable(self):
|
|
return False
|
|
|
|
bad = UnseekableStringIO(
|
|
"""
|
|
<table><tr><td>spam<foobr />eggs</td></tr></table>"""
|
|
)
|
|
|
|
assert self.read_html(bad)
|
|
|
|
with pytest.raises(ValueError, match="passed a non-rewindable file object"):
|
|
self.read_html(bad)
|
|
|
|
def test_parse_failure_rewinds(self):
|
|
# Issue #17975
|
|
|
|
class MockFile:
|
|
def __init__(self, data):
|
|
self.data = data
|
|
self.at_end = False
|
|
|
|
def read(self, size=None):
|
|
data = "" if self.at_end else self.data
|
|
self.at_end = True
|
|
return data
|
|
|
|
def seek(self, offset):
|
|
self.at_end = False
|
|
|
|
def seekable(self):
|
|
return True
|
|
|
|
good = MockFile("<table><tr><td>spam<br />eggs</td></tr></table>")
|
|
bad = MockFile("<table><tr><td>spam<foobr />eggs</td></tr></table>")
|
|
|
|
assert self.read_html(good)
|
|
assert self.read_html(bad)
|
|
|
|
@pytest.mark.slow
|
|
def test_importcheck_thread_safety(self, datapath):
|
|
# see gh-16928
|
|
|
|
class ErrorThread(threading.Thread):
|
|
def run(self):
|
|
try:
|
|
super().run()
|
|
except Exception as err:
|
|
self.err = err
|
|
else:
|
|
self.err = None
|
|
|
|
# force import check by reinitalising global vars in html.py
|
|
reload(pandas.io.html)
|
|
|
|
filename = datapath("io", "data", "html", "valid_markup.html")
|
|
helper_thread1 = ErrorThread(target=self.read_html, args=(filename,))
|
|
helper_thread2 = ErrorThread(target=self.read_html, args=(filename,))
|
|
|
|
helper_thread1.start()
|
|
helper_thread2.start()
|
|
|
|
while helper_thread1.is_alive() or helper_thread2.is_alive():
|
|
pass
|
|
assert None is helper_thread1.err is helper_thread2.err
|